
UAVR-1

AVR® IAR EMBEDDED
WORKBENCH™

User Guide

for Atmel® Corporation’s
AVR® Microcontroller

UAVR-1

ii

COPYRIGHT NOTICE
© Copyright 2000 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR and C-SPY are registered trademarks of IAR Systems. IAR
Embedded Workbench, IAR XLINK Linker, and IAR XLIB Librarian are
trademarks of IAR Systems. AVR and Atmel are registered trademarks of
Atmel Corporation. Microsoft is a registered trademark, and Windows is
a trademark of Microsoft Corporation. Pentium® is a registered trademark
of Intel Corporation. Codewright is a registered trademark of Premia
Corporation. Adobe and Acrobat Reader are registered trademarks of
Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their
respective owners.

First edition: March 2000

Part number: UAVR-1

UAVR-1

iii

WELCOME Welcome to the AVR IAR Embedded Workbench™ User Guide. This
guide describes how to use the IAR Embedded Workbench™ with its
integrated Windows development tools for the AVR microcontroller.

Before starting to use the tools, we recommend you to read the initial
chapters of this guide. Here you will find information about installing the
tools, product overviews, and tutorials that will help you get started.

This guide also includes complete reference information about the
IAR Embedded Workbench with the simulator version of the IAR C-SPY®
Debugger for the AVR microcontroller.

Refer to the AVR IAR Compiler Reference Guide and AVR IAR Assembler,
IAR XLINK Linker™, and IAR XLIB Librarian™ Reference Guide for more
information about the development tools incorporated in the IAR
Embedded Workbench.

Refer to the chip manufacturer’s documentation for information about
the AVR architecture and instruction set.

If you want to know more about IAR Systems, visit the website
www.iar.com where your will find company information, product
news, technical support, and much more.

ABOUT THIS GUIDE This guide consists of the following parts:

◆ Part 1: The IAR development tools

The IAR Embedded Workbench provides a brief summary of the
features of the IAR Systems development tools for the AVR: the IAR
Embedded Workbench™, IAR Compiler, IAR Assembler, IAR XLINK
Linker™, IAR XLIB Librarian™, and IAR C-SPY® Debugger.

Installation and documentation describes the system requirements
and explains how to run the IAR Embedded Workbench with the IAR
C-SPY Debugger. It also describes the directory structure and file
types, and gives an overview of the documentation supplied with the
IAR development tools.

The project model explains how the IAR Embedded Workbench
organizes your work into a project, to help you keep track of the
source files involved in a typical application. It explains how the
configuration options relate to your project, and how you use the IAR
development tools to operate on the files within a project.

PREFACE

UAVR-1

iv

◆ Part 2: Tutorials

IAR Embedded Workbench tutorial describes a typical development
cycle using the IAR Embedded Workbench, the AVR IAR Compiler,
and the IAR XLINK Linker™. It also introduces you to the IAR C-SPY
Debugger.

Compiler tutorials illustrates how you might use the IAR Embedded
Workbench and the IAR C-SPY Debugger to develop a series of
typical programs for the AVR IAR Compiler, using some of the
compiler’s most important features.

Assembler tutorials illustrates how you might use the IAR Embedded
Workbench and the IAR C-SPY Debugger to develop machine-code
programs, using some of the most important features of the AVR IAR
Assembler. It also introduces you to the IAR XLIB Librarian™.

Advanced tutorials illustrates how you might use both code written
for the AVR IAR Compiler and code written for the AVR IAR
Assembler in the same project. It also explores the functionality of the
IAR C-SPY Debugger.

◆ Part 3: The IAR Embedded Workbench

General options describes how to set general project options in the
IAR Embedded Workbench.

Compiler options explains how to set compiler options from the
IAR Embedded Workbench, and describes each option.

Assembler options explains how to set assembler options in the IAR
Embedded Workbench, and describes each option.

XLINK options explains how to set linker options in the IAR
Embedded Workbench, and describes each option.

C-SPY options explains how to set C-SPY options in the IAR
Embedded Workbench, and describes each option.

IAR Embedded Workbench reference provides reference information
about the IAR Embedded Workbench, and the commands on each of
the IAR Embedded Workbench menus.

◆ Part 4: The C-SPY simulator

Introduction to C-SPY describes the general functionality of the IAR
C-SPY Debugger.

PREFACE

UAVR-1

v

C-SPY expressions defines the syntax of the expressions and variables
used in C-SPY macros, and gives examples to show how to use macros
in debugging.

C-SPY macros lists the built-in system macros supplied with the IAR
C-SPY Debugger.

C-SPY reference provides complete reference information about the
C-SPY windows, menu commands, and their associated dialog boxes.

C-SPY command line options gives information about customizing the
IAR C-SPY Debugger using command line options or setup macros.

ASSUMPTIONS AND
CONVENTIONS

ASSUMPTIONS
This guide assumes that you have a working knowledge of the following:

◆ The C or Embedded C++ programming language and the IAR AVR
assembly language.

◆ The architecture and instruction set of the AVR microcontroller.

◆ The procedures for using menus, windows, and dialog boxes in a
Windows environment.

Note: The illustrations in this guide show the IAR Embedded Workbench
running in a Windows 95-style environment, and their appearance will
be slightly different if you are using another platform.

CONVENTIONS
This user guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type
as part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and
dialog boxes that appear on the screen.

PREFACE

UAVR-1

vi

FURTHER READING The following books may be of interest to you when using the IAR
Systems development tools for the AVR microcontroller:

◆ Michael Barr, Andy Oram (editor): Programming Embedded Systems
in C and C++ (O’Reilly & Associates)

◆ Brian W. Kernighan, Dennis M. Ritchie: The C Programming
Language (Prentice Hall)

The later editions describe the ANSI C standard.

◆ Claus Kühnel: AVR RISC Microcontroller Handbook (Newnes)

◆ Jean J. Labrosse: Embedded Systems Building Blocks: Complete and
Ready-To-Use Modules in C (R&D Books)

◆ Bernhard Mann: C für Mikrocontroller (Franzis-Verlag)

◆ Bjarne Stroustrup: The C++ Programming Language
(Addison-Wesley)

We recommend that you visit the websites of Atmel Corporation and IAR
Systems:

◆ At the Atmel website, www.atmel.com, you can find information
and news about the AVR microcontrollers.

◆ At the IAR website, www.iar.com, you will find AVR application
notes and other product information.

reference A cross-reference to another part of this guide, or to
another guide.

Identifies instructions specific to the IAR Embedded
Workbench versions of the IAR development tools.

Identifies instructions specific to the command line
versions of the IAR development tools.

Style Used for

PREFACE

UAVR-1

vii

CONTENTS

PART 1: THE IAR DEVELOPMENT TOOLS 1

THE IAR EMBEDDED WORKBENCH .. 3
The framework 3
IAR Embedded Workbench 4
IAR Compiler 5
IAR Assembler 7
IAR XLINK Linker 8
IAR XLIB Librarian 9
IAR C-SPY Debugger 9

INSTALLATION AND DOCUMENTATION ... 13
Included in this package 13
System requirements 13
Running the program 14
Directory structure 15
File types 17
Documentation 18

THE PROJECT MODEL ... 21
Developing projects 21

PART 2: TUTORIALS ... 27

IAR EMBEDDED WORKBENCH TUTORIAL 29
Tutorial 1 29

COMPILER TUTORIALS... 49
Tutorial 2 49
Tutorial 3 53

ASSEMBLER TUTORIALS .. 67
Tutorial 4 67
Tutorial 5 73

CONTENTS

UAVR-1

viii

ADVANCED TUTORIALS ... 79
Tutorial 6 79
Tutorial 7 86
Tutorial 8 90

PART 3: THE IAR EMBEDDED WORKBENCH 93

GENERAL OPTIONS.. 95
Setting general options 95
Target 96
Output directories 97

COMPILER OPTIONS.. 99
Setting compiler options 99
Language 100
Code 102
Optimizations 104
Output 106
List 108
Preprocessor 109
Diagnostics 110

ASSEMBLER OPTIONS.. 113
Setting assembler options 113
Code generation 114
Debug 116
Preprocessor 117
List 118

XLINK OPTIONS .. 121
Setting XLINK options 122
Output 123
#define 125
Diagnostics 126
List 128
Include 129
Input 130
Processing 132

CONTENTS

UAVR-1

ix

C-SPY OPTIONS .. 135
Setting C-SPY options 135
Setup 136

IAR EMBEDDED WORKBENCH REFERENCE 137
The IAR Embedded Workbench
window 137
File menu 148
Edit menu 151
View menu 154
Project menu 155
Tools menu 160
Options menu 163
Window menu 170
Help menu 170

PART 4: THE C-SPY SIMULATOR 173

INTRODUCTION TO C-SPY.. 175
Debugging projects 175

C-SPY EXPRESSIONS... 179
Expression syntax 179

C-SPY MACROS... 183
Using C-SPY macros 183
C-SPY setup macros 188

C-SPY REFERENCE.. 207
The C-SPY window 207
File menu 220
Edit menu 220
View menu 221
Execute menu 223
Control menu 224
Options menu 235
Window menu 241
Help menu 241

CONTENTS

UAVR-1

x

C-SPY COMMAND LINE OPTIONS.. 243
Setting C-SPY options 243

INDEX.. 247

UAVR-1

1

PART 1: THE IAR
DEVELOPMENT TOOLS
This part of the AVR IAR Embedded Workbench™ User Guide includes
the following chapters:

◆ The IAR Embedded Workbench

◆ Installation and documentation

◆ The project model.

PART 1: THE IAR DEVELOPMENT TOOLS

UAVR-1

2

UAVR-1

3

THE IAR EMBEDDED
WORKBENCH
The IAR Embedded Workbench™ is a very powerful Integrated
Development Environment (IDE), allowing you to develop and manage
your complete embedded application project. It is a true 32-bit Windows
environment, with all the features you would expect to find in your
everyday working place.

THE FRAMEWORK The IAR Embedded Workbench is the framework, where all necessary
tools are seamlessly integrated. Support for a large number of target
processors can be added into the IAR Embedded Workbench, allowing
you to stay within a well-known development environment also for your
next project.

The IAR Embedded Workbench also promotes a useful working
methodology, and thus a significant reduction of the development time
can be achieved by using the IAR tools. We call this concept: “Different
Architectures. One Solution”. The IAR Embedded Workbench is
available for a large number of microprocessors and microcontrollers in
the 8-, 16-, and 32-bit segments. It provides an easy-to-learn and highly
efficient development environment with maximum code inheritance
capabilities, comprehensive and specific target support.

INTEGRATED TOOLS
The IAR Embedded Workbench integrates a highly optimized C/EC++
compiler, an assembler, the versatile IAR XLINK Linker, the IAR XLIB
Librarian, a powerful editor, a project manager with Make utility, and
C-SPY®, a state-of-the-art high-level-language debugger.

Although the IAR Embedded Workbench provides all the features
required for a successful project, we also recognize the need to integrate
other tools. Therefore the IAR Embedded Workbench can be easily
adapted to work with your editor of choice, your preferred revision
control system, etc. Project files can be saved as text files, to support your
own Make facility. The IAR XLINK Linker can produce a large number
of output formats, allowing for debugging on most third-party emulators.

IAR EMBEDDED WORKBENCH THE IAR EMBEDDED WORKBENCH

UAVR-1

4

The command line version of the compiler is also included in the product
package, if you want to use the compiler and linker as external tools in an
already established project environment.

If you want more information about supported target processors, contact
your software distributor or your IAR representative, or visit the IAR
website www.iar.com for information about recent product releases.

IAR EMBEDDED
WORKBENCH

The IAR Embedded Workbench™ is a flexible integrated development
environment, allowing you to develop applications for a variety of
different target processors. It provides a convenient Windows interface
for rapid development and debugging.

FEATURES
Below follows a brief overview of the features of the IAR Embedded
Workbench.

General features
The IAR Embedded Workbench provides the following general features:

◆ Runs under Windows 95/98, or Windows NT 4 or later.

◆ Intuitive user interface, taking advantage of Windows 95/98
features.

◆ Hierarchical project representation.

◆ Full integration between the IAR Embedded Workbench tools and
editor.

◆ Binary File Editor with multi-level undo and redo.

The IAR Embedded Workbench editor
The IAR Embedded Workbench Editor provides the following features:

◆ Syntax of C or Embedded C++ programs shown using text styles
and colors.

◆ Powerful search and replace commands, including multi-file search.

◆ Direct jump to context from error listing.

◆ Parenthesis matching.

◆ Automatic indentation.

THE IAR EMBEDDED WORKBENCH IAR COMPILER

UAVR-1

5

◆ Multi-level undo and redo for each window.

Compiler and assembler projects
The IAR Embedded Workbench provides the following features for the
IAR Compiler and the IAR Assembler:

◆ Projects build in the background, allowing simultaneous editing.

◆ Options can be set globally, on groups of source files, or on
individual source files.

◆ The Make utility recompiles, reassembles, and links files only when
necessary.

◆ Generic and AVR-specific optimization techniques produce very
efficient machine code.

Documentation
The AVR IAR Embedded Workbench is documented in the AVR IAR
Embedded Workbench™ User Guide (this guide). There is also
context-sensitive help and hypertext versions of the user documentation
available online.

IAR COMPILER The IAR Compiler for the AVR microcontroller offers the standard
features of the C or Embedded C++ language, plus many extensions
designed to take advantage of the AVR-specific facilities.

The AVR IAR Compiler is integrated with other IAR Systems software
for the AVR microcontroller. It is supplied with the IAR AVR Assembler,
with which it shares linker and librarian manager tools.

FEATURES
The following section describes the features of the AVR IAR Compiler.

Language facilities
◆ Conformance to the ISO/ANSI standard for a free-standing

environment.

◆ Standard library of functions applicable to embedded systems, with
source code optionally available.

◆ IEEE-compatible floating-point arithmetic.

◆ Embedded C++.

IAR COMPILER THE IAR EMBEDDED WORKBENCH

UAVR-1

6

◆ Object code can be linked with assembly routines.

◆ Interrupt functions can be written in C or Embedded C++.

Type checking
◆ External references are type-checked at link time.

◆ Extensive type checking at compile time.

◆ Link-time inter-module consistency checking of the run-time
module.

Code generation
◆ Selectable optimization for code size or execution speed.

◆ Comprehensive output options, including relocatable object code,
assembler source code, and C or Embedded C++ list files with
optional assembler mnemonics.

◆ Easy-to-understand error and warning messages.

◆ Compatibility with the C-SPY® high-level debugger.

Target support
◆ Flexible variable allocation.

◆ #pragma directives to maintain portability while using
processor-specific extensions.

◆ Supports both the standard instruction set and the enhanced
instruction set.

◆ Inline assembler statements.

◆ Intrinsic functions.

Documentation
The AVR IAR Compiler is documented in the AVR IAR Compiler
Reference Guide.

THE IAR EMBEDDED WORKBENCH IAR ASSEMBLER

UAVR-1

7

IAR ASSEMBLER The AVR IAR Assembler is a powerful relocating macro assembler with
a versatile set of directives.

The AVR IAR Assembler uses the same mnemonics as the Atmel AVR
Assembler, which makes the migration of existing code quite easy. For
detailed information, see the AVR IAR Assembler, IAR XLINK Linker™,
and IAR XLIB Librarian™ Reference Guide.

FEATURES
The AVR IAR Assembler provides the following features:

◆ Integration with other IAR Systems software for the AVR
microcontroller.

◆ Built-in C language preprocessor.

◆ Extensive set of assembler directives and expression operators.

◆ Conditional assembly.

◆ Powerful recursive macro facilities supporting the Intel/Motorola
style.

◆ List file with augmented cross-reference output.

◆ Number of symbols and program size limited only by available
memory.

◆ Support for complex expressions with external references.

◆ Up to 65536 relocatable segments per module.

◆ 255 significant characters in symbol names.

◆ 32-bit arithmetic.

Documentation
The AVR IAR Assembler is documented in the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

IAR XLINK LINKER THE IAR EMBEDDED WORKBENCH

UAVR-1

8

IAR XLINK LINKER The IAR XLINK Linker converts one or more relocatable object files
produced by the IAR Systems assembler or compiler to machine code for
a specified target processor. It supports a wide range of industry-standard
loader formats, in addition to the IAR Systems debug format used by the
IAR C-SPY Debugger.

The IAR XLINK Linker supports user libraries, and will load only those
modules that are actually needed by the program you are linking.

The final output produced by the IAR XLINK Linker is an absolute,
target-executable object file that can be downloaded to the AVR
microcontroller or to a hardware emulator.

FEATURES
The IAR XLINK Linker offers the following important features:

◆ Full C-level type checking across all modules.

◆ Full dependency resolution of all symbols in all input files,
independent of input order.

◆ Simple override of library modules.

◆ Supports 255 character symbol names.

◆ Checks for compatible compiler settings for all modules.

◆ Checks that the correct version and variant of the C or Embedded
C++ run-time library is used.

◆ Flexible segment commands allow detailed control of code and data
placement.

◆ Link-time symbol definition enables flexible configuration control.

◆ Support for over 30 output formats.

◆ Can generate checksum of code for run-time checking.

Documentation
The IAR XLINK Linker is documented in the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

THE IAR EMBEDDED WORKBENCH IAR XLIB LIBRARIAN

UAVR-1

9

IAR XLIB LIBRARIAN The IAR XLIB Librarian enables you to manipulate the relocatable object
files produced by the IAR Systems assembler and compiler.

FEATURES
The IAR XLIB Librarian provides the following features:

◆ Support for modular programming.

◆ Modules can be listed, added, inserted, replaced, deleted, or
renamed.

◆ Modules can be changed between program and library type.

◆ Segments can be listed and renamed.

◆ Symbols can be listed and renamed.

◆ Interactive or batch mode operation.

◆ A full set of library listing operations.

Documentation
The IAR XLIB Librarian is documented in the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

IAR C-SPY
DEBUGGER

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR compilers, assemblers,
IAR XLINK Linker, and IAR XLIB Librarian. The IAR C-SPY Debugger
allows you to switch between source mode and disassembly mode
debugging as required, for both C or Embedded C++ and assembler
code.

Source mode debugging provides the quickest and easiest way of verifying
the less critical parts of your application, without needing to worry about
how the compiler has implemented your C or Embedded C++ code in
assembler. During C or Embedded C++ level debugging you can execute
the program a C or Embedded C++ statement at a time, and monitor the
values of C or Embedded C++ variables and data structures.

You can choose between disassembled code and original assembler source
code. Disassembly mode debugging lets you focus on the critical sections
of your application, and provides you with precise control over the
hardware. You can execute the program an assembler instruction at a
time, and display the registers and memory or change their contents.

IAR C-SPY DEBUGGER THE IAR EMBEDDED WORKBENCH

UAVR-1

10

FEATURES
The IAR C-SPY Debugger offers a unique combination of features. These
are described in the following sections.

General
The IAR C-SPY Debugger offers the following general features:

◆ Intuitive user interface, taking advantage of Windows 95/98
features.

◆ Source and disassembly mode debugging.

◆ Fast simulator.

◆ Log file option.

◆ Powerful macro language.

◆ Complex code and data breakpoints.

◆ Memory validation.

◆ Interrupt simulation.

◆ UBROF, INTEL-EXTENDED, and Motorola input formats
supported.

High-level-language debugging
◆ Expression analyzer.

◆ Extensive type recognition of variables.

◆ Configurable register window and multiple memory windows.

◆ Function trace.

◆ C or Embedded C++ call stack with parameters.

◆ Watchpoints on expressions.

◆ Code coverage.

◆ Function-level profiling.

◆ Watch, Locals, and QuickWatch windows allow you to expand
arrays and structs.

◆ Optional terminal I/O emulation.

Assembler-level debugging
◆ Full support for auto and register variables.

THE IAR EMBEDDED WORKBENCH IAR C-SPY DEBUGGER

UAVR-1

11

◆ Built-in assembler/disassembler.

Documentation
The IAR C-SPY Debugger is documented in the AVR IAR Embedded
Workbench™ User Guide (this guide). There is also context-sensitive help
available online.

VERSIONS
The IAR C-SPY Debugger for the AVR microcontroller is currently
available in a simulator version and a ROM-monitor version for the
AT90SCC Crypto Controller, configured for the Smart Card Development
Kit from Atmel-ES2.

Contact your software distributor or IAR representative for information
about other versions of C-SPY.

Below are general descriptions of the different C-SPY versions.

Simulator version
The simulator version simulates the functions of the target processor
entirely in software. With this C-SPY version, the program logic can be
debugged long before any hardware is available. Since no hardware is
required, it is also the most cost-effective solution for many applications.

For additional information about the simulator version of the IAR C-SPY
Debugger, refer to Part 4: The C-SPY simulator in this guide.

Emulator version
The emulator version of the IAR C-SPY Debugger provides control over
an in-circuit emulator, which is connected to the host computer.

The IAR C-SPY Debugger uses the hardware features of the emulator,
such as breakpoint logic and memory inspection, to allow an application
to be executed in real time and in the proper target environment.

ROM-monitor version
A ROM-monitor is a software component that runs on e.g. an evaluation
board which is connected to the host. C-SPY uses this software to access
memory and register information.

IAR C-SPY DEBUGGER THE IAR EMBEDDED WORKBENCH

UAVR-1

12

UAVR-1

13

INSTALLATION AND
DOCUMENTATION
This chapter contains information about system requirements, explains
how to run the IAR Embedded Workbench™, describes the directory
structure and file types, and gives an overview of the available
documentation.

Refer to the QuickStart Card, which is delivered with the product, for
information about how to install and register the IAR products.

INCLUDED IN THIS
PACKAGE

The IAR Systems development tools package for the AVR microcontroller
contains the following items:

◆ Installation media.

◆ QuickStart Card.

◆ User documentation:

AVR IAR Embedded Workbench™ User Guide (this guide).

AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™
Reference Guide.

AVR IAR Compiler Reference Guide.

SYSTEM
REQUIREMENTS

The IAR Systems development tools for the AVR microcontroller run
under Windows 95/98, or Windows NT 4 or later.

We recommend a Pentium® processor with at least 64 Mbytes of RAM
allowing you to fully utilize and take advantage of the product features,
and 100 Mbytes of free disk space for the IAR development tools.

To access all the product documentation, you also need a web browser
and the Adobe Acrobat® Reader.

RUNNING THE PROGRAM INSTALLATION AND DOCUMENTATION

UAVR-1

14

RUNNING THE
PROGRAM

RUNNING THE IAR EMBEDDED WORKBENCH
Select the Start button in the taskbar and select Programs. Select IAR
Systems in the menu. Then select IAR Embedded Workbench for
AVR and IAR Embedded Workbench to run the ew23.exe program
which is located in the installation root directory.

Note: The product version number may become updated in a future
release. Refer to the ewavr read-me file for the most recent product
information.

RUNNING THE IAR C-SPY DEBUGGER
The most common way to start the IAR C-SPY Debugger is from within
the IAR Embedded Workbench, where you select Debugger from the
Project menu or click the Debugger icon in the toolbar.

You can also start C-SPY from the Programs menu. Select IAR Systems
in the menu. Then select IAR Embedded Workbench for AVR and
IAR C-SPY to run the cw23.exe program which is located in the
installation root directory.

It is also possible to start C-SPY by using the Windows Run... command,
specifying options. See Setting C-SPY options from the command line, page
243, for additional information about command line options.

UPGRADING TO A NEW VERSION
When upgrading to a new version of the product, you should first
uninstall the previous version.

First make sure to create back-up copies of all files you may have
modified, such as linker command files (*.xcl). Then use the standard
procedure in Windows to uninstall the previous product version (select
Add/Remove Programs in the Control Panel in Windows). Finally
install the new version of the product, using the same path as before.

UNINSTALLING THE PRODUCTS
To uninstall the IAR toolkit, use the standard procedure by selecting
Add/Remove Programs in the Control Panel in Windows.

INSTALLATION AND DOCUMENTATION DIRECTORY STRUCTURE

UAVR-1

15

DIRECTORY
STRUCTURE

The installation procedure creates several directories to contain the
different types of files used with the IAR Systems development tools. The
following sections give a description of the files contained by default in
each directory.

ROOT DIRECTORY
The root directory created by the default installation procedure is the
x:\program files\iar systems\ew23\ directory where x is the drive
where Microsoft Windows is installed. The executable files for the IAR
Embedded Workbench and the IAR C-SPY Debugger are located here.
The root directory also contains the avr directory, where all
product-specific subdirectories are located.

If you already have an ew23.exe file installed, the installation program
will suggest to use its root directory also for the installation of the AVR
IAR development tools.

THE BIN DIRECTORY
The bin subdirectory contains executable files such as exe and dll files,
the C-SPY driver, and the AVR help files.

THE CONFIG DIRECTORY
The config subdirectory contains files to be used for configuring the
system. A linker command file (*.xcl) for each supported derivative is
located here. The C-SPY device description files (*.ddf) are also located
in this directory.

DIRECTORY STRUCTURE INSTALLATION AND DOCUMENTATION

UAVR-1

16

THE DOC DIRECTORY
The doc subdirectory contains read-me files (*.htm or *.txt) with
recent additional information about the AVR tools. It is recommended
that you read all of these files before proceeding. The directory also
contains online versions (PDF format) of this user guide, and of the AVR
reference guides.

THE INC DIRECTORY
The inc subdirectory holds include files, such as the header files for the
standard C or Embedded C++ library, as well as a specific header file
defining special function registers (SFRs). These files are used by both
the compiler and the assembler, as defined in the iomacro.h file.

THE LIB DIRECTORY
The lib subdirectory holds library modules used by the compiler.

The IAR XLINK Linker™ searches for library files in the directory
specified by the XLINK_DFLTDIR environment variable. If you set this
environment variable to the path of the lib subdirectory, you can refer to
lib library modules simply by their basenames.

THE LICENSE DIRECTORY
The license subdirectory holds the IAR Systems License Manager
utility.

THE SRC DIRECTORY
The src\clib subdirectory contains the IAR C library in source format.
This library is provided for backward compatibility. The subdirectory
src\clib\lib will be created when you run the cl.bat file.

The src\lib subdirectory contains source files that are shared between
the standard C or Embedded C++ library and the IAR C library.

The src\simple subdirectory contains the reader software for the
XLINK SIMPLE output format.

The src\template subdirectory contains linker command file templates
(*.xcl). The Configuration chapter in the AVR IAR Compiler Reference
Guide describes how to use templates to tailor a linker command file for
a particular application.

INSTALLATION AND DOCUMENTATION FILE TYPES

UAVR-1

17

THE TUTOR DIRECTORY
The tutor subdirectory contains the files used for the tutorials in this
guide.

FILE TYPES The AVR versions of the IAR Systems development tools use the
following default filename extensions to identify the IAR-specific file
types:

Ext. Type of file Output from Input to

a90 Target program XLINK EPROM, C-SPY, etc

c
cpp

C or Embedded C++
program source

Text editor Compiler

d90 Target program with
debug information

XLINK C-SPY and other
symbolic debuggers

ddf Device description file Text editor C-SPY

h C or Embedded C++
header source

Text editor Compiler #include

i Preprocessed code Compiler Compiler

inc Assembler header Text editor Assembler
#include file

lst List Compiler and
assembler

–

mac C-SPY macro definition Text editor C-SPY

prj IAR Embedded
Workbench project

IAR Embedded
Workbench

IAR Embedded
Workbench

r90 Object module Compiler and
assembler

XLINK and XLIB

s90 Assembler program
source

Text editor Assembler

xcl Extended command Text editor XLINK

xlb Librarian command Text editor XLIB

DOCUMENTATION INSTALLATION AND DOCUMENTATION

UAVR-1

18

You can override the default filename extension by including an explicit
extension when specifying a filename.

Files with the extensions ini and cfg are created dynamically when you
install and run the IAR Embedded Workbench tools. These files contain
information about your configuration and other settings.

Note: If you run the tools from the command line, the XLINK listings
(maps) will by default have the extension lst, which may overwrite the
list file generated by the compiler. Therefore, we recommend that you
name XLINK map files explicitly, for example project1.map.

DOCUMENTATION This section briefly describes the information that is available in the AVR
user and reference guides, in the online help, and on the Internet.

For information about the C or Embedded C++ programming language,
embedded systems programming, and the AVR architecture, see Further
reading, page vi.

THE USER AND REFERENCE GUIDES
The user and reference guides provided with the IAR Embedded
Workbench are as follows:

AVR IAR Embedded Workbench™ User Guide
This guide.

AVR IAR Compiler Reference Guide
This guide provides reference information about the AVR IAR Compiler.
You should refer to this guide for information about:

◆ How to configure the compiler to suit your target processor and
application requirements

◆ How to write efficient code for your target processor

◆ The available data types

◆ The run-time libraries

◆ The IAR language extensions

◆ How to migrate from the A90 IAR Compiler.

INSTALLATION AND DOCUMENTATION DOCUMENTATION

UAVR-1

19

AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide
This guide provides reference information about the AVR IAR
Assembler, IAR XLINK Linker, and IAR XLIB Librarian™:

◆ The assembler reference sections include details of the assembler
source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

◆ The IAR XLINK Linker reference sections provide information
about XLINK options, output formats, environment variables, and
diagnostics.

◆ The IAR XLIB Librarian reference sections provide information
about XLIB commands, environment variables, and diagnostics.

ONLINE HELP AND DOCUMENTATION
From the Help menu in the IAR Embedded Workbench and the
IAR C-SPY Debugger, you can access the AVR online documentation.
Context-sensitive help is also available via the F1 button in the
IAR Embedded Workbench and C-SPY windows and dialog boxes.

Online documentation
The following documentation is supplied with the product:

Help menu item Description

Embedded Workbench Guide This guide.

Compiler Reference Guide The AVR IAR Compiler Reference
Guide.

Assembler, Linker, and Librarian
Guide

The AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide.

C Library Reference Guide The General C Library Definitions
Reference Guide.

EC++ Library Reference Guide The C++ Library Reference.

DOCUMENTATION INSTALLATION AND DOCUMENTATION

UAVR-1

20

Recent information
We recommend that you read the following files for recent information
that may not be included in the user guides:

The read-me files are located in the avr\doc directory.

Note: The clib read-me file contains release notes for the IAR C library.
This library is provided for backward compatibility.

IAR ON THE WEB
The latest news from IAR Systems is available at the website
www.iar.com. You can access the IAR site directly from the
IAR Embedded Workbench Help menu and receive information about:

◆ Product announcements.

◆ Updates and news about current versions.

◆ Special offerings.

◆ Evaluation copies of the IAR products.

◆ Technical Support, including frequently asked questions (FAQs).

◆ Application notes.

◆ Links to chip manufacturers and other interesting sites.

◆ Distributors; the names and addresses of distributors in each
country.

Read-me file Description

aavr Assembler release notes

clibrary Standard C/EC++ library release notes

csavr IAR C-SPY Debugger release notes

ewavr IAR Embedded Workbench release notes

iccavr IAR Compiler release notes

migrate ICCA90 migration information

xlink IAR XLINK Linker release notes

xman IAR XLINK Linker recent updates

http://www.iar.com

UAVR-1

21

THE PROJECT MODEL
This chapter gives a brief discussion of the project model used by the
IAR Embedded Workbench™, and explains how you use it to develop
typical applications.

The concepts discussed in this chapter are illustrated in Part 2: Tutorials
in this guide. You may find it helpful to return to this chapter while
running the tutorials.

DEVELOPING
PROJECTS

The IAR Embedded Workbench provides a powerful environment for
developing projects with a range of different target processors, and a
selection of tools for each target processor.

HOW PROJECTS ARE ORGANIZED
The IAR Embedded Workbench has been specially designed to fit in with
the way that software development projects are typically organized. For
example, you may need to develop related versions of an application for
different versions of the target hardware, and you may also want to
include debugging routines into the early versions, but not in the final
code.

Versions of your applications for different target hardware will often have
source files in common, and you want to be able to maintain a unique
copy of these files, so that improvements are automatically carried
through to each version of the application. There can also be source files
that differ between different versions of the application, such as those
dealing with hardware-dependent aspects of the application. These files
can be maintained separately for each target version.

The IAR Embedded Workbench addresses these requirements, and
provides a powerful environment for maintaining the source files used for
building all versions of an application. It allows you to organize projects
in a hierarchical tree structure showing the dependency between files at
a glance.

DEVELOPING PROJECTS THE PROJECT MODEL

UAVR-1

22

Targets
At the highest level of the structure you specify the different target
versions of your application that you want to build. For a simple
application you might need just two targets, called Debug and Release.
A more complex project might include additional targets for each of the
different processor variants that the application is to run on.

Groups
Each target in turn contains one or more groups, which collect together
related sets of source files. A group can be unique to a particular target,
or it can be present in two or more targets. For example, you might create
a group called Debugging routines which would be present only in the
Debug target, and another group called Common sources which would
be present in all targets.

Source files
Each group is used for grouping together one or more related source files.
For maximum flexibility each group can be included in one or more
targets.

When you are working with a project you always have a current target
selected, and only the groups that are members of that target, along with
their enclosed files, are visible in the Project window. Only these files will
actually be built and linked into the output code.

SETTING OPTIONS
For each target you set global assembler and compiler options at the target
level, to specify how that target should be built. At this level you typically
define which processor configuration and memory model to use.

THE PROJECT MODEL DEVELOPING PROJECTS

UAVR-1

23

You can also set local compiler and assembler options on individual
groups and source files. These local options are specific to the context of
a target and override any corresponding global options set at the target
level, and are specific to that target. A group can be included in two
different targets and have different options set for it in each target. For
example, you might set optimization high for a group containing source
files that you have already debugged, but remove optimization from
another group containing source files that you are still developing.

For an example where different options are set on file level, see Tutorial
8, page 90. For information about how to set options, see the chapters
Compiler options and Assembler options in Part 3: The IAR Embedded
Workbench in this guide.

BUILDING A PROJECT
The Compile command on the IAR Embedded Workbench Project
menu allows you to compile or assemble the files of a project individually.
The IAR Embedded Workbench automatically determines whether a
source file should be compiled or assembled depending on the filename
extension.

Alternatively, you can build the entire project using the Make command.
This command identifies the modified files, and only recompiles or
assembles those files that have changed before it relinks the project.

A Build All option is also provided, which unconditionally regenerates
all files.

The Compile, Make, Link, and Build commands all run in the
background so that you can continue editing or working with the
IAR Embedded Workbench while your project is being built.

TESTING THE CODE
The compiler and assembler are fully integrated with the development
environment, so that if there are errors in your source code you can jump
directly from the error listing to the correct position in the appropriate
source file, to allow you to locate and correct the error.

After you have resolved any problems reported during the build process,
you can switch directly to C-SPY to test the resulting code at source level.
The C-SPY debugger runs in a separate window, so that you can make
changes to the original source files to correct problems as you identify
them in C-SPY.

DEVELOPING PROJECTS THE PROJECT MODEL

UAVR-1

24

SAMPLE APPLICATIONS
The following examples describe two sample applications to illustrate
how you would use the IAR Embedded Workbench in typical
development projects.

A basic application
The following diagram shows a simple application, developed for one
target processor only. Here you would manage with the two default
targets, Release and Debug:

Both targets share a common group containing the project’s core source
files. Each target also contains a group containing the source files specific
to that target: I/O routines, contains the source files for the input/output
routines to be used in the final release code, and I/O stubs which
contains input/output stubs to allow the I/O to be debugged with a
debugger such as C-SPY.

The release and debug targets would typically have different compiler
options set for them; for example, you could compile the Debug version
with trace, assertions, etc, and the Release version without it.

THE PROJECT MODEL DEVELOPING PROJECTS

UAVR-1

25

A more complex project
In the following more complex project an application is being developed
for several different pieces of target hardware, containing different
variants of a processor, different I/O ports and memory configurations.
The project therefore includes a debug target, and a release target for each
of the different sets of target hardware.

The source files that are common to all the targets are collected together,
for convenience, into groups which are included in each of the targets.
The names of these groups reflect the areas in the application that the
source code deals with; for example math routines.

Areas of the application that depend on the target hardware, such as the
memory management, are included in a number of separate groups, one
per target. Finally, as before, debugging routines are provided for the
Debug target.

DEVELOPING PROJECTS THE PROJECT MODEL

UAVR-1

26

When you are working on a large project such as this, the IAR Embedded
Workbench minimizes your development time by helping you to keep
track of the structure of your project, and by optimizing the development
cycle by assembling and compiling the minimum set of source files
necessary to keep the object code completely up to date after changes.

UAVR-1

27

PART 2: TUTORIALS
This part of the AVR IAR Embedded Workbench™ User Guide contains
the following chapters:

◆ IAR Embedded Workbench tutorial

◆ Compiler tutorials

◆ Assembler tutorials

◆ Advanced tutorials.

You should install the IAR development tools before running these
tutorials. The installation procedure is described in the chapter
Installation and documentation.

Notice that it may be helpful to return to the chapter The project model
while running the tutorials.

PART 2: TUTORIALS

UAVR-1

28

UAVR-1

29

IAR EMBEDDED
WORKBENCH TUTORIAL
This chapter introduces you to the IAR Embedded Workbench™ and the
IAR C-SPY® Debugger. It demonstrates how you might create and debug
a small program for the IAR Compiler.

Tutorial 1 describes a typical development cycle:

◆ We first create a project, add source files to it, and specify target
options.

◆ We then compile the program, examine the list file, and link the
program.

◆ Finally we run the program in the IAR C-SPY Debugger.

Alternatively, you may follow this tutorial by examining the list files
created. They show which areas of memory to monitor.

TUTORIAL 1 We recommend that you create a specific directory where you can store
all your project files, for example the avr\projects directory.

CREATING A NEW PROJECT
The first step is to create a new project for the tutorial programs. Start the
IAR Embedded Workbench, and select New... from the File menu to
display the following dialog box:

The Help button provides access to information about the IAR
Embedded Workbench. You can at any time press the F1 key to access the
online help.

Select Project and click OK to display the New Project dialog box.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

30

Enter Project1 in the File name box, and set the Target CPU Family
to AVR. Specify where you want to place your project files, for example
in a projects directory:

Then click Create to create the new project.

The Project window will be displayed. If necessary, select Debug from
the Targets drop-down list to display the Debug target:

Now set up the target options to suit the processor configuration in this
tutorial.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

31

Select the Debug folder icon in the Project window and choose
Options… from the Project menu. The Target options page in the
General category is displayed.

In this tutorial we use the default settings. Make sure that the Processor
configuration is set to -v0, Max 256 byte data, 8 Kbyte code and that
the Memory model is set to Tiny:

Then click OK to save the target options.

THE SOURCE FILES
This tutorial uses the source files tutor.c and common.c, and the include
files tutor.h and common.h, which are all supplied with the product.

The program initializes an array with the ten first Fibonacci numbers and
prints the result in the Terminal I/O window.

The tutor.c program
The tutor.c program is a simple program using only standard C or
Embedded C++ facilities. It repeatedly calls a function that prints a
number series to the Terminal I/O window in C-SPY. A copy of the
program is provided with the product.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

32

#include "tutor.h"

/* Global call counter */
int call_count;

/* Get and print next Fibonacci number. */
void do_foreground_process(void)
{
 unsigned int fib;
 ++call_count;
 fib = get_fibonacci(call_count);
 put_value(fib);
}

/* Main program. Prints the Fibonacci numbers. */
void main(void)
 {
 call_count = 0;
 init_fibonacci();
 while (call_count < MAX_FIBONACCI)
 do_foreground_process();
 }

The common.c program
The common.c program, which is also provided with the product,
contains utility routines for the Fibonacci calculations:

#include <stdio.h>
#include "common.h"

static unsigned int fibonacci[MAX_FIBONACCI];

/* Initialize the array above with the first Fibonacci
numbers*/
void init_fibonacci(void)
 {
 char i;

 fibonacci[0] = 1;
 fibonacci[1] = 1;

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

33

 for(i=2; i<MAX_FIBONACCI; ++i)
 fibonacci[i] = fibonacci[i-1] + fibonacci[i-2];
 }

/* Get the n:th fibonacci number, or 0 if the */
/* index is greater than MAX_FIBONACCI. */
unsigned int get_fibonacci(char index)
 {
 if (index >= MAX_FIBONACCI)
 return 0;

 return fibonacci[index];
 }

/* Print the given number to the standard output */
void put_value(unsigned int value)
 {
 char buf[8], *p, ch;

 p = buf;
 *p++ = 0;
 do
 {
 *p++ = ’0’ + value % 10;
 value /= 10;
 } while(value != 0);
 *p++ = ’\n’;

 while((ch = *--p) != 0)
 putchar(ch);
 }

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

34

ADDING FILES TO THE PROJECT
We will now add the tutor.c and common.c source files to the Project1
project.

Choose Files… from the Project menu to display the Project Files
dialog box. Locate the file tutor.c in the file selection list in the upper
half of the dialog box, and click Add to add it to the Common Sources
group.

Then locate the file common.c and add it to the group.

Finally click Done to close the Project Files dialog box.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

35

Click on the plus sign icon to display the file in the Project window tree
display:

The Common Sources group was created by the IAR Embedded
Workbench when you created the project. More information about
groups is available in the chapter The project model in Part 1: The IAR
development tools in this guide.

SETTING COMPILER OPTIONS
Now you should set up the compiler options for the project.

Select the Debug folder icon in the Project window, choose Options…
from the Project menu, and select ICCAVR in the Category list to
display the IAR Compiler options pages:

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

36

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

When you have made these selections, click OK to set the options you
have specified.

COMPILING THE TUTOR.C AND COMMON.C FILES
To compile the tutor.c file, select it in the Project window and choose
Compile from the Project menu.

Alternatively, click the Compile button in the toolbar or select the
Compile command from the pop-up menu that is available in the Project
window. It appears when you click the right mouse button.

The progress will be displayed in the Messages window.

You can specify the amount of information to be displayed in the
Messages window. In the Options menu, select Settings... and then
select the Make Control page.

Compile the file common.c in the same manner.

Page Options

Language Enable extensions

Optimizations Optimizations, Size: Low

Output Generate debug information

List C list file
Assembler mnemonics

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

37

The IAR Embedded Workbench has now created new directories in your
project directory. Since you have chosen the Debug target, a Debug
directory has been created containing the new directories List, Obj, and
Exe:

◆ In the list directory, your list files from the Debug target will be
placed. The list files have the extension lst and will be located here.

◆ In the obj directory, the object files from the compiler and the
assembler will be placed. These files have the extension r90 and will
be used as input to the IAR XLINK Linker.

◆ In the exe directory, you will find the executable files. These files
have the extension d90 and will be used as input to the IAR C-SPY
Debugger. Notice that this directory will be empty until you have
linked the object files.

VIEWING THE LIST FILE
Open the list file tutor.lst by selecting Open… from the File menu,
and selecting tutor.lst from the debug\list directory. Examine the
list file, which contains the following information:

The header shows the product version, information about when the file
was created, and the command line version of the compiler options that
were used:

##

 IAR AVR AVR C/EC++ Compiler Vx.Xxxx/xxx dd/Mmm/yyyy hh:mm:ss

 Copyright 2000 IAR Systems. All rights reserved.

 Source file = C:\Program Files\iar systems\ew23\avr\tutor\tutor.c

 Command line = -v0 -mt -o "C:\Program Files\iar

 systems\ew23\avr\projects\Debug\Obj\" -I "C:\Program

 Files\iar systems\ew23\avr\INC\" -lcN "C:\Program

 Files\iar systems\ew23\avr\projects\Debug\List\"

 --ec++ -e --initializers_in_flash -z3 --no_cse

 --no_inline --no_code_motion --no_cross_call --debug

 "C:\Program Files\iar systems\ew23\avr\tutor\tutor.c"

 List file = C:\Program Files\iar systems\ew23\avr\projects\

 Debug\List\tutor.lst

 Object file = C:\Program Files\iar systems\ew23\avr\projects\

 Debug\Obj\tutor.r90

##

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

38

The body of the list file shows the assembler code and binary code
generated for each C or Embedded C++ statement. It also shows how
the variables are assigned to different segments:

 16 void do_foreground_process(void)

 17 {

 18 unsigned int fib;

 19 ++call_count;

 \ do_foreground_process:

 \ 00000000 LDI R30,LOW(call_count)

 \ 00000002 LDI R31,call_count >> 8

 \ 00000004 8120 LD R18,Z

 \ 00000006 8131 LDD R19,Z+1

 \ 00000008 5F2F SUBI R18,255

 \ 0000000A 4F3F SBCI R19,255

 \ 0000000C 8331 STD Z+1,R19

 \ 0000000E 8320 ST Z,R18

 20 fib = get_fibonacci(call_count);

 \ 00000010 LDI R30,LOW(call_count)

 \ 00000012 LDI R31,call_count >> 8

 \ 00000014 8100 LD R16,Z

 \ 00000016 RCALL get_fibonacci

 21 put_value(fib);

 \ 00000018 RCALL put_value

 22 }

 \ 0000001A 9508 RET

The end of the list file shows the amount of stack, code, and data memory
required, and contains information about error and warning messages
that may have been generated:

 Maximum stack usage in bytes:

 Function CSTACK RSTACK

 -------- ------ ------

 do_foreground_process 0 2

 -> get_fibonacci 0 2

 -> put_value 0 2

 main 0 2

 -> init_fibonacci 0 2

 -> do_foreground_process 0 2

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

39

 64 bytes in segment CODE

 4 bytes in segment INITTAB

 2 bytes in segment TINY_Z

 64 bytes of CODE memory (+ 4 bytes shared)

 2 bytes of DATA memory

Errors: none

Warnings: none

LINKING THE TUTOR.C PROGRAM
First set up the options for the IAR XLINK Linker™:

Select the Debug folder icon in the Project window and choose
Options… from the Project menu. Then select XLINK in the Category
list to display the XLINK options pages:

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

Page Options

Output Debug info with terminal I/O

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

40

If you want to examine the linker command file, use a suitable text editor,
such as the IAR Embedded Workbench editor, or print a copy of the file,
and verify that the entries match your requirements.

The definitions in the linker command file are not permanent; they can
be altered later on to suit your project if the original choice proves to be
incorrect, or less than optimal. For more information about linker
command files, see the Configuration chapter in the AVR IAR Compiler
Reference Guide.

Click OK to save the XLINK options.

Note: The chapter XLINK options in Part 3: The IAR Embedded
Workbench in this guide contains information about the XLINK options
available in the IAR Embedded Workbench. In the linker command file,
XLINK command line options such as -P and -Z are used for segment
control. These options are described in the chapters Introduction to the
IAR XLINK Linker and XLINK options in the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

Now you should link the object file to generate code that can be debugged.
Choose Link from the Project menu. The progress will be displayed in
the Messages window:

The result of the linking is a code file project1.d90 with debug
information and a map file project1.map.

List Generate linker listing
Segment map
Module map

Include lnk0t.xcl (the linker command file)

Page Options

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

41

Viewing the map file
Examine the project1.map file to see how the segment definitions and
code were placed into their physical addresses. Following are the main
points of interest in a map file:

◆ The header includes the options used for linking.

◆ The CROSS REFERENCE section shows the address of the program
entry.

◆ The RUNTIME MODEL section shows the runtime model attributes that
are used.

◆ The MODULE MAP shows the files that are linked. For each file,
information about the modules that were loaded as part of the
program, including segments and global symbols declared within
each segment, is displayed.

◆ The SEGMENTS IN ADDRESS ORDER section lists all the segments that
constitute the program.

Viewing the build tree
In the Project window, press the right mouse button and select Save as
Text... from the pop-up menu that appears. This creates a text file that
allows you to conveniently examine the options for each level of the
project.

Notice that the text file will contain the command line equivalents to the
options that you have specified in the IAR Embedded Workbench. The
command line options are described in the AVR IAR Compiler Reference
Guide and AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide, respectively.

RUNNING THE PROGRAM
Now we will run the project1.d90 program using the IAR C-SPY
Debugger to watch variables, set a breakpoint, and print the program
output in the Terminal I/O window.

Choose Debugger from the Project menu in the IAR Embedded
Workbench. Alternatively, click the C-SPY button in the toolbar.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

42

The following C-SPY window will be opened for this file:

C-SPY starts in source mode, and will stop at the first executable
statement in the main function. The current position in the program,
which is the next C or Embedded C++ statement to be executed, is
shown highlighted in the Source window.

The corresponding assembler instructions are always available. To
inspect them, select Toggle Source/Disassembly from the View menu.
Alternatively, click the Toggle Source/Disassembly button in the
toolbar. In disassembly mode stepping is executed one assembler
instruction at a time. Return to source mode by selecting Toggle
Source/Disassembly again.

Execute one step by choosing Step from the Execute menu.
Alternatively, click the Step button in the toolbar. At source level Step
executes one source statement at a time.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

43

The current position should be the call to the init_fibonacci function:

Select Step Into from the Execute menu to execute init_fibonacci
one step at the time. Alternatively, click the Step Into button in the
toolbar.

When Step Into is executed you will notice that the file in the Source
file list box (to the upper left in the Source window) changes to common.c
since the function init_fibonacci is located in this file. The Function
list box (to the right of the Source file list box) shows the name of the
function where the current position is.

Step five more times. Choose Multi Step… from the Execute menu, and
enter 5.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

44

You will notice that the three individual parts of a for statement are
separated, as C-SPY debugs on statement level, not on line level. The
current position should now be ++i:

WATCHING VARIABLES
C-SPY allows you to set watchpoints on C or Embedded C++ variables
or expressions, to allow you to keep track of their values as you execute
the program. You can watch variables in a number of ways; for example,
you can watch a variable by pointing at it in the Source window with the
mouse pointer, or by opening the Locals window. Alternatively, you can
open the QuickWatch window from the pop-up menu that appears when
you press the right mouse button in the Source window.

Here we will use the Watch window. Choose Watch from the Window
menu to open the Watch window, or click the Watch Window button in
the toolbar. If necessary, resize and rearrange the windows so that the
Watch window is visible.

Setting a watchpoint
Set a watchpoint on the variable i using the following procedure: Select
the dotted rectangle, then click and briefly hold the left mouse button. In
the entry field that appears when you release the button, type i and press
the Enter key.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

45

You can also drag and drop a variable in the Watch window. Select the
fibonacci array in the init_fibonacci function. When fibonacci is
marked, drag and drop it in the Watch window.

The Watch window will show the current value of i and fibonacci:

fibonacci is an array and can be watched in more detail. This is
indicated in the Watch window by the plus sign icon to the left of the
variable. Click the symbol to display the current contents of fibonacci:

Now execute some more steps to see how the values of i and fibonacci
change.

Variables in the Watch window can be specified with module name and
function name to separate variables that appear with the same name in
different functions or modules. If no module or function name is
specified, its value in the current context is shown.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

46

SETTING BREAKPOINTS
You can set breakpoints at C or Embedded C++ function names or line
numbers, or at assembler symbols or addresses. The most convenient way
is usually to set breakpoints interactively, simply by positioning the
cursor in a statement and then choosing the Toggle Breakpoint
command. For additional information, see Toggle breakpoint, page 224.

To display information about breakpoint execution, make sure that the
Report window is open by choosing Report from the Window menu.
You should now have the Source, Report, and Watch windows on the
screen; position them neatly before proceeding.

Set a breakpoint at the statement ++i using the following procedure: First
click in this statement in the Source window, to position the cursor. Then
choose Toggle Breakpoint from the Control menu, or click the Toggle
Breakpoint button in the toolbar.

A breakpoint will be set at this statement, and the statement will be
highlighted to show that there is a breakpoint there:

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

UAVR-1

47

EXECUTING UP TO A BREAKPOINT
To execute the program continuously, until you reach a breakpoint,
choose Go from the Execute menu, or click the Go button in the toolbar.

The program will execute up to the breakpoint you set. The Watch
window will display the value of the fibonacci expression and the
Report window will contain information about the breakpoint:

Remove the breakpoint by selecting Edit breakpoints... from the
Control menu. Alternatively, click the right mouse button to display a
pop-up menu and select Edit breakpoints.... In the Breakpoints dialog
box, select the breakpoint in the Breakpoints list and click Clear. Then
close the Breakpoints dialog box.

CONTINUING EXECUTION
Open the Terminal I/O window, by choosing Terminal I/O from the
Window menu, to display the output from the I/O operations.

To complete execution of the program, select Go from the Execute menu,
or click the Go button in the toolbar.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

UAVR-1

48

Since no more breakpoints are encountered, C-SPY reaches the end of the
program and erases the contents of the Source window. A program EXIT
reached message is printed in the Report window:

If you want to start again with the existing program, select Reset from the
Execute menu, or click the Reset button in the toolbar.

EXITING FROM C-SPY
To exit from C-SPY choose Exit from the File menu.

C-SPY also provides many other debugging facilities. Some of these—for
example defining virtual registers, using C-SPY macros, debugging in
disassembly mode, displaying function calls, profiling the application, and
displaying code coverage—are described in the following tutorial
chapters.

For complete information about the features of C-SPY, see the chapter
C-SPY reference in Part 4: The C-SPY simulator in this guide.

UAVR-1

49

COMPILER TUTORIALS
This chapter introduces you to some of the IAR Compiler’s AVR-specific
features:

◆ Tutorial 2 demonstrates how to utilize AVR peripherals with the
IAR Compiler features. The #pragma language directive allows us
to use the AVR-specific language extensions. Our program will be
extended to handle polled I/O. Finally, we run the program in C-SPY
and create virtual registers.

◆ In Tutorial 3, which is written in Embedded C++, we modify the
tutorial project by adding an interrupt handler. The system is
extended to handle the real-time interrupt using the AVR IAR
Compiler intrinsics and keywords. Finally, we run the program using
the C-SPY interrupt system in conjunction with complex
breakpoints and macros.

Before running these tutorials, you should be familiar with the
IAR Embedded Workbench and the IAR C-SPY Debugger as described in
the previous chapter, IAR Embedded Workbench tutorial.

TUTORIAL 2 This IAR Compiler tutorial will demonstrate how to simulate the AVR
Universal Asynchronous Receiver/Transmitter (UART) using the IAR
Compiler features.

THE TUTOR2.C SERIAL PROGRAM
The following listing shows the tutor2.c program. A copy of the
program is provided with the product.

#include <stdio.h>
#include <io8515.h>
#include "common.h"

/* enable use of extended keywords */
#pragma language=extended

/* The kRXC flag is set in the USR register */
/* when a character has been received. */
#define kRXC (0x80)

TUTORIAL 2 COMPILER TUTORIALS

UAVR-1

50

/***********************************
 * Global variables *
 ***********************************/
int call_count;
int loop_count;

/***********************************
 * Start of code *
 ***********************************/
void do_foreground_process(void)
 {
 unsigned int fib;

 if (!(USR & kRXC))
 putchar(’.’);
 else
 {
 fib = get_fibonacci(call_count);
 call_count++;
 put_value(fib);
 }
 }

void main(void)
 {
 loop_count = 0;

 /* Initialize the fibonacci numbers */
 init_fibonacci();

 /* now loop forever, taking input when ready */
 while(call_count < MAX_FIBONACCI)
 {
 do_foreground_process();
 ++loop_count;
 }
 }

COMPILER TUTORIALS TUTORIAL 2

UAVR-1

51

COMPILING AND LINKING THE TUTOR2.C SERIAL
PROGRAM
Modify the project1 project by replacing tutor.c with tutor2.c:

Choose Files… from the Project menu. In the dialog box Project Files,
mark the file tutor.c in the Files in Group box. Click on the Remove
button to remove the tutor.c file from the project. In the File Name list
box, select the tutor2.c file and click on the Add button. Now the Files
in Group should contain the files common.c and tutor2.c.

Select Options... from the Project menu. In the General category, select
--cpu=8515, AT90S8515 and the Small memory model. In the
ICCAVR category, disable the Embedded C++ syntax. Make sure that
language extensions are enabled and that debug information will be
generated.

Now you can compile and link the project by choosing Make from the
Project menu.

RUNNING THE TUTOR2.C SERIAL PROGRAM
Start the IAR C-SPY Debugger and run the modified project1 project.
Step until you reach the while loop, where the program waits for input.
Open the Terminal I/O window, where the tutor2 result will be printed.

TUTORIAL 2 COMPILER TUTORIALS

UAVR-1

52

DEFINING VIRTUAL REGISTERS
To simulate different values for the serial interface, we will make a new
virtual register called USR.

Choose Settings... from the Options menu. On the Register Setup
page, click the New button to add a new register. Now the Virtual
Register dialog box will appear.

Enter the following information in the dialog box:

Then choose OK in both dialog boxes. Open the Register window from
the Window menu, or select the Register Window button in the
toolbar. USR should now be included in the list of registers. The current
value of each bit in the serial interface register is shown:

As you step through the program you can enter new values into USR in
the Register window. When the eighth bit (0x80) is set, a new Fibonacci
number will be printed, and when the bit is cleared, a period (.) will be
printed instead.

When the program has finished, you may exit from C-SPY.

Input field Input Description

Name USR Virtual register name

Size 1 One byte

Base 16 Binary values

Address 0B Memory location (in hex)

Segment I/O-SPACE Segment name

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

53

TUTORIAL 3 In this tutorial we simulate a basic timer. We will define an interrupt
function that handles the timer, and we will use the C-SPY macro system
to simulate the timer.

THE TUTOR3.CPP TIMER PROGRAM
The following is a complete listing of the tutor3.cpp timer program. A
copy of the program is provided with the product.

#include <stdio.h>
#include <io8515.h>
#include <inavr.h>
#include "common.h"

/* enable use of extended keywords */
#pragma language=extended

/***********************************
 * Global variables *
 ***********************************/
volatile static char print_flag;
volatile unsigned int fib;
static int call_count;

/***********************************
 * Base class declaration *
 ***********************************/
class Timer0Baseclass
 {
 public:
 // Constructor
 Timer0Baseclass();

 // Destructor
 ~Timer0Baseclass();

 // This method stops the timer.
 void Stop();

 // This method starts the timmer.
 void Start();

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

54

 // This method sets the timer period (in cycles) for
 // the next cycle.
 void SetPeriod(unsigned int period);

 protected:
 // Since this method is an abstract method (the "= 0"
 // at the end of the line) it must be implemented
 // in the implementation sub-class.
 virtual void OverflowCallback() = 0;

 // This member contains the value to write to the
 // TCNT0 register every interrupt cycle to get
 // the correct period.
 unsigned char mTCNT;

 // This variable is true if the timer is running.
 bool mEnabled;

 private:
 // The names look like timer 0 in the 8515 but they
 // do not work as in the 8515.
 static volatile __io unsigned char TCNT @ 0x32;
 static volatile __io struct
 {
 unsigned char Enabled:1,
 pad:7;
 } TCCR @ 0x33;

 // The interrupt handler is a private static member.
#pragma vector=TIMER0_OVF0_vect
 static __interrupt void Overflow()
 {
 TCNT = sInstance->mTCNT;

 sInstance->OverflowCallback();
 }

 static Timer0Baseclass *sInstance;
 };

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

55

/***********************************
 * Base class implementation *
 ***********************************/
Timer0Baseclass *Timer0Baseclass::sInstance;

Timer0Baseclass::Timer0Baseclass() :
 mTCNT(0), mEnabled(false)
 {
 // Make sure the timer is stoped!
 TCCR.Enabled = false;

 // Create a pointer to this instance...
 sInstance = this;
 }

Timer0Baseclass::~Timer0Baseclass()
 {
 // Stop the timer!
 Stop();
 }

void Timer0Baseclass::Stop()
 {
 // Set flag
 mEnabled = false;

 // Stop the timer by disabling it.
 TCCR.Enabled = mEnabled;
 }

void Timer0Baseclass::Start()
 {
 // Start the timer by setting up the counter register...
 TCNT = mTCNT;

 // Set flag
 mEnabled = true;

 // Start the timer.
 TCCR.Enabled = mEnabled;
 }

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

56

void Timer0Baseclass::SetPeriod(unsigned int period)
 {
 // Calculate the timer counter value to use
 unsigned char newTCNT;

 newTCNT = 0xFF - (period / 256);

 // Disable interrupts while changing the data...
 __disable_interrupt();

 mTCNT = newTCNT;

 __enable_interrupt();
 }

/***********************************
 * Derived class declaration *
 ***********************************/
class TimerTutorial : public Timer0Baseclass
 {
 public:
 // The "end-user" callback.
 void OverflowCallback();
 };

/***********************************
 * Derived class implementation *
 ***********************************/

void TimerTutorial::OverflowCallback()
 {
 // Make sure that we’re done printing the last fibonacci
 // number before trying to print a new one...
 if (!print_flag)
 {
 fib = get_fibonacci(call_count);
 call_count++;

 print_flag = 1;
 }
 }

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

57

/***********************************
 * Start of program code *
 ***********************************/
void do_foreground_process()
 {
 if (!print_flag)
 putchar(’.’);
 else
 {
 put_value(fib);
 print_flag = 0;
 }
 }

void main()
{
 TimerTutorial timer;

 // Initialize the fibonacci number generator
 init_fibonacci();

 // Initialize the local variables
 print_flag = 0;
 call_count = 0;

 // Enable interrupts
 __enable_interrupt();

 timer.SetPeriod(10000);
 timer.Start();

 // now loop forever, taking input when ready
 while(call_count < MAX_FIBONACCI)
 {
 do_foreground_process();
 }
}

The address for the interrupt handler and the actual interrupt vector
TIMER0_OVF0_vect are defined in the header file io8515.h.

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

58

The start address of the interrupt handler must be located at the correct
offset in the interrupt table. Use the directive #pragma vector to specify
the offset in the interrupt table. This vector offset is then valid for the
subsequent interrupt-declared function.

Use the __interrupt keyword to define the interrupt handler:

#pragma vector=TIMER0_OVF0_vect
 static __interrupt void Overflow()

The extended keywords and #pragma directives are described in the AVR
IAR Compiler Reference Guide.

The interrupt handler will fetch the latest Fibonacci value from the
get_fibonacci function and place it in the fib buffer. It will then set
the print flag, which makes the main program print the value by using the
put_value function.

The main program enables interrupts, initializes the timer, and then
starts printing periods (.) in the foreground process while waiting for
interrupts.

THE C-SPY TUTOR3.MAC MACRO FILE
In the C-SPY macro file called tutor3.mac, we use system and
user-defined macros. Notice that this example is not intended as an exact
simulation; the purpose is to illustrate a situation where C-SPY macros
can be useful. For detailed information about macros, see the chapter
C-SPY macros in Part 4: The C-SPY simulator in this guide.

Initializing the system
The macro execUserSetup() is automatically executed during C-SPY
setup.

First we print a message in the C-SPY Report window so that we know
that this macro has been executed. For additional information, see Report
window, page 217.

Then we initialize the two control registers at addresses 0x32 and 0x33
to zero. We then continue to set up three data break points in the
I/O-SPACE and connect them to C-SPY macros that are also defined in
the file tutor3.cpp. Finally we make sure that there are no pending
interrupts.

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

59

execUserSetup()
{
 message "execUserSetup() called\n";

 // mark timer as initially inactive
 _TimerActive = 0;

 // Clear the control registers
 __writeMemoryByte(0, 0x32, "I/O-SPACE");
 __writeMemoryByte(0, 0x33, "I/O-SPACE");

 // Setup up a write and read breakpoint on the TCNT
register (0x32)
 __setBreak("0x32", "I/O-SPACE", 1, 1, "", "TRUE", "I",
"_readTCNT()");
 __setBreak("0x32", "I/O-SPACE", 1, 1, "", "TRUE", "W",
"_writeTCNT()");

 // Setup up a write breakpoint on the TCCR register
(0x33)
 __setBreak("0x33", "I/O-SPACE", 1, 1, "", "TRUE", "W",
"_writeTCCR()");

 // Cancel all pending interrupts
 __cancelAllInterrupts();
}

Generating interrupts
In the C-SPY macro _my_OrderInterrupt the __orderInterrupt
system macro orders C-SPY to generate interrupts.

_myOrderInterrupt()
{
 _ActivationTime = #CYCLES;
 _ActivationTCNT = _TCNT;

 _TID = __orderInterrupt("0x0A", #CYCLES + 256L *
 (256L - _TCNT), 256L * 256L, 0,
 0, 100);
}

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

60

The following parameters are used:

During execution, C-SPY will wait until the cycle counter has passed the
activation time. Then it will, with 100% certainty, generate an interrupt
approximately every 65536 cycles.

Using breakpoints to simulate incoming values
We must also simulate the values of the timer counter register TCNT. This
is done by setting a breakpoint at the address of the timer counter register
(0x32) and connecting a user-defined macro to it. Here we use the
__setBreak system macro.

The following parameters are used:

0x0A Specifies which interrupt vector to use.

#CYCLES Specifies the activation moment for the interrupt.
The interrupt is activated when the cycle counter
has passed this value. The interrupt activation time
is calculated as an offset from the current cycle
count #CYCLES.

65536L Specifies the repeat interval for the interrupt,
measured in clock cycles.

0 Time variance, not used here.

0 Latency, not used here.

100 Specifies probability. Here it denotes 100%. We
want the interrupt to occur at the given frequency.
Another percentage could be used for simulating a
more randomized interrupt behavior.

0x32 Receive buffer address.

"I/O-SPACE" The memory segment where this address is found.
The segments DATA, CODE, I/O-SPACE, and EEPROM
are valid for the AVR product.

1 Length.

1 Count.

"" Denotes unconditional breakpoint.

"TRUE" Condition type.

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

61

During execution, when C-SPY detects a read from the timer counter
address, it will temporarily halt the simulation and run the _readTCNT
macro. Since this macro ends with a resume statement, C-SPY will then
resume the simulation and start by reading the receive buffer value.

The _readTCNT macro is executed whenever C-SPY tries to read the value
of the timer counter register, as defined in the __setBreak macro:

_readTCNT()
{
 if (_TimerActive != 0)
 {
 // Adjust the value in TCNT and write the new content
 // to memory.
 _adjustTCNT();
 __writeMemoryByte(_TCNT, 0x0B, "I/O-SPACE");
 }
 resume;
}

First we check if the timer is active. The value of the timer counter is only
updated if the timer is active. Next we calculate the new value of the
_TCNT variable by calling the _adjustTCNT macro. We then write the new
value of the _TCNT variable to memory using the __writeMemoryByte
system macro. Finally, the resume statement causes C-SPY to continue
the simulation process.

"I" The memory access type. Here we use “Read
Immediate” which means that C-SPY breaks before
reading the value at the specified address. This
gives us the opportunity to put the correct timer
counter value in the timer counter register before
C-SPY reads the value.

"_readTCNT()" The macro connected to the breakpoint.

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

62

Resetting the system
The macro execUserReset() is automatically executed during C-SPY
reset. At reset, we want to cancel all outstanding interrupts, mark the
timer as inactive, and reset the two control registers:

execUserReset()
{
 message "execUserReset() called\n";

 // Cancel all pending interrupts
 __cancelAllInterrupts();

 // mark timer as inactive
 _TimerActive = 0;

 // Clear the control registers
 __writeMemoryByte(0, 0x33, "I/O-SPACE");
 __writeMemoryByte(0, 0x32, "I/O-SPACE");
}

Exiting the system
The macro execUserExit() is executed automatically during C-SPY
exit:

execUserExit()
{
 message "execUserExit() called\n";

 // Cancel all pending interrupts
 __cancelAllInterrupts();
}

COMPILING AND LINKING THE TUTOR3.CPP
PROGRAM
Modify Project1 by removing tutor2.c from the project and adding
tutor3.cpp to it.

Select Options... from the Project menu. In the General category, select
--cpu=8515, AT90S8515 and the Small memory model.

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

63

In the ICCAVR category, make sure that the following options are
enabled:

Compile and link the program by choosing Make from the Project menu.
Alternatively, select the Make button from the toolbar. The Make
command compiles and links those files that have been modified.

RUNNING THE TUTOR3.CPP INTERRUPT PROGRAM
To run the tutor3.cpp program, we first specify the macro to be used.
The macro file, tutor3.mac, is specified in the C-SPY options page in the
IAR Embedded Workbench:

If you use the IAR C-SPY Debugger without using the IAR Embedded
Workbench, the macro file can be specified via the command line
option -f ; for additional information, see Use setup file (-f), page 244.

Page Option

Language Embedded C++

Language extensions

Code Place string literals and constants in initialized RAM

Output Generate debug information

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

64

Note: Macro files can also be loaded via the Options menu in the
IAR C-SPY Debugger, see Load Macro…, page 239. Due to its contents,
the tutor3.mac file cannot, however, be used in this manner because the
execUserSetup macro will not be activated until you load the
project1.d90 file.

Start the IAR C-SPY Debugger by selecting Debugger from the Project
menu or click the Debugger icon in the toolbar. The C-SPY Source
window will be displayed:

COMPILER TUTORIALS TUTORIAL 3

UAVR-1

65

The Report window will display the registered macros:

If warning or error messages should also appear in the Report window,
make sure that the breakpoint has been set and that the interrupt has
been registered. If not, the reason is probably that an incorrect path is
specified in the tutor3.mac macro file.

If you need to edit the macro file, select Load Macro... from the Options
menu to display the Macro Files dialog box. Open the tutor3.mac file
by double-clicking on the macro name, and edit it as required. It is
normally sufficient to register the macro again after saving the mac file.

Now you have three breakpoints connected to both timer registers in
I/O-SPACE. To inspect the details of the breakpoint, open the
Breakpoints dialog box by selecting Edit Breakpoints... from the
Control menu. To inspect the details of the interrupt, open the
Interrupt dialog box by selecting Interrupt... from the Control menu.

In the Source window, make sure that tutor3.cpp is selected in the
Source file box. Then select the TimerTutorial::OverflowCallback
function in the Function box.

TUTORIAL 3 COMPILER TUTORIALS

UAVR-1

66

Place the cursor on the get_fibonacci() statement in the
TimerTutorial::OverflowCallback function. Set a breakpoint by
selecting Toggle Breakpoint from the Control menu, or clicking the
Toggle Breakpoint button in the toolbar. Alternatively, use the pop-up
menu.

Open the Terminal I/O window by selecting it from the Windows menu.

Run the program by choosing Go from the Execute menu or by clicking
the Go button. It should stop in the interrupt function. Click Go again in
order to see the next number being printed in the Terminal I/O window.

Since the main program has an upper limit on the Fibonacci value
counter, the tutorial program will soon reach the exit label and stop.

When tutor3 has finished running, the Terminal I/O window will
display the following Fibonacci series:

UAVR-1

67

ASSEMBLER TUTORIALS
These tutorials illustrate how you might use the IAR Embedded
Workbench™ to develop a series of simple machine-code programs for the
AVR microcontroller, and demonstrate some of the IAR Assembler’s
most important features:

◆ In Tutorial 4 we assemble and link a basic assembler program, and
then run it using the IAR C-SPY® Debugger.

◆ Tutorial 5 demonstrates how to create library modules and use the
IAR XLIB Librarian™ to maintain files of modules.

Before running these tutorials, you should be familiar with the IAR
Embedded Workbench and the IAR C-SPY Debugger as described in the
chapter IAR Embedded Workbench tutorial.

TUTORIAL 4 This assembler tutorial illustrates how to assemble and link a basic
assembler program, and then run it.

CREATING A NEW PROJECT

Start the IAR Embedded Workbench and create a new project called
Project2.

Set up the target options in the General category to suit the processor and
memory model. In this tutorial we use the default settings. Make sure that
the Processor configuration is set to -v0, Max 256 byte data, 8
Kbyte code and that the Memory model is set to Tiny.

The procedure is described in Creating a new project, page 29.

THE FIRST.S90 PROGRAM
The first assembler tutorial program is a simple count loop which counts
up the registers R16 and R17 in binary-coded decimal. A copy of the
program first.s90 is provided with the product.

NAME first
ORG 0
RJMP main

ORG 1Ch

TUTORIAL 4 ASSEMBLER TUTORIALS

UAVR-1

68

main CLR R17
CLR R16

loop INC R17
CPI R17,10
BRNE loop
CLR R17
INC R16
CPI R16,10
BRNE loop

done_it RJMP done_it

END

The ORG directive locates the program starting address at the program
reset vector address, so that the program is executed upon reset.

Add the program to the Project2 project. Choose Files… from the
Project menu to display the Project Files dialog box. Locate the file
first.s90 and click Add to add it to the Common Sources group.

You now have a source file which is ready to assemble.

ASSEMBLING THE PROGRAM
Now you should set up the assembler options for the project.

Select the Debug folder icon in the Project window, choose Options…
from the Project menu, and select AAVR in the Category list to display
the assembler options pages.

ASSEMBLER TUTORIALS TUTORIAL 4

UAVR-1

69

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

Click OK to set the options you have specified.

To assemble the file, select it in the Project window and choose Compile
from the Project menu. The progress will be displayed in the Messages
window:

Page Option

Debug Generate debug information
File references

List Create list file

TUTORIAL 4 ASSEMBLER TUTORIALS

UAVR-1

70

The listing is created in a file first.lst in the folder specified in the
General options page; by default this is Debug\list. Open the list file
by choosing Open… from the File menu, and selecting first.lst from
the appropriate folder.

VIEWING THE FIRST.LST LIST FILE
The first.lst list file contains the following information:

◆ The header contains product version information, the date and time
when the file was created, and also specifies the options that were
used.

◆ The body of the list file contains source line number, address field,
data field, and source line.

◆ The end of the file contains a summary of errors and warnings that
were generated, code size, and CRC.

Note: The CRC number depends on the date of assembly, and may
vary.

The format of the listing is as follows:

If you make any errors when writing a program, these will be displayed
on the screen during the assembly and will be listed in the list file. If this
happens, return to the editor by double-clicking on the error message.
Check carefully through the source code to locate and correct all the
mistakes, save the source file, and try assembling it again.

Assuming that the source assembled successfully, the file first.r90, will
also be created, containing the linkable object code.

Source line
number

Address field

Data field Source line

 5 0000001C ORG 1Ch

 6 0000001C 2711 main CLR R17

 7 0000001E 2700 CLR R16

 8 00000020 9513 loop INC R17

 9 00000022 301A CPI R17,10

10 00000024 F7E9 BRNE loop

11 00000026 2711 CLR R17

ASSEMBLER TUTORIALS TUTORIAL 4

UAVR-1

71

LINKING THE PROGRAM
Before linking the program you need to set up the linker options for the
project.

Select the Debug folder in the Project window. Then choose Options…
from the Project menu, and select XLINK in the Category list to display
the linker option pages:

Specify the following XLINK options:

Click OK to set the options you have specified.

Page Option

Output Debug info with terminal I/O

Include Ignore CSTARTUP in library

TUTORIAL 4 ASSEMBLER TUTORIALS

UAVR-1

72

To link the file, choose Link from the Project menu. As before, the
progress during linking is shown in the Messages window:

The code will be placed in a file project2.d90.

RUNNING THE PROGRAM
To run the example program using the IAR C-SPY Debugger, select
Debugger from the Project menu.

The following warning message will be displayed in the Report window:

Warning [12]: Exit label missing

This message indicates that C-SPY will not know when execution of the
assembler program has been completed. In a C program, this is handled
automatically by the Exit module where the Exit label specifies that
the program exit has been reached. Since there is no corresponding label
in an assembler program, you should set a breakpoint where you want the
execution of the assembler program to be completed.

In this example, set a breakpoint on the CLR R17 instruction within the
loop.

Open the Register window by selecting Register from the Window
menu, or click the Register Window button in the toolbar. Position the
windows conveniently.

Then choose Go from the Execute menu, or click the Go button in the
debug bar. When you repeatedly click Go, you can watch the R16 and R17
registers count in binary-coded decimal format.

ASSEMBLER TUTORIALS TUTORIAL 5

UAVR-1

73

TUTORIAL 5 This tutorial demonstrates how to create library modules and use the IAR
XLIB Librarian™ to maintain files of modules.

USING LIBRARIES
If you are working on a large project you will soon accumulate a collection
of useful routines that are used by several of your programs. To avoid
having to assemble a routine each time the routine is needed, you can
store such routines as object files, i.e., assembled but not linked.

A collection of routines in a single object file is referred to as a library. It
is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the IAR XLIB Librarian to manipulate libraries. It allows you to:

◆ Change modules from PROGRAM to LIBRARY type, and vice versa.

◆ Add or remove modules from a library file.

◆ Change the names of entries.

◆ List module names, entry names, etc.

TUTORIAL 5 ASSEMBLER TUTORIALS

UAVR-1

74

THE MAIN.S90 PROGRAM
The following listing shows the main.s90 program. A copy of the
program is provided with the product.

NAME main

PUBLIC main
EXTERN r_shift

RSEG MY_CODE
main LDI R25,H’A

MOV R4,R25
LDI R25,5
MOV R5,R25
RCALL r_shift

done_it RJMP done_it

END main

This simply uses a routine called r_shift to shift the contents of register
R4 to the right. The data in register R4 is set to $A and the r_shift
routine is called to shift it to the right by four places as specified by the
contents of register R5.

The EXTERN directive declares r_shift as an external symbol, to be
resolved at link time.

THE LIBRARY ROUTINES
The following two library routines will form a separately assembled
library. It consists of the r_shift routine called by main, and a
corresponding l_shift routine, both of which operate on the contents of
the register R4 by repeatedly shifting it to the right or left. The number of
shifts performed is controlled by decrementing register R5 to zero. The
file containing these library routines is called shifts.s90, and a copy is
provided with the product.

 MODULE r_shift
 PUBLIC r_shift
 RSEG MY_CODE

r_shift TST R5
 BREQ r_shift2
 LSR R4

ASSEMBLER TUTORIALS TUTORIAL 5

UAVR-1

75

 DEC R5
 BRNE r_shift
r_shift2 RET
 ENDMOD

 MODULE l_shift
 PUBLIC l_shift

 RSEG MY_CODE
l_shift TST R5
 BREQ l_shift2
 LSL R4
 DEC R5
 BRNE l_shift
l_shift2 RET

 END

The routines are defined as library modules by the MODULE directive,
which instructs the IAR XLINK Linker™ to include the modules only if
they are called by another module.

The PUBLIC directive makes the r_shift and l_shift entry addresses
public to other modules.

For detailed information about the MODULE and PUBLIC directives, see the
AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™
Reference Guide.

CREATING A NEW PROJECT
Create a new project called Project3. Add the files main.s90 and
shifts.s90 to the new project.

Then set up the target options to suit the project. Make sure that the
Processor variant is set to -v0, Max 256 byte data, 8 Kbyte code and
that the Memory model is set to Tiny.

The procedure is described in Creating a new project, page 29.

ASSEMBLING AND LINKING THE SOURCE FILES
To assemble and link the main.s90 and shifts.s90 source files, you
must disable the CSTARTUP initialization module in the default run-time
library.

TUTORIAL 5 ASSEMBLER TUTORIALS

UAVR-1

76

Open the Options dialog box by selecting Options... from the Project
menu. Select XLINK in the Category list and set the following option:

To assemble and link the main.s90 and the shifts.s90 files , select
Make from the Project menu. Alternatively, select the Make button in
the toolbar.

For more information about the XLINK options see the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

USING THE IAR XLIB LIBRARIAN
Once you have assembled and debugged modules intended for general
use, like the r_shift and l_shift modules, you can add them to a
library using the IAR XLIB Librarian.

Run the IAR XLIB Librarian by choosing Librarian from the Project
menu. The XLIB window will be displayed:

You can now enter XLIB commands at the * prompt.

Giving XLIB options
Extract the modules you want from shifts.r90 into a library called
math.r90. To do this enter the command:

FETCH-MODULES

Page Option

Include Ignore CSTARTUP in library

ASSEMBLER TUTORIALS TUTORIAL 5

UAVR-1

77

The IAR XLIB Librarian will prompt you for the following information:

This creates the file math.r90 which contains the code for the r_shift
and l_shift routines.

You can confirm this by typing:

LIST-MODULES

The IAR XLIB Librarian will prompt you for the following information:

You could use the same procedure to add further modules to the math
library at any time.

Finally, leave the librarian by typing:

EXIT

or

QUIT

Then press Enter.

Prompt Response

Source file Type debug\obj\shifts and press Enter.

Destination file Type debug\obj\math and press Enter.

Start module Press Enter to use the default start module, which is
the first in the file.

End module Press Enter to use the default end module, which is
the last in the file.

Prompt Response

Object file Type math and press Enter.

List file Press Enter to display the list file on the screen.

Start module Press Enter to start from the first module.

End module Press Enter to end at the last module.

TUTORIAL 5 ASSEMBLER TUTORIALS

UAVR-1

78

UAVR-1

79

ADVANCED TUTORIALS
This chapter describes some of the more advanded features of the IAR
development tools, which are very useful when you work on larger
projects.

◆ The first two tutorials below both explore the features of C-SPY. In
Tutorial 6 we define complex breakpoints, profile the application,
and display code coverage. Tutorial 7 describes how to debug in
disassembly mode.

◆ Tutorial 8 describes how to create a project containing both C or
Embedded C++ and assembly language source files.

Before running these tutorials, you should be familiar with the IAR
Embedded Workbench and the IAR C-SPY Debugger as described in the
chapter IAR Embedded Workbench tutorial.

TUTORIAL 6 In this tutorial we explore the following features of C-SPY:

◆ Defining complex breakpoints

◆ Profiling the application

◆ Displaying code coverage information.

CREATING PROJECT4
In the IAR Embedded Workbench, create a new project called Project4
and add the files tutor.c and common.c to it. Make sure that the
following project options are set:

Category Page Option

General Target Processor configuration: -v0, Max 256 byte
data, 8 Kbyte code (default)
Memory model: Tiny (default).

ICCAVR Optimizations Size optimization: Low (default).

Output Generate debug information (default).

List C list file.

XLINK Output Debug info with terminal I/O (default).

TUTORIAL 6 ADVANCED TUTORIALS

UAVR-1

80

Click OK to set the options.

Select Make from the Project menu, or click the Make button in the
toolbar to compile and link the files. This creates the project4.d90 file.

Start C-SPY to run the project4.d90 program.

DEFINING COMPLEX BREAKPOINTS
You can define complex breakpoint conditions in C-SPY, allowing you to
detect when your program has reached a particular state of interest.

The file project4.d90 should now be open in C-SPY. Execute one step.
The current position should be the call to the init_fibonacci function.

Then select Step into to move to the init_fibonacci function. Set a
breakpoint at the statement ++i.

Now we will modify the breakpoint you have set so that C-SPY detects
when the value of i exceeds 8.

Choose Edit Breakpoints… from the Control menu to display the
Breakpoints dialog box. Then select the breakpoint in the Breakpoints
list to display information about the breakpoint you have defined:

Currently the breakpoint is triggered when a fetch occurs from the
location corresponding to the C or Embedded C++ statement.

ADVANCED TUTORIALS TUTORIAL 6

UAVR-1

81

Add a condition to the breakpoint using the following procedure:

Enter i>8 in the Condition box and, if necessary, select Condition True
from the Condition Type drop-down list.

Then choose Modify to modify the breakpoint with the settings you have
defined:

Finally, select Close to close the Breakpoints dialog box.

Open the Watch window and add the variable i. The procedure is
described in Watching variables, page 44.

Position the Source, Watch, and Report windows conveniently.

TUTORIAL 6 ADVANCED TUTORIALS

UAVR-1

82

EXECUTING UNTIL A CONDITION IS TRUE
Now execute the program until the breakpoint condition is true by
choosing Go from the Execute menu, or clicking the Go button in the
toolbar. The program will stop when it reaches a breakpoint and the value
of i exceeds 8:

EXECUTING UP TO THE CURSOR
A convenient way of executing up to a particular statement in the
program is to use the Go to Cursor option.

First remove the existing breakpoint. Use the Edit Breakpoints...
command from the Control menu or from the pop-up menu to open the
Breakpoints dialog box. Select the breakpoint and click on the Clear
button.

Then remove the variable i from the Watch window. Select the variable
in the Watch window and press the Delete key. Instead add fibonacci to
watch the array during execution.

ADVANCED TUTORIALS TUTORIAL 6

UAVR-1

83

Position the cursor in the Source window in the statement:

return fibonacci[index];

Select Go to Cursor from the Execute menu, or click the Go to Cursor
button in the toolbar. The program will then execute up to the statement
at the cursor position. Expand the contents of the fibonacci array to
view the result:

DISPLAYING FUNCTION CALLS
The program is now executing statements inside a function called from
main. You can display the sequence of calls to the current position in the
Calls window.

Choose Calls from the Window menu to open the Calls window and
display the function calls. Alternatively, click the Calls Window button
in the toolbar.

TUTORIAL 6 ADVANCED TUTORIALS

UAVR-1

84

In each case the function name is preceded by the module name.

You can now close both the Calls window and the Watch window.

DISPLAYING CODE COVERAGE INFORMATION
The code coverage tool can be used for identifying statements not
executed and functions not called in your program.

Reset the program by selecting Reset from the Execute menu or by
clicking the Reset button in the toolbar. Display the current code
coverage status by selecting Code Coverage from the Window menu.
The information shows that no functions have been called.

Select the Auto Refresh On/Off button in the toolbar of the Code
Coverage window. The information displayed in the Code Coverage
window will automatically be updated.

Execute one step, and then select Step Into to step into the
init_fibonacci function. Execute a few more steps and look at the code
coverage status once more. At this point a few statements are reported as
not executed:

For additional information about the layout of the Code Coverage
window, see Code coverage window, page 217.

ADVANCED TUTORIALS TUTORIAL 6

UAVR-1

85

PROFILING THE APPLICATION
The profiling tool provides you with timing information on your
application.

Reset the program by selecting Reset from the Execute menu or by
clicking the Reset button in the toolbar. Open a Profiling window by
choosing Profiling from the Window menu.

Start the profiling tool by selecting Profiling from the Control menu or
by clicking the Profiling On/Off button in the Profiling toolbar.

Clear all breakpoints by selecting Clear All in the Breakpoints dialog
box, which is displayed when you select Edit Breakpoints... from the
Control menu. Run the program by clicking the Go button in the toolbar.

When the program has reached the exit point, you can study the profiling
information shown in the Profiling window:

The Profiling window contains the following information:

◆ Count is the number of times each function has been called.

◆ Flat Time is the total time spent in each function in cycles or as a
percentage of the total number of cycles shown in the Profiling
toolbar.

◆ Accumulated Time is time spent in each function including all
function calls made from that function in cycles or as a percentage of
the total number of cycles.

From the Profiling toolbar it is possible to display the profiling
information graphically, to save the information to a file, or to start a new
measurement. For additional information, see Profiling window, page 218.

TUTORIAL 7 ADVANCED TUTORIALS

UAVR-1

86

TUTORIAL 7 Although debugging with C-SPY is usually quicker and more
straightforward in source mode, some demanding applications can only
be debugged in assembler mode. C-SPY lets you switch freely between the
two.

First reset the program by clicking the Reset button in the toolbar. Then
change the mode by choosing Toggle Source/Disassembly from the
View menu or click the Toggle Source/Disassembly button in the
toolbar.

You will see the assembler code corresponding to the current C statement.
Stepping is now one assembler instruction at a time.

When you are debugging in disassembly mode, every assembler
instruction that has been executed since the last reset is marked with an
* (asterisk).

Note: There may be a delay before this information is displayed, due to the
way the Source window is updated.

ADVANCED TUTORIALS TUTORIAL 7

UAVR-1

87

MONITORING MEMORY
The Memory window allows you to monitor selected areas of memory. In
the following example we will monitor the memory corresponding to the
variable fibonacci.

Choose Memory from the Window menu to open the Memory window
or click the Memory Window button in the toolbar. Position the Source
and Memory windows conveniently on the screen.

Change back to source mode by choosing Toggle Source/Disassembly
or clicking the Toggle Source/Disassembly button in the toolbar.

Select fibonacci in the file common.c. Then drag it from the Source
window and drop it into the Memory window. The Memory window will
show the contents of memory corresponding to fibonacci:

TUTORIAL 7 ADVANCED TUTORIALS

UAVR-1

88

Since we are displaying 16-bit word data, it is convenient to display the
memory contents as long words. Click the 16 button in the Memory
window toolbar:

Notice that the 10 words have been initialized by the init_fibonacci
function of the C program.

CHANGING MEMORY
You can change the memory contents by editing the values in the Memory
window. Double-click the line in memory which you want to edit. A
dialog box is displayed.

You can now edit the corresponding values directly in the memory.

For example, if you want to write the number 0x255 in the first position
in number in the fibonacci array, select the long word at address 0x78
in the Memory window and type 255 in the 16-Bit Edit dialog box:

ADVANCED TUTORIALS TUTORIAL 7

UAVR-1

89

Then choose OK to display the new values in the Memory window:

Before proceeding, close the Memory window and switch to disassembly
mode.

MONITORING REGISTERS
The Register window allows you to monitor the contents of the processor
registers and modify their contents.

Open the Register window by choosing Register from the Window
menu. Alternatively, click the Register Window button in the toolbar.

Select Step from the Execute menu, or click the Step button in the
toolbar, to execute the next instructions, and watch how the values
change in the Register window.

Then close the Register window.

TUTORIAL 8 ADVANCED TUTORIALS

UAVR-1

90

CHANGING ASSEMBLER VALUES
C-SPY allows you to temporarily change and reassemble individual
assembler statements during debugging.

Select disassembly mode and step towards the end of the program.
Position the cursor on a RET instruction and double-click on it. The
Assembler dialog box is displayed:

Change the Assembler Input field from RET to NOP and select Assemble
to temporarily change the value of the statement. Notice how it changes
also in the Source window.

TUTORIAL 8 CREATING A COMBINED COMPILER AND ASSEMBLER
PROJECT
In large projects it may be convenient to use source files written in both
C or Embedded C++ and assembly language. In this tutorial we will
demonstrate how they can be combined by substituting the file common.c
with the assembler file common.s90 and compiling the project.

Return to or open Project4 in the IAR Embedded Workbench. The
project should contain the files tutor.c and common.c.

Now you should create the assembler file common.s90. In the Project
window, select the file common.c. Then select Options... from the
Project menu. You will notice that only the ICCAVR and XLINK
categories are available.

In the ICCAVR category, select Override inherited settings and set the
following options:

Page Option

List Deselect C list file.

Select Assembler file.

ADVANCED TUTORIALS TUTORIAL 8

UAVR-1

91

Then click OK and return to the Project window.

Compile each of the files. To see how the C or Embedded C++ code is
represented in assembly language, open the file common.s90 that was
created from the file common.c.

Now modify Project4 by removing the file common.c and adding the file
common.s90 instead. Then select Make from the Project menu to relink
Project4.

Start C-SPY to run the project4.d90 program and see that it behaves
like in the previous tutorials.

Select the suboption C source.

Page Option

TUTORIAL 8 ADVANCED TUTORIALS

UAVR-1

92

UAVR-1

93

PART 3: THE IAR
EMBEDDED WORKBENCH
This part of the AVR IAR Embedded Workbench™ User Guide contains
the following chapters:

◆ General options

◆ Compiler options

◆ Assembler options

◆ XLINK options

◆ C-SPY options

◆ IAR Embedded Workbench reference.

PART 3: THE IAR EMBEDDED WORKBENCH

UAVR-1

94

UAVR-1

95

GENERAL OPTIONS
The general options specify the target processor and memory model, as
well as output directories.

This chapter describes how to set general options in the IAR Embedded
Workbench™ and gives full reference information about the options.

The options are divided into the following sections:

Target, page 96
Output directories, page 97.

SETTING GENERAL
OPTIONS

To set general options in the IAR Embedded Workbench choose
Options… from the Project menu. The Target page in the General
category is displayed:

The general options are grouped into categories, and each category is
displayed on an option page in the IAR Embedded Workbench.

Click the tab corresponding to the category of options that you want to
view or change.

TARGET GENERAL OPTIONS

UAVR-1

96

TARGET The Target options in the General category specify processor
configuration and memory model for the AVR IAR Compiler and
Assembler.

PROCESSOR CONFIGURATION
Use this option to select your target processor and the maximum module
and program size.

Select the target processor for your project from the drop-down list.

For a description of the available options, see the Configuration chapter in
the AVR IAR Compiler Reference Guide.

Your choice of processor configuration determines the availability of
memory model options.

Enhanced core
Use this option to allow the compiler to generate instructions from the
enhanced instruction set that is available in some AVR derivatives, for
example AT90mega161.

Use 64-bit doubles
Use this option to force the compiler to use 64-bit doubles instead of
32-bit doubles, which is the default.

MEMORY MODEL
Use this option to select the memory model for your project.

Select the memory model for your project from the drop-down list.

GENERAL OPTIONS OUTPUT DIRECTORIES

UAVR-1

97

Your choice of processor configuration determines the availability of
memory model options.

For a description of the available options, see the Configuration chapter in
the AVR IAR Compiler Reference Guide.

OUTPUT
DIRECTORIES

The Output directories options allow you to specify directories for
executable files, object files, and list files. Notice that incomplete paths
are relative to your project directory.

Executables
Use this option to override the default directory for executable files.

Enter the name of the directory where you want to save executable files
for the project.

Object files
Use this option to override the default directory for object files.

Enter the name of the directory where you want to save object files for
the project.

List files
Use this option to override the default directory for list files.

Enter the name of the directory where you want to save list files for the
project.

OUTPUT DIRECTORIES GENERAL OPTIONS

UAVR-1

98

UAVR-1

99

COMPILER OPTIONS
This chapter explains how to set compiler options from the
IAR Embedded Workbench™, and describes each option.

The options are divided into the following sections:

Language, page 100
Code, page 102
Optimizations, page 104
Output, page 106
List, page 108
Preprocessor, page 109
Diagnostics, page 110.

SETTING COMPILER
OPTIONS

SETTING COMPILER OPTIONS
To set compiler options in the IAR Embedded Workbench, select
Options… from the Project menu to display the Options dialog box.
Select ICCAVR in the Category list to display the compiler options
pages:

LANGUAGE COMPILER OPTIONS

UAVR-1

100

Click the tab corresponding to the type of options that you want to view
or change.

Notice that compiler options can be specified on a target level, group level,
or file level. When options are set on the group or file level, you can
choose to override settings inherited from a higher level.

To restore all settings to the default factory settings, click on the button
Factory Settings.

The following sections give full descriptions of each compiler option.

LANGUAGE The Language options enable the use of target-dependent extensions to
the C or Embedded C++ language.

DISABLE EMBEDDED C++ SYNTAX
In Embedded C++ mode, the compiler treats the source code as
Embedded C++. Unless Embedded C++ is enabled, the compiler runs
in ANSI C mode, in which features specific to Embedded C++, such as
classes and overloading, cannot be utilized.

In the IAR Embedded Workbench, Embedded C++ syntax is enabled by
default. Use the Disable Embedded C++ syntax check box to disable
Embedded C++.

COMPILER OPTIONS LANGUAGE

UAVR-1

101

DISABLE EXTENSIONS
Language extensions must be enabled for the AVR IAR Compiler to be
able to accept AVR-specific keywords as extensions to the standard C or
Embedded C++ language.

In the IAR Embedded Workbench, language extensions are enabled by
default. Use the Disable extensions check box to disable language
extensions.

For details about language extensions, see the AVR IAR Compiler
Reference Guide.

Strict ISO/ANSI
By default the compiler accepts a superset of ISO/ANSI C (for additional
information, see the AVR IAR Compiler Reference Guide). Use this option
to adhere to strict ISO/ANSI.

First select Disable extensions, and then select Strict ISO/ANSI to
adhere to the strict ISO/ANSI C standard.

‘CHAR’ IS ‘SIGNED CHAR’
Normally, the compiler interprets the char type as unsigned char. Use
this option to make the compiler interpret the char type as signed char
instead, for example for compatibility with another compiler.

Select ‘char’ is ‘signed char’ to make the compiler interpret the char
type as signed char.

Note: The run-time library is compiled without the ‘char’ is ‘signed
char’ option. If you use this option, you may get type mismatch warnings
from the linker since the library uses unsigned char.

CODE COMPILER OPTIONS

UAVR-1

102

CODE The Code options determine the usage of segments and registers.

Notice that the target options you select determine which code options
are available.

MEMORY UTILIZATION

Place string literals and constants in initialized RAM
Use this option to override the default placement of constants and literals.

Without this option, constans and literals are placed in an external const
segment, segment_C. With this option, constants and literals will instead
be placed in the initialized segment_I data segments that are copied from
segment_ID by cstartup.

For reference information about segments, see the AVR IAR Compiler
Reference Guide.

Notice that this option is implicit in the tiny memory model.

Place aggregate initializers in flash memory
Use this option to place aggregate initializers in flash memory. These
initializers are otherwise placed either in the external const segment or
in the initialized data segments if the compiler option Place string
literals and constants in initialized RAM was also specified.

For reference information about segments, see the AVR IAR Compiler
Reference Guide.

COMPILER OPTIONS CODE

UAVR-1

103

Utilize inbuilt EEPROM
Use this option to enable the __eeprom extended keyword by specifying
the size of the inbuilt EEPROM. The size in bytes can be 0–65536.

Force generation of all global and static variables
Use this option to apply the __root extended keyword to all global and
static variables. This will make sure that the variables are not removed by
the IAR XLINK Linker.

Notice that the __root extended keyword is always available, even if
language extensions are disabled.

For reference information about extended keywords, see the AVR IAR
Compiler Reference Guide.

Force generation of all global and static variables
Use this option to apply the __root extended keyword to all global and
static variables. This will make sure that the variables are not removed by
the IAR XLINK Linker.

REGISTER UTILIZATION

Number of registers to lock for global variables
Use this option to lock registers that are to be used for global register
variables. The value can be 0–12 where 0 means that no registers are
locked. When you use this option, the registers R15 and downwards will
be locked.

In order to maintain module consistency, make sure to lock the same
number of registers in all modules.

Use ICCA90 1.x calling convention
This option is provided for backward compatibility. It makes all functions
and function calls use the calling convention of the A90 IAR Compiler,
ICCA90.

To change the calling convention of a single function, use the extended
keyword __version_1 as a function type attribute.

For detailed information about calling conventions and extended
keywords, see the AVR IAR Compiler Reference Guide.

OPTIMIZATIONS COMPILER OPTIONS

UAVR-1

104

OPTIMIZATIONS The Optimizations options determine the type and level of optimization
for generation of object code.

Size and speed
The AVR IAR Compiler supports two optimization models—size and
speed—at different optimization levels. Code can also be generated
without any optimization.

Select the optimization model using either the Size or Speed radio
button. Then select the optimization level—none, low, medium, or
high—from the drop-down list.

By default, a debug project will have a size optimization that is fully
debuggable, while a release project will have a size optimization that
generates minimum code.

The following table describes the optimization levels:

Option Description

None No optimization

Low Fully debuggable

Medium Heavy optimization can make the program
flow hard to follow during debug

High Full optimization

COMPILER OPTIONS OPTIMIZATIONS

UAVR-1

105

ENABLED TRANSFORMATIONS
The AVR IAR Compiler supports the following types of transformations:

◆ Common sub-expression elimination

◆ Function inlining

◆ Code motion

◆ Cross call.

In a debug project, the transformations are by default disabled. You can
enable a transformation by selecting its check box. The compiler will then
determine if this transformation is feasible.

In a release project, the transformations are by default enabled. You can
disable a transformation by deselecting its check box.

Common sub-expression elimination
Redundant re-evaluation of common sub-expressions is by default
eliminated at optimization levels Medium and High. This optimization
normally reduces both code size and execution time. The resulting code
may however be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

Function inlining
Function inlining means that a simple function, whose definition is
known at compile time, is integrated into the body of its caller to
eliminate the overhead of the call. This optimization, which is performed
at optimization level High, normally reduces execution time, but
increases code size. The resulting code may also be difficult to debug.

The compiler decides which functions to inline. Different heuristics are
used when optimizing for speed.

Note: This option has no effect at optimization levels None, Low, and
Medium.

Code motion
Evaluation of loop-invariant expressions and common sub-expressions
are moved to avoid redundant reevaluation. This optimization, which is
performed at optimization level High, normally reduces code size and
execution time. The resulting code may however be difficult to debug.

Note: This option has no effect at optimization levels None or Low.

OUTPUT COMPILER OPTIONS

UAVR-1

106

Cross call
This optimization creates subroutines of common code sequences. It is
performed as a size optimization at level High.

Notice that, although it can drastically reduce the code size, this option
increases the execution time as well as the internal return data stack,
RSTACK, usage.

Avoid using this option if your target processor has a hardware stack or a
small RAM-based internal return stack segment, RSTACK.

When selecting this option, you must also specify the number of cross call
passes to run by using the option Number of cross-call passes.

NUMBER OF CROSS-CALL PASSES
Use this option to decrease the RSTACK usage by running the cross-call
optimizer N times, where N can be 1–5. The default is to run it twice.

This option becomes available when you select the size optimization at
level High and enable the cross-call optimization.

OUTPUT The Output options determine the output format of the compiled file,
including the level of debugging information in the object code.

MAKE LIBRARY MODULE
By default the compiler generates program modules, which are always
included during linking. Use this option to make a library module that
will only be included if it is referenced in your program.

COMPILER OPTIONS OUTPUT

UAVR-1

107

Select the Make library module option to make the object file be treated
as a library module rather than as a program module.

For information about working with libraries, see the IAR XLIB
Librarian chapters in the AVR IAR Assembler, IAR XLINK Linker™, and
IAR XLIB Librarian™ Reference Guide.

OBJECT MODULE NAME
Normally, the internal name of the object module is the name of the
source file, without a directory name or extension. Use this option to set
the object module name explicitly.

First select the Object module name check box, then enter a name in the
entry field.

This option is particularly useful when several modules have the same
filename, since the resulting duplicate module name would normally
cause a linker error; for example, when the source file is a temporary file
generated by a preprocessor.

GENERATE DEBUG INFORMATION
This option causes the compiler to include additional information in the
object modules that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is specified by default.
Deselect this option if you do not wish the compiler to generate debug
information.

Note: The included debug information increases the size of the object
files.

NO ERROR MESSAGES IN OUTPUT FILES
Use this option to minimize the size of your application object file by
excluding messages from the UBROF files. A file size decrease of up to
60% can be expected. The XLINK diagnostic messages will, however, be
less useful when you use this option.

Notice that this option does not affect the code generation; it does not
perform any optimizations and reduces the object file size only by
excluding information.

For reference information about the XLINK output formats, see the AVR
IAR Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

LIST COMPILER OPTIONS

UAVR-1

108

LIST The List options determine whether a list file is produced, and the
information included in the list file.

Normally, the compiler does not generate a list file. Select one of the
following options to generate a list file:

The list file will be saved in the source file directory, and its filename will
consist of the source filename, plus the filename extension lst .

Option Description

C list file Generates a C or Embedded C++ list file

Assembler mnemonics Includes assembler mnemonics in the C or
Embedded C++ list file

Diagnostics Includes diagnostic information in the C or
Embedded C++ list file

Assembler file Generates an assembler list file

C source Includes C or Embedded C++ source code in
the assembler list file

COMPILER OPTIONS PREPROCESSOR

UAVR-1

109

PREPROCESSOR The Preprocessor options allow you to define symbols and include paths
for use by the compiler.

INCLUDE PATHS
Adds a path to the list of #include file path.

Enter the full file path of your #include files.

To make your project more portable, use the argument variable
$TOOLKIT_DIR$\inc\ for the inc subdirectory of the active product
(that is, standard system #include files) and $PROJ_DIR$\inc\ for the
inc subdirectory of the current project directory. For an overview of the
argument variables, see page 161.

DEFINED SYMBOLS
The Defined symbols option is useful for conveniently specifying a
value or choice that would otherwise be specified in the source file.

Enter the symbols that you want to define for the project.

This option has the same effect as a #define statement at the top of the
source file.

For example, you could arrange your source to produce either the test or
production version of your program depending on whether the symbol
testver was defined. To do this you would use include sections such as:

#ifdef testver
... ; additional code lines for test version only

#endif

DIAGNOSTICS COMPILER OPTIONS

UAVR-1

110

You would then define the symbol testver in the Debug target but not
in the Release target.

PREPROCESSOR OUTPUT TO FILE
By default the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate
preprocessor output. You can also choose to preserve comments and/or to
generate #line directives.

ADDITIONAL OPTIONS
Use this field to enter any other command line compiler option for your
project. In particular, rarely used options such as --segment or
--no_rampd can be entered here. The syntax for command line options
is described in the AVR IAR Compiler Reference Guide.

DIAGNOSTICS The Diagnostics options determine how diagnostics are classified and
displayed. Use the diagnostics options to override the default
classification of the specified diagnostics.

Note: The diagnostics cannot be suppressed for fatal errors, and fatal
errors cannot be reclassified.

ENABLE REMARKS
The least severe diagnostic messages are called remarks. A remark
indicates a source code construct that may cause strange behavior in the
generated code.

COMPILER OPTIONS DIAGNOSTICS

UAVR-1

111

By default remarks are not issued. Select the Enable remarks option if
you want the compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS
This option suppresses the output of diagnostics for the tags that you
specify.

For example, to suppress the warnings Pe117 and Pe177, type:

Pe117,Pe177

TREAT THESE AS REMARKS
A remark is the least severe type of diagnostic message. It indicates a
source code construct that may cause strange behavior in the generated
code. Use this option to classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

Pe177

TREAT THESE AS WARNINGS
A warning indicates an error or omission that is of concern, but which
will not cause the compiler to stop before compilation is completed. Use
this option to classify diagnostic messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or Embedded C++ language rules,
of such severity that object code will not be generated, and the exit code
will not be 0. Use this option to classify diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pe117

TREAT WARNINGS AS ERRORS
Use this option to make the compiler treat all warnings as errors. If the
compiler encounters an error, object code is not generated.

DIAGNOSTICS COMPILER OPTIONS

UAVR-1

112

WARNINGS AFFECT THE EXIT CODE
By default the exit code is not affected by warnings, only errors produce
a non-zero exit code. With this option, warnings will generate a non-zero
exit code.

UAVR-1

113

ASSEMBLER OPTIONS
This chapter first explains how to set the options from the IAR Embedded
Workbench™. It then provides complete reference information for each
assembler option.

The options are divided into the following sections:

Code generation, page 114
Debug, page 116
Preprocessor, page 117
List, page 118.

SETTING
ASSEMBLER
OPTIONS

To set assembler options in the IAR Embedded Workbench, choose
Options… from the Project menu to display the Options dialog box.
Then select AAVR in the Category list to display the assembler options
pages:

Click the tab corresponding to the type of options you want to view or
change.

CODE GENERATION ASSEMBLER OPTIONS

UAVR-1

114

Notice that assembler options can be specified on a target level, a group
level, or a file level. When options are set on the group or file level, you
can choose to override settings inherited from a higher level.

To restore all settings globally to the default factory settings, click on the
Factory Settings button.

The following sections give detailed descriptions of each assembler
option.

CODE GENERATION The Code generation options control the code generation of the
assembler.

CASE SENSITIVE USER SYMBOLS
By default, case sensitivity is on. This means that, for example, LABEL and
label refer to different symbols. You can choose Case sensitive user
symbols to turn case sensitivity off, in which case LABEL and label will
refer to the same symbol.

Deselect the Case sensitive user symbols option to turn case sensitivity
off.

MAKE LIBRARY MODULE
By default, the assembler produces a program module ready to be linked
with the IAR XLINK Linker™. Select the Make library module option
if you instead want the assembler to make a library module for use with
the IAR XLIB Librarian™.

ASSEMBLER OPTIONS CODE GENERATION

UAVR-1

115

Note: If the NAME directive is used in the source code (to specify the name
of the program module), the Make a LIBRARY module option is
ignored. This means that the assembler produces a program module
regardless of the Make a LIBRARY module option.

WARNINGS
The assembler displays a warning message when it finds an element of
the source code that is legal, but probably the result of a programming
error.

By default, all warnings are enabled. The Warnings option allows you to
enable only some warnings, or to disable all or some warnings.

Use the Warnings radio buttons and entry fields to specify which
warnings you want to enable or disable.

For additional information about assembler warnings, see the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

MACRO QUOTE CHARS
The Macro quote chars option sets the characters used for the left and
right quotes of each macro argument.

By default, the characters are < and >. This option allows you to change
the quote characters to suit an alternative convention or simply to allow
a macro argument to contain < or >.

From the drop-down list, select one of four types of brackets to be used as
macro quote characters:

DEBUG ASSEMBLER OPTIONS

UAVR-1

116

DEBUG The Debug options allow you to generate information to be used by a
debugger such as the IAR C-SPY® Debugger.

GENERATE DEBUG INFORMATION
In order to reduce the size and link time of the object file, the assembler
does not generate debug information in a Release project. You must use
the Generate debug information option if you want to use a debugger
with the program.

When you select this option to generate debug information, Source file
references in object file is selected by default. If you instead want to
include the entire source file into the object file, select Source files
embedded into object file. If you want to exclude the file references
from the object file, select Suppress source references in object file.

ASSEMBLER OPTIONS PREPROCESSOR

UAVR-1

117

PREPROCESSOR The Preprocessor options allow you to define include paths and
symbols, and to remove the predefined symbols in the assembler.

INCLUDE PATHS
By default the assembler searches for #include files in the current
working directory. The Include option allows you to specify the names
of directories that the assembler will also search if it fails to find the file.

Enter the full path of the directories that you want the assembler to search
for #include files.

To make your project more portable, use the argument variable
$TOOLKIT_DIR$\inc\ for the inc subdirectory of the active product
(that is, standard system #include files) and $PROJ_DIR$\inc\ for the
inc subdirectory of the current project directory. For an overview of the
argument variables, see page 161.

See the AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide for information about the #include directive.

Note: By default the assembler searches for #include files also in the
paths specified in the AAVR_INC environment variable. We do not,
however, recommend the use of environment variables in the IAR
Embedded Workbench.

DEFINED SYMBOLS
This option provides a convenient way of specifying a value or choice that
you would otherwise have to specify in the source file.

Enter the symbols you want to define, one per line.

LIST ASSEMBLER OPTIONS

UAVR-1

118

◆ For example, you could arrange your source to produce either the
test or production version of your program depending on whether
the symbol testver was defined. To do this you would use include
sections such as:

#ifdef testver
... ; additional code lines for test version only
#endif

You would then define the symbol testver in the Debug target but
not in the Release target.

◆ Alternatively, your source might use a variable that you need to
change often, for example framerate. You would leave the variable
undefined in the source and use this option to specify a value for the
project, for example framerate=3.

To remove a user-defined symbol, select in the Defined symbols list and
press the Delete key.

PREDEFINED SYMBOLS
By default, the assembler provides certain predefined symbols; see the
AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™
Reference Guide for more information. This option allows you to undefine
such a predefined symbol to make its name available for your own use.

To undefine a symbol, deselect it in the Predefined symbols list.

LIST The List options are used for making the assembler generate a list file, for
selecting the list file contents, and generating other listing-type output.

ASSEMBLER OPTIONS LIST

UAVR-1

119

By default, the assembler does not generate a list file. Selecting Generate
list file causes the assembler to generate a listing and send it to the file
sourcename.lst.

Note: If you want to save the list file in another directory than the default
directory for list files, use the Output Directories option in the General
category; see Output directories, page 97, for additional information.

When Generate list file is selected, the Listing, Cross-reference, and
List formats options become available.

LISTING
Use the Conditional listing of… option to specify which type of
information to include in the list file:

CROSS-REFERENCE
The Include cross-reference option causes the assembler to generate a
cross-reference table at the end of the list file. See the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide for details.

LIST FORMAT
The List format options allow you to specify details about the format of
the assembler list file.

Option Description

#included text Includes #include files in the list file.

Macro definitions Includes macro definitions in the list file.

Macro expansions Includes macro expansions in the list
file.

Macro execution info Prints macro execution information on
every call of a macro.

Assembled lines only Excludes lines in false conditional
assembly sections from the list file.

Multiline code Lists the code generated by directives on
several lines if necessary.

LIST ASSEMBLER OPTIONS

UAVR-1

120

Include header
The header of the assembler list file contains information about the
product version, date and time of assembly, and the command line
equivalents of the assembler options that were used.

Use this option to include the list file header in the list file.

Lines/page
The default number of lines per page is 44 for the assembler list file. Use
the Lines/page option to set the number of lines per page, within the
range 10 to 150.

Tab spacing
By default, the assembler sets eight character positions per tab stop. Use
the Tab spacing option to change the number of character positions per
tab stop, within the range 2 to 9.

UAVR-1

121

XLINK OPTIONS
The XLINK options allow you to control the operation of the IAR XLINK
Linker™.

This chapter first describes how to set XLINK options, and then gives
reference information about the options available in the IAR Embedded
Workbench™.

The options are divided into the following sections:

Output, page 123
#define, page 125
Diagnostics, page 126
List, page 128
Include, page 129
Input, page 130
Processing, page 132.

Note: The XLINK command line options that are used for defining
segments in a linker command file are described in the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

SETTING XLINK OPTIONS XLINK OPTIONS

UAVR-1

122

SETTING XLINK
OPTIONS

To set XLINK options in the IAR Embedded Workbench choose
Options… from the Project menu to display the Options dialog box.
Select XLINK in the Category list to display the XLINK options pages:

Then click the tab corresponding to the type of options you want to view
or change.

Notice that XLINK options can be specified on a target level, a group level,
or a file level. When options are set on the group or file level, you can
choose to override settings inherited from a higher level.

To restore all settings to the default factory settings, click on the button
Factory Settings.

The following sections give full reference information about the XLINK
options.

XLINK OPTIONS OUTPUT

UAVR-1

123

OUTPUT The Output options are used for specifying the output format and the
level of debugging information.

OUTPUT FILE
Use Output file to specify the name of the XLINK output file. If a name
is not specified the linker will use the name project.d90. If a name is
supplied without a file type, the default file type for the selected output
format (see Output format, page 124) will be used.

Note: If you select a format that generates two output files, the file type
that you specify will only affect the primary output file (first format).

Override default
Use this option to specify a filename or file type other than default.

FORMAT
The format options determine the format of the output file generated by
the IAR XLINK Linker. The IAR proprietary output format is called
UBROF, Universal Binary Relocatable Object Format.

Debug info
Use this option to create an output file in debug (ubrof) format, with a
d90 extension, to be used with the IAR C-SPY® Debugger.

Specifying the option Debug info overrides any Output format option.

Note: For emulators that support the IAR Systems debug format, select
ubrof from the Output format drop-down list.

OUTPUT XLINK OPTIONS

UAVR-1

124

Debug info with terminal I/O
Select this option to simulate terminal I/O when running C-SPY.

Output format
Use Output format to select an output format other than the default
format.

In a debug project, the default output format is debug (ubrof).

In a release project, the default output format is Motorola.

Note: When you specify the Output format option as debug (ubrof),
C-SPY debug information will not be included in the object code. Use the
Debug info option instead.

Format variant
Use this option to select enhancements available for some output formats.
The Format variant options depend on the output format chosen.

For more information, see the AVR IAR Assembler, IAR XLINK Linker™,
and IAR XLIB Librarian™ Reference Guide.

Module-local symbols
Use this option to specify whether local (non-public) symbols in the input
modules should be included or not by the IAR XLINK Linker. If
suppressed, the local symbols will not appear in the listing cross-reference
and they will not be passed on to the output file.

You can choose to ignore just the compiler-generated local symbols, such
as jump or constant labels. Usually these are only of interest when
debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or
assembled with the appropriate option to specify this.

XLINK OPTIONS #define

UAVR-1

125

#define The #define option allows you to define symbols.

DEFINE SYMBOL
Use Define symbol to define absolute symbols at link time. This is
especially useful for configuration purposes.

Any number of symbols can be defined in a linker command file. The
symbol(s) defined in this manner will be located in a special module
called ?ABS_ENTRY_MOD, which is generated by the linker.

XLINK will display an error message if you attempt to redefine an
existing symbol.

DIAGNOSTICS XLINK OPTIONS

UAVR-1

126

DIAGNOSTICS The Diagnostics options determine the error and warning messages
generated by the IAR XLINK Linker.

ALWAYS GENERATE OUTPUT
Use Always generate output to generate an output file even if a
non-fatal error was encountered during the linking process, such as a
missing global entry or a duplicate declaration. Normally, XLINK will not
generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be
patched in later in the absolute output image.

SEGMENT OVERLAP WARNINGS
Use Segment overlap warnings to reduce segment overlap errors to
warnings, making it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING
Use No global type checking to disable type checking at link time.
While a well-written program should not need this option, there may be
occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by
comparing the external references to an entry with the PUBLIC entry (if
the information exists in the object modules involved). A warning is
generated if there are mismatches.

XLINK OPTIONS DIAGNOSTICS

UAVR-1

127

RANGE CHECKS
Use Range checks to specify the address range check. The following
table shows the range check options in the IAR Embedded Workbench:

If an address is relocated outside of the target CPU’s address range—code,
external data, or internal data address—an error message is generated.
This usually indicates an error in an assembly language module or in the
segment placement.

WARNINGS/ERRORS
By default, the IAR XLINK Linker generates a warning when it detects
that something may be wrong, although the generated code may still be
correct. The Warning/Error options allow you to suppress or enable all
warnings, and to change the severity classification of errors and
warnings.

Refer to the XLINK diagnostics chapter in the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide for
information about the different warning and error messages.

Use the following options to control the generation of warning and error
messages:

Suppress all warnings
Use this option to suppress all warnings.

Suppress these diagnostics
Use this option to specify which warnings or errors to suppress. For
example, to disable warning 3, warning 7, and error 10, enter:

w3, w7, e10

Treat these as warnings
Use this option to specify errors that should be treated as warnings
instead. For example, to make error 106 become treated as a warning,
enter:

e106

IAR Embedded Workbench Description

Generate errors An error message is generated

Generate warnings Range errors are treated as warnings

Disabled Disables the address range checking

LIST XLINK OPTIONS

UAVR-1

128

Treat these as errors
Use this option to specify warnings that should be treated as errors
instead. For example, to make warning 26 become treated as an error,
enter:

w26

LIST The List options determine the generation of an XLINK cross-reference
listing.

GENERATE LINKER LISTING
Causes the linker to generate a listing and send it to the file project.map.

Segment map
Use Segment map to include a segment map in the XLINK listing file.
The segment map will contain a list of all the segments in dump order.

Symbols
The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in
every module. This entry map is useful for quickly
finding the address of a routine or data element.

XLINK OPTIONS INCLUDE

UAVR-1

129

Lines/page
Sets the number of lines per page for the XLINK listings to lines, which
must be in the range 10 to 150.

INCLUDE The Include option allows you to set the include path for linker
command files, and specify the linker command file.

INCLUDE PATHS
Specifies a path name to be searched for object files.

By default, XLINK searches for object files only in the current working
directory. The Include paths option allows you to specify the names of
the directories which it will also search if it fails to find the file in the
current working directory.

To make products more portable, use the argument variable
$TOOLKIT_DIR$\lib\ for the lib subdirectory of the active product
(that is, standard system #include files) and $PROJ_DIR$\lib\ for the
lib subdirectory of the current project directory. For an overview of the
argument variables, see page 161.

Module map A list of all segments, local symbols, and entries
(public symbols) for every module in the program.

Option Description

INPUT XLINK OPTIONS

UAVR-1

130

LIBRARY
A default library file is selected automatically. You can override this by
selecting Override default library name, and then specifying an
alternative library file.

Ignore CSTARTUP in library
When you select the option Ignore CSTARTUP in library, all modules
in the library will be treated as library modules, even if they have not been
assembled or compiled as library modules.

If you want to include your own version of cstartup.s90 in a project,
use this option to prevent the CSTARTUP module in the library from being
linked.

You should use this option also when linking assembler source files, since
the functionality of CSTARTUP does not apply to assembler projects.

The corresponding command line option is -C.

XCL FILENAME
A default linker command file is selected automatically for the General
Target memory model and processor configuration selected. You can
override this by selecting Override default, and then specifying an
alternative file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIR$ can be used here
too, to specify a project-specific or predefined linker command file.

INPUT The Input options define the status of input modules.

XLINK OPTIONS INPUT

UAVR-1

131

MODULE STATUS

Inherent
Use Inherent to link files normally, and generate output code.

Inherent, no object code
Use Inherent, no object code to empty-load specified input files; they
will be processed normally in all regards by the linker but output code will
not be generated for these files.

One potential use for this feature is in creating separate output files for
programming multiple EPROMs. This is done by empty-loading all input
files except the ones that you want to appear in the output file.

Load as PROGRAM
Use Load as PROGRAM to temporarily force all of the modules within
the specified input files to be loaded as if they were all program modules,
even if some of the modules have the LIBRARY attribute.

This option is particularly suited for testing library modules before they
are installed in a library file, since this option will override an existing
library module with the same entries. In other words, XLINK will load
the module from the specified input file rather than from the original
library.

Load as LIBRARY
Use Load as LIBRARY to temporarily cause all of the modules within
the specified input files to be treated as if they were all library modules,
even if some of the modules have the PROGRAM attribute. This means that
the modules in the input files will be loaded only if they contain an entry
that is referenced by another loaded module.

If you have made modifications to CSTARTUP, this option is particularly
useful when testing CSTARTUP before you install it in the library file, since
this option will override the existing program module CSTARTUP.

PROCESSING XLINK OPTIONS

UAVR-1

132

PROCESSING The Processing options allow you to specify additional options
determining how the code is generated.

FILL UNUSED CODE MEMORY
Use Fill unused code memory to fill all gaps between segment parts
introduced by the linker with the value hexvalue. The linker can
introduce gaps either because of alignment restriction, or at the end of
ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are
not given a value in the output file.

Filler byte
Use this option to specify size, in hexadecimal notation, of the filler to be
used in gaps between segment parts.

Generate checksum
Use Generate checksum to checksum all generated raw data bytes. This
option can only be used if the Fill unused code memory option has been
specified.

Size specifies the number of bytes in the checksum, which can be 1, 2, or
4.

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum.

Crc16 CRC16, generating polynomial 0x11021 (default)

XLINK OPTIONS PROCESSING

UAVR-1

133

You may also specify that one’s complement or two’s complement should
be used.

In all cases it is the least significant 1, 2, or 4 bytes of the result that will
be output, in the natural byte order for the processor.

The CRC checksum is calculated as if the following code was called for
each bit in the input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)
{
 unsigned long newcrc = (oldcrc << 1) ^ bit;
 if (oldcrc & 0x80000000)
 newcrc ^= POLY;
 return newcrc;
}

POLY is the generating polynomial. The checksum is the result of the final
call to this routine. If the complement is specified, the checksum is the
one’s or two’s complement of the result.

The linker will place the checksum byte(s) at the label __checksum in the
segment CHECKSUM. This segment must be placed using the segment
placement options like any other segment.

For additional information about segment control, see the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

Crc32 CRC32, generating polynomial 0x104C11DB7.

Crc polynomial CRC with a generating polynomial of hexvalue.

Algorithms Description

PROCESSING XLINK OPTIONS

UAVR-1

134

UAVR-1

135

C-SPY OPTIONS
This chapter describes how to set C-SPY options in the IAR Embedded
Workbench™ and gives full reference information about the options.

Note: If you prefer to run C-SPY outside the IAR Embedded Workbench,
refer to the chapter C-SPY command line options in Part 4: The C-SPY
simulator in this guide for information about the available options.

Reference information about the IAR C-SPY® Debugger is provided in the
chapter C-SPY reference in Part 4: The C-SPY simulator in this guide.

SETTING C-SPY
OPTIONS

To set C-SPY options in the IAR Embedded Workbench choose
Options… from the Project menu, and select C-SPY in the Category
list to display the C-SPY options page:

To restore all settings globally to the default factory settings, click on the
Factory Settings button.

Note: The Serial communication and ROM-monitor options will be
enabled in future versions of the product.

SETUP C-SPY OPTIONS

UAVR-1

136

SETUP The Setup options specify the C-SPY driver and the setup and device
description files to be used.

DRIVER
Selects the appropriate driver for use with C-SPY, for example a simulator
or an emulator. The following driver is currently available:

Contact your distributor or IAR representative, or visit the IAR website
at www.iar.com for the most recent information about the available
C-SPY versions.

SETUP FILE
To register the contents of a macro file in the C-SPY startup sequence,
select Use setup file and enter the path and name name of your setup file,
for example, watchdog.mac. If no extension is specified, the extension
mac is assumed. A browse button is available for your convenience.

DEVICE DESCRIPTION FILE
Use this option to load the device-specific definitions allowing you to
view and edit the contents of the special function registers while
debugging.

The device description files contain various device specific information
such as I/O registers (SFR) definitions, vector, and control register
definitions. Some files are provided with the product and have the
extension ddf. A browse button is available for your convenience.

C-SPY version Driver

Simulator savr.cdr

UAVR-1

137

IAR EMBEDDED
WORKBENCH REFERENCE
This chapter provides complete reference information about the
IAR Embedded Workbench™.

It first gives information about the components of the IAR Embedded
Workbench window, and each of the different types of window it
encloses.

It then gives details of the menus, and the commands on each menu.

THE IAR EMBEDDED
WORKBENCH
WINDOW

The following illustration shows the different components of the
IAR Embedded Workbench window.

These components are explained in greater detail in the following
sections.

Status bar

Edit bar
Menu bar

Project
window

Editor
window

Project
bar

Messages
window

Binary
Editor

window

THE IAR EMBEDDED WORKBENCH WINDOW IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

138

MENU BAR
Gives access to the IAR Embedded Workbench menus.

The menus are described in greater detail on the following pages.

TOOLBARS
The IAR Embedded Workbench window contains two toolbars:

◆ The edit bar.

◆ The project bar.

The edit bar provides buttons for the most useful commands on the
IAR Embedded Workbench menus, and a text box for entering a string to
do a toolbar search.

Menu Description

File The File menu provides commands for opening
source and project files, saving and printing, and
exiting from the IAR Embedded Workbench.

Edit The Edit menu provides commands for editing and
searching in Editor windows.

View The commands on the View menu allow you to
change the information displayed in the
IAR Embedded Workbench window.

Project The Project menu provides commands for adding
files to a project, creating groups, and running the
IAR tools on the current project.

Tools The Tools menu is a user-configurable menu to
which you can add tools for use with the
IAR Embedded Workbench.

Options The Options menu allows you to customize the
IAR Embedded Workbench to your requirements.

Window The commands on the Window menu allow you to
manipulate the IAR Embedded Workbench windows
and change their arrangements on the screen.

Help The commands on the Help menu provide help
about the IAR Embedded Workbench.

IAR EMBEDDED WORKBENCH REFERENCE THE IAR EMBEDDED WORKBENCH WINDOW

UAVR-1

139

The project bar provides buttons for the build and debug options on the
Project menu.

You can move either toolbar to a different position in the IAR Embedded
Workbench window, or convert it to a floating palette, by dragging it with
the mouse.

You can display a description of any button by pointing to it with the
mouse button. When a command is not available the corresponding
toolbar button will be grayed out, and you will not be able to select it.

Edit bar
The following illustration shows the menu commands corresponding to
each of the edit bar buttons:

New Save Cut Paste

Toolbar search text box Find GotoOpen Print Copy

Redo

Undo

Toolbar
search

Replace

THE IAR EMBEDDED WORKBENCH WINDOW IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

140

Toolbar search
To search for text in the frontmost Editor window enter the text in the
Toolbar search text box, and press Enter or click the Toolbar search
button.

Alternatively, you can select a string you have previously searched for
from the drop-down list box.

You can choose whether or not the edit bar is displayed using the Edit
Bar command on the View menu.

Project bar
The following illustration shows the menu command corresponding to
each of the project bar buttons:

Make Debugger

Compile Stop building Split

Cascade

Tile

Tile Help

IAR EMBEDDED WORKBENCH REFERENCE THE IAR EMBEDDED WORKBENCH WINDOW

UAVR-1

141

You can choose whether or not the project bar is displayed using the
Project Bar command on the View menu.

PROJECT WINDOW
The Project window shows the name of the current project and a tree
representation of the groups and files included in the project.

Pressing the right mouse button in the Project window displays a pop-up
menu which gives you convenient access to several useful commands.
Save As Text... allows you to save a description of the project, including
all options that you have specified.

Pin button
The Pin button, in the top right corner of the Project window, allows you
to pin the window to the desktop so that it is not affected by the Tile or
Cascade commands on the Window menu.

Targets
The top node in the tree shows the current target. You can change the
target by choosing a different target from the Targets drop-down list box
at the top of the Project window. Each target corresponds to a different
version of your project that you want to compile or assemble. For
example, you might have a target called Debug, which includes debugging
code, and one called Release, with the debugging code omitted.

You can expand the tree by double-clicking on the target icon, or by
clicking on the plus sign icon, to display the groups included in this target.

Pin button

THE IAR EMBEDDED WORKBENCH WINDOW IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

142

Groups
Groups are used for collecting together related source files. Each group
may be included in one or more targets, and a source file can be present
in one or more groups.

Source files
You can expand each group by double-clicking on its icon, or by clicking
on the plus sign icon, to show the list of source files it contains.

Once a project has been successfully built any include files are displayed
in the structure below the source file that included them.

Note: The include files associated with a particular source file may depend
on which target the source file appears in, since preprocessor or directory
options may affect which include files are associated with a particular
source file.

Editing a file
To edit a source or include file, double-click its icon in the Project window
tree display.

Moving a source file between groups
You can move a source file between two groups by dragging its icon
between the group icons in the Project window tree display.

Removing items from a project
To remove an item from a project, click on it to select it, and then press
Delete.

To remove a file from a project you can also use the Project Files dialog
box, displayed by choosing Files… from the Project menu.

EDITOR WINDOW
Source files are displayed in the Editor window. The IAR Embedded
Workbench editor automatically recognizes the syntax of C or Embedded
C++ programs, and displays the different components of the program in
different text styles.

IAR EMBEDDED WORKBENCH REFERENCE THE IAR EMBEDDED WORKBENCH WINDOW

UAVR-1

143

The following table shows the default styles used for each component of
a C or Embedded C++ program:

To change these styles choose Settings… from the Options menu, and
then select the Colors and Fonts page in the Settings dialog box, see
Colors and Fonts, page 168.

Item Style

Default Black plain

Keyword Black bold

Strings Blue

Preprocessor Green

Integer (dec) Red

Integer (oct) Magenta

Integer (hex) Magenta

Real Blue

C++ comment: // Dark blue italic

C comment: /*...*/ Dark blue italic

THE IAR EMBEDDED WORKBENCH WINDOW IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

144

Auto indent
The editor automatically indents a line to the same indent as the previous
line, making it easy to lay out programs in a structured way.

Matching brackets
When the cursor is next to a bracket you can automatically find the
matching bracket by choosing Match Brackets from the Edit menu.

Read-only and modification indicators
The name of the open source file is displayed in the Editor window title
bar.

If a file is a read-only file, the text (Read Only) appears after the file
name, for example Common (Read Only).

When a file has been modified after it was last saved, an asterisk appears
after the window title, for example Common *.

Editor options
The IAR Embedded Workbench editor provides a number of special
features, each of which can be enabled or disabled independently in the
Editor page of the Settings dialog box. For more information see
Settings…, page 163.

Editor key summary
The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion
point:

To move the insertion point Press

One character left Arrow left

One character right Arrow right

One word left Ctrl+Arrow left

One word right Ctrl+Arrow right

One line up Arrow up

One line down Arrow down

To the start of the line Home

To the end of the line End

IAR EMBEDDED WORKBENCH REFERENCE THE IAR EMBEDDED WORKBENCH WINDOW

UAVR-1

145

Use the following keys and key combinations for scrolling text:

Use the following key combinations for selecting text:

To the first line in the file Ctrl+Home

To the last line in the file Ctrl+End

To scroll Press

Up one line Ctrl+Arrow up

Down one line Ctrl+Arrow down

Up one page Page Up

Down one page Page Down

To select Press

The character to the left Shift+Arrow left

The character to the right Shift+Arrow right

One word to the left Shift+Ctrl+Arrow left

One word to the right Shift+Ctrl+Arrow right

To the same position on the
previous line

Shift+Arrow up

To the same position on the next
line

Shift+Arrow down

To the start of the line Shift+Home

To the end of the line Shift+End

One screen up Shift+Page Up

One screen down Shift+Page Down

To the beginning of the file Shift+Ctrl+Home

To the end of the file Shift+Ctrl+End

To move the insertion point Press

THE IAR EMBEDDED WORKBENCH WINDOW IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

146

Splitting the Editor window into panes
You can split the Editor window horizontally or vertically into multiple
panes, to allow you to look at two different parts of the same source file
at once, or cut and paste text between two different parts.

To split the window drag the appropriate splitter control to the middle
of the window:

To revert to a single pane double-click the appropriate splitter control, or
drag it back to the end of the scroll bar.

You can also split a window into panes using the Split command on the
Window menu.

STATUS BAR
Displays the status of the IAR Embedded Workbench, and the state of the
modifier keys.

As you are editing in the Editor window the status bar shows the current
line and column number containing the cursor, and the Caps Lock, Num
Lock, and Overwrite status:

Splitter
control

IAR EMBEDDED WORKBENCH REFERENCE THE IAR EMBEDDED WORKBENCH WINDOW

UAVR-1

147

You can choose whether or not the status bar is displayed using the
Status Bar command on the View menu.

MESSAGES WINDOW
The Messages window shows the output from different IAR Embedded
Workbench commands. The window is divided into multiple pages and
you select the appropriate page by clicking on the corresponding tab.

Pressing the right mouse button in the Messages window displays a
pop-up menu which allows you to save the contents of the window as a
text file.

To specify the level of output to the Messages window, select the Make
Control page in the Settings window. See Make Control, page 169.

Pin button
The Pin button, in the top right corner of the Messages window, allows
you to pin the window to the desktop so that it is not affected by the Tile
or Cascade commands on the Window menu.

Build
Build shows the messages generated when building a project.
Double-clicking a message in the Build panel opens the appropriate file
for editing, with the cursor at the correct position.

Find in Files
Find in Files displays the output from the Find in Files… command on
the Edit menu. Double-clicking an entry in the panel opens the
appropriate file with the cursor positioned at the correct location.

Tool Output
Tool Output displays any messages output by user-defined tools in the
Tools menu.

Pin button

FILE MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

148

BINARY EDITOR WINDOW
The Binary Editor window displays and allows you to edit the contents
of a binary file. The data is displayed in hexadecimal format, with its
ASCII equivalent to the right of each line. You can edit the contents by
inserting or overwriting data.

To open the Binary Editor window, choose Binary Editor… from the
Tools menu.

FILE MENU The File menu provides commands for opening projects and source files,
saving and printing, and exiting from the IAR Embedded Workbench.

The menu also includes a numbered list of the most recently opened files
to allow you to open one by selecting its name from the menu.

NEW…
Displays the following dialog box to allow you to specify whether you
want to create a new project, or a new text file:

Choosing Source/Text opens a new Editor window to allow you to enter
a text file.

IAR EMBEDDED WORKBENCH REFERENCE FILE MENU

UAVR-1

149

Choosing Project displays the following dialog box to allow you to specify
a name for the project and the target CPU family:

The project will then be displayed in a new Project window. By default
new projects are created with two targets, Release and Debug.

Selecting Binary File opens the Binary Editor window, allowing you to
enter binary data:

Note: The Binary Editor starts in overwrite mode.

FILE MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

150

OPEN…
Displays a standard Open dialog box to allow you to select a text or
project file to open. Opening a new project file automatically saves and
closes any currently open project.

CLOSE
Closes the active window.

You will be warned if a text document has changed since it was last saved,
and given the opportunity to save it before closing. Projects are saved
automatically.

SAVE
Saves the current text or project document.

SAVE AS…
Displays the standard Save As dialog box to allow you to save the active
document with a different name.

SAVE ALL
Saves all open text documents.

PRINT…
Displays the standard Print dialog box to allow you to print a text
document.

PRINT SETUP…
Displays the standard Print Setup dialog box to allow you to set up the
printer before printing.

EXIT
Exits from the IAR Embedded Workbench. You will be asked whether to
save any changes to text windows before closing them. Changes to the
project are saved automatically.

IAR EMBEDDED WORKBENCH REFERENCE EDIT MENU

UAVR-1

151

EDIT MENU The Edit menu provides commands for editing and searching in Editor
windows.

UNDO
Undoes the last edit made to the current Editor window.

REDO
Redoes the last Undo in the current Editor window.

You can undo and redo an unlimited number of edits independently in
each Editor window.

CUT, COPY, PASTE
Provide the standard Windows functions for editing text within Editor
windows and dialog boxes.

FIND…
Displays the following dialog box to allow you to search for text within
the current Editor window:

Enter the text to search for in the Find What text box.

Select Match Whole Word Only to find the specified text only if it
occurs as a separate word. Otherwise int will also find print, sprintf
etc.

Select Match Case to find only occurrences that exactly match the case
of the specified text. Otherwise specifying int will also find INT and Int.

Select Up or Down to specify the direction of the search.

Choose Find Next to find the next occurrence of the text you have
specified.

EDIT MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

152

REPLACE…
Allows you to search for a specified string and replace each occurrence
with another string.

Enter the text to replace each found occurrence in the Replace With box.
The other options are identical to those for Find….

Choose Find Next to find the next occurrence, and Replace to replace it
with the specified text. Alternatively choose Replace All to replace all
occurrences in the current Editor window.

FIND IN FILES…
Allows you to search for a specified string in multiple text files. The
following dialog box allows you to specify the criteria for the search:

IAR EMBEDDED WORKBENCH REFERENCE EDIT MENU

UAVR-1

153

Specify the string you want to search for in the Search String text box,
or select a string you have previously searched for from the drop-down list
box.

Select Match Whole Word or Match Case to restrict the search to the
occurrences that match as a whole word or match exactly in case,
respectively.

Select each file you want to search in the File Name list, and choose Add
to add it to the Selected Files list.

You can add all the files in the File Name list by choosing Add All, or
you can select multiple files using the Shift and Ctrl keys and choose Add
to add the files you have selected. Likewise you can remove files from the
Selected Files list using the Remove and Remove All buttons.

When you have selected the files you want to search choose Find to
proceed with the search. All the matching occurrences are listed in the
Messages window. You can then very simply edit each occurrence by
double-clicking it:

This opens the corresponding file in an Editor window with the cursor
positioned at the start of the line containing the specified text:

VIEW MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

154

MATCH BRACKETS
If the cursor is positioned next to a bracket this command moves the
cursor to the matching bracket, or beeps if there is no matching bracket.

VIEW MENU The commands on the View menu allow you to change the information
displayed in the IAR Embedded Workbench window.

EDIT BAR
Toggles the edit bar on and off.

PROJECT BAR
Toggles the project bar on and off.

STATUS BAR
Toggles the status bar on and off.

GOTO LINE…
Displays the following dialog box to allow you to move the cursor to a
specified line and column in the current Editor window:

IAR EMBEDDED WORKBENCH REFERENCE PROJECT MENU

UAVR-1

155

PROJECT MENU The Project menu provides commands for adding files to a project,
creating groups, specifying project options, and running the IAR Systems
development tools on the current project.

FILES…
Displays the following dialog box to allow you to edit the contents of the
current project:

The Add to Group drop-down list box shows all the groups included in
the current target. Select the one you want to edit, and the files currently
in that group are displayed in the Files in Group list at the bottom of the
dialog box.

The upper part of the Project Files dialog box is a standard file dialog
box, to allow you to locate and select the files you want to add to each
particular group.

Adding files to a group
To add files to the currently displayed group select them using the
standard file controls in the upper half of the dialog box and choose the
Add button, or choose Add All to add all the files in the File Name list
box.

PROJECT MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

156

Removing files from a group
To remove files from the currently displayed group select them in the
Files in Group list and choose Remove, or choose Remove All to
remove all the files from the group.

You can use the Project Files dialog box to make changes to several
groups. Choosing Done will then apply all the changes to the project.
Alternatively, choosing Cancel will discard all the changes and leave the
project unaffected.

Source file paths
The IAR Embedded Workbench supports relative source file paths to a
certain degree.

If a source file is located in the project file directory or in any subdirectory
of the project file directory, the IAR Embedded Workbench will use a path
relative to the project file when accessing the source file.

NEW GROUP…
Displays the following dialog box to allow you to create a new group:

Specify the name of the group you want to create in the Group Name text
box. Select the targets to which you want to add the new group in the Add
to Targets list. By default the group is added to all targets.

IAR EMBEDDED WORKBENCH REFERENCE PROJECT MENU

UAVR-1

157

TARGETS…
Displays the following dialog box to allow you to create new targets, and
display or change the groups included in each target:

To create a new target, select New… and enter a name for the new target.

To delete a target, select it and click Delete.

To view the groups included in a target select it in the Targets list.

The groups are shown in the Included Groups list, and you can add or
remove groups using the arrow buttons.

OPTIONS…
Displays the Options dialog box to allow you to set directory and
compiler options on the selected item in the Project window.

You can set options on the entire target, on a group of files, or on an
individual file.

PROJECT MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

158

The Category list allows you to select which set of options you want to
modify. The options available in the Category list will depend on the
tools installed in your IAR Embedded Workbench, and will typically
include the following options:

Selecting a category displays one or more pages of options for that
component of the IAR Embedded Workbench.

For more detailed information about the tools installed, see the AVR IAR
Compiler Reference Guide and the AVR IAR Assembler, IAR XLINK
Linker™, and IAR XLIB Librarian™ Reference Guide.

COMPILE
Compiles or assembles the currently active file or project as appropriate.

Category Description Refer to the chapter

General General options General options

ICCAVR AVR Compiler options Compiler options

AAVR AVR Assembler options Assembler options

XLINK IAR XLINK Linker™ options XLINK options

C-SPY IAR C-SPY® Debugger options C-SPY options

IAR EMBEDDED WORKBENCH REFERENCE PROJECT MENU

UAVR-1

159

You can compile a file or project by selecting its icon in the Project
window and choosing Compile. Alternatively, you can compile a file in
the Editor window provided it is a member of the current target.

MAKE
Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since last build.

LINK
Explicitly relinks the current target.

BUILD ALL
Rebuilds and relinks all files in the current target.

STOP BUILD
Stops the current build operation.

LIBRARIAN
Starts the IAR XLIB Librarian™ to allow you to perform operations on
library modules in library files.

DEBUGGER
Starts the IAR C-SPY Debugger so that you can debug the project object
file.

You can specify the version of C-SPY to run in the Debug options for the
target. If necessary a Make will be performed before running C-SPY to
ensure that the project is up to date.

TOOLS MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

160

TOOLS MENU The Tools menu is a user-configurable menu to which you can add tools
for use with the IAR Embedded Workbench.

CONFIGURE TOOLS…
Configure Tools… displays the following dialog box to allow you to
specify a user-defined tool to add to the menu:

Specify the text for the menu item in the Menu Text box, and the
command to be run when you select the item in the Command text box.
Alternatively, choose Browse to display a standard file dialog box to
allow you to locate an executable file on disk and add its path to the
Command text box.

Specify the argument for the command in the Argument text box, or
select Prompt for Command Line to display a prompt for the command
line argument when the command is selected from the Tools menu.

Variables can be used in the arguments, allowing you to set up useful tools
such as interfacing to a command line revision control system, or running
an external tool on the selected file.

IAR EMBEDDED WORKBENCH REFERENCE TOOLS MENU

UAVR-1

161

The following argument variables can be used:

The Initial Directory text box allows you to specify an initial working
directory for the tool.

Select Redirect to Output Window to display any console output from
the tool in the Tools window.

Note: Tools that require user input or make special assumptions regarding
the console that they execute in, will not work if you set this option.

When you have specified the command you want to add choose Add to
add it to the Menu Content list. You can remove a command from the
Tools menu by selecting it in this list and choosing Remove.

Variable Description

CUR_DIR Current directory

CUR_LINE Current line

EW_DIR Directory of the IAR Embedded Workbench, for
example c:\program files\iar systems\ew23

EXE_DIR Directory for executable output

$FILE_DIR$ Directory of active file, no file name

$FILE_FNAME$ File name of active file without path

$FILE_PATH$ Full path of active file (in Editor, Project, or Message
window)

$LIST_DIR$ Directory for list output

OBJ_DIR Directory for object output

$PROJ_DIR$ Project directory

$PROJ_FNAME$ Project file name without path

$PROJ_PATH$ Full path of project file

$TARGET_DIR$ Directory of primary output file

$TARGET_FNAME$ Filename without path of primary output file

$TARGET_PATH$ Full path of primary output file

$TOOLKIT_DIR$ Directory of the active product, for example
c:\program files\iar systems\ew23\avr

TOOLS MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

162

To confirm the changes you have made to the Tools menu and close the
dialog box choose OK.

The menu items you have specified will then be displayed in the Tools
menu:

Specifying command line commands or batch files
Command line commands or batch files need to be run from a command
shell, so to add these to the Tools menu you need to specify an
appropriate command shell in the Command text box, and the command
line command or batch file name in the Argument text box.

The command shells are specified as follows:

The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the
IAR Embedded Workbench to detect when the tool has completed.

For example, to add the command Backup to the Tools menu to make a
copy of the entire project directory to a network drive, you would
specify Command as command and Argument as:

/C copy c:\project*.* F:

or

/C copy $PROJ_DIR$*.* F:

System Command shell

Windows 95/98 command.com

Windows NT cmd.exe (recommended) or command.com

IAR EMBEDDED WORKBENCH REFERENCE OPTIONS MENU

UAVR-1

163

BINARY EDITOR…
Opens the Binary Editor window where you can edit a file in hexadecimal
format. It displays a standard file dialog box allowing you to select a file.
For more information, see Binary Editor window, page 148.

RECORD MACRO
Allows you to record a sequence of editor keystrokes as a macro.

STOP RECORD MACRO
Ends the recording of a macro.

PLAY MACRO
Replays the macro you have recorded.

OPTIONS MENU The Settings… command on the Options menu allows you to customize
the IAR Embedded Workbench according to your own requirements.

SETTINGS…
Displays the Settings dialog box to allow you to customize the
IAR Embedded Workbench.

Select the feature you want to customize by clicking the Editor,
External Editor, Key Bindings, Colors and Fonts, or Make Control
tabs.

OPTIONS MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

164

Editor
The Editor page allows you to change the editor options:

It provides the following options:

Option Description

Tab Size Specifies the number of character spaces
corresponding to each tab.

Indent Size Specifies the number of character spaces to be
used for indentation.

Tab Key Function Specifies how the tab key is used.

Syntax Highlighting Displays the syntax of C or Embedded C++
programs in different text styles.

Auto Indent When you insert a line, the new line will
automatically have the same indentation as
the previous line.

Show Line Number Displays line numbers in the Editor window.

Scan for Changed Files The editor will check if files have been
modified by some other tool and
automatically reload them. If a file has been
modified in the IAR Embedded Workbench,
you will be prompted first.

Show Bookmarks Displays compiler errors and Find in Files...
search results.

IAR EMBEDDED WORKBENCH REFERENCE OPTIONS MENU

UAVR-1

165

For more information about the IAR Embedded Workbench Editor, see
Editor window, page 142.

External Editor
The External Editor page allows you to specify an external editor.

An external editor can be called either by passing command line
parameters or by using DDE (Windows Dynamic Data Exchange).

Selecting Type: Command Line will call the external editor by passing
command line parameters. Provide the file name and path of your
external editor in the Editor field. Then specify the command line to pass
to the editor in the Arguments field.

Note: Variables can be used in arguments. See page 161 for information
about the argument variables that are available.

Selecting Type: DDE will call the external editor by using DDE. Provide
the file name and path of your external editor in the Editor field.

Specify the DDE service name used by the editor in the Service field.
Then specify a sequence of command strings to send to the editor in the
Command field.

Enable Virtual Space Allows the cursor to move outside the text
area.

Option Description

OPTIONS MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

166

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewright®:

The service name and command strings depend on the external editor
that you are using. Refer to the user documentation of your external
editor to find the appropriate settings.

Note: Variables can be used in the arguments. See page 161 for more
information about the argument variables that are available.

IAR EMBEDDED WORKBENCH REFERENCE OPTIONS MENU

UAVR-1

167

Key Bindings
The Key Bindings page displays the shortcut keys used for each of the
menu options, and allows you to change them:

Select the command you want to edit in the Command list. Any currently
defined shortcut keys are shown in the Current shortcut list.

To add a shortcut key to the command click in the Press new shortcut
key box and type the key combination you want to use. Then click Set
Shortcut to add it to the Current shortcut list. You will not be allowed
to add it if it is already used by another command.

To remove a shortcut key select it in the Current shortcut list and click
Remove, or click Remove All to remove all the command’s shortcut keys.

Then choose OK to use the new key bindings you have defined and the
menus will be updated to show the shortcuts you have defined.

You can set up more than one shortcut for a command, but only one will
be displayed in the menu.

OPTIONS MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

168

Colors and Fonts
The Colors and Fonts page allows you to specify the colors and fonts
used for text in the Editor windows, and the font used for text in the other
windows.

The panel shows a list of the C or Embedded C++ syntax elements you
can customize in the Editor window:

To specify the style used for each element of C or Embedded C++ syntax
in the Editor window, select the item you want to define from the Editor
Window list. The current setting is shown in the Sample box below the
list box.

You can choose a text color by clicking Color and a font by clicking
Font.... You can also choose the type style from the Type Style
drop-down list.

Then choose OK to use the new styles you have defined, or Cancel to
revert to the previous styles.

IAR EMBEDDED WORKBENCH REFERENCE OPTIONS MENU

UAVR-1

169

Make Control
The Make Control page allows you to set options for Make and Build:

The following table gives the options, and the alternative settings for each
option:

Option Setting

Message Filtering
Level

All: Show all messages. Include compiler and
linker information.
Messages: Show messages, warnings, and errors.
Warnings: Show warnings and errors.
Errors: Show errors only.

Stop Build
Operation On

Never: Do not Stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Save Editor Windows
On Build

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

WINDOW MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

170

WINDOW MENU The commands on the Window menu allow you to manipulate the
Workbench windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open
on the screen, and allows you to activate one by selecting it.

NEW WINDOW
Opens a new window for the current file.

CASCADE, TILE HORIZONTAL, TILE VERTICAL
Provide the standard Windows functions for arranging the
IAR Embedded Workbench windows on the screen.

ARRANGE ICONS
Arranges minimized window icons neatly at the bottom of the
IAR Embedded Workbench window.

CLOSE ALL
Closes all open windows.

SPLIT
Allows you to split an Editor window horizontally into two panes to
allow you to see two parts of a file simultaneously.

MESSAGE WINDOW
Opens the Messages window that displays messages and text output from
the IAR Embedded Workbench commands.

HELP MENU Provides help about the IAR Embedded Workbench.

CONTENTS
Displays the Contents page for help about the IAR Embedded
Workbench.

SEARCH FOR HELP ON…
Allows you to search for help on a keyword.

IAR EMBEDDED WORKBENCH REFERENCE HELP MENU

UAVR-1

171

HOW TO USE HELP
Displays help about using help.

EMBEDDED WORKBENCH GUIDE
Provides access to an online version of this user guide, available in
Acrobat® Reader format.

COMPILER REFERENCE GUIDE
Provides access to an online version of the AVR IAR Compiler Reference
Guide, available in Acrobat® Reader format.

ASSEMBLER, LINKER, AND LIBRARIAN GUIDE
Provides access to an online version of the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide, available in
Acrobat® Reader format.

C LIBRARY REFERENCE GUIDE
Provides access to the C library documentation, which is available in
Acrobat® Reader format.

EC++ LIBRARY REFERENCE GUIDE
Provides access to the EC++ library documentation, which is available
in html format.

IAR ON THE WEB
Allows you to browse the home page, news page, and FAQ (frequently
asked questions) page of the IAR website, and to contact IAR Technical
Support.

ABOUT…
Displays the version numbers of the user interface and of the AVR IAR
Embedded Workbench.

HELP MENU IAR EMBEDDED WORKBENCH REFERENCE

UAVR-1

172

UAVR-1

173

PART 4: THE C-SPY
SIMULATOR
This part of the AVR IAR Embedded Workbench™ User Guide contains
the following chapters:

◆ Introduction to C-SPY

◆ C-SPY expressions

◆ C-SPY macros

◆ C-SPY reference

◆ C-SPY command line options.

PART 4: THE C-SPY SIMULATOR

UAVR-1

174

UAVR-1

175

INTRODUCTION TO C-SPY
The IAR C-SPY Debugger is a powerful interactive debugger for
embedded applications.

This chapter introduces the IAR C-SPY® Debugger and gives an overview
of the features it provides.

Note: For information about the C-SPY options available in the IAR
Embedded Workbench, see the chapter C-SPY options in Part 3: The IAR
Embedded Workbench. For information about the available command line
options, see the chapter C-SPY command line options.

DEBUGGING
PROJECTS

DISASSEMBLY AND SOURCE MODE DEBUGGING
C-SPY allows you to switch between C or assembler source and
disassembly mode debugging as required.

Wherever source code is available, the source mode debugging displays
the source program, and you can execute the program one statement at a
time while monitoring the values of variables and data structures. Source
mode debugging provides the quickest and easiest way of developing your
application, without having to worry about how the compiler or
assembler has implemented the code.

Disassembly mode debugging displays a mnemonic assembler listing of
your program based on actual memory contents rather than source code,
and lets you execute the program exactly one assembler instruction at a
time. Disassembly mode debugging lets you focus on the critical sections
of your application, and provides you with precise control over the
simulated hardware.

During both source and disassembly mode debugging you can display the
registers and memory, and change their contents.

If the file that you are debugging changes on the disk, you will be
prompted to reload the file.

Source window
As you debug an application the source or disassembly source is displayed
in a Source window, with the next source or disassembly statement to be
executed highlighted.

DEBUGGING PROJECTS INTRODUCTION TO C-SPY

UAVR-1

176

You can navigate quickly to a particular file or function in the source code
by selecting its name from the file or function box at the top of the Source
window.

For convenience the Source window uses colors and text styles to identify
key elements of the syntax. For example, by default C keywords are
displayed in bold and constants in red. However, the colors and font styles
are fully configurable, so that you can change them to whatever you find
most convenient. See Window Settings, page 235 for additional
information.

PROGRAM EXECUTION
C-SPY provides a flexible range of options for executing the target
program.

The Go command continues execution from the current position until a
breakpoint or program exit is reached. You can also execute up to a
selected point in the program, without having to set a breakpoint, with
the Go to Cursor command. Alternatively, you can execute out of a
C function with the Go Out command.

Program execution is indicated by a flashing Stop command button in the
debug toolbar. While the program is executing you may stop it either by
clicking on the Stop button or by pressing the Escape key. You may also
use any command accelerator associated with the Stop command.

Single stepping
The Step and Step Into commands allow you to execute the program a
statement or instruction at a time. Step Into continues stepping inside
function or subroutine calls whereas Step executes each function call in
a single step.

The Autostep command steps repeatedly, and the Multi Step command
lets you execute a specified number of steps before stopping.

Breakpoints
You can set breakpoints in the program being debugged using the
Toggle Breakpoint command. Statements or instructions at which
breakpoints are set are shown highlighted in the Source window listing.

Alternatively the Edit Breakpoints command allows you to define and
alter complex breakpoints, including break conditions. You can
optionally specify a macro which will perform certain actions when the
breakpoint is encountered.

INTRODUCTION TO C-SPY DEBUGGING PROJECTS

UAVR-1

177

For detailed information, see Edit Breakpoints…, page 225.

Interrupt simulation
C-SPY includes an interrupt system allowing you to optionally simulate
the execution of interrupts when debugging with C-SPY. The interrupt
system can be turned on or off as required either with a system macro, or
using the Interrupt dialog box. The interrupt system is activated by
default, but if it is not required it can be turned off to speed up instruction
set simulation.

The interrupt system has the following features:

◆ Interrupts, single or periodical, can be set up so that they are
generated based on the cycle counter value.

◆ C-SPY provides interrupt support suitable for the AVR processor
variants.

◆ By combining an interrupt with a data breakpoint you can simulate
peripheral devices, such as a serial port.

C function information
C-SPY keeps track of the active functions and their local variables, and a
list of the function calls can be displayed in the Calls window. You can
also trace functions during program execution using the Trace command
and tracing information is displayed in the Report window. For additional
information, see Trace, page 234.

You can use the Quick Watch command to examine the value of any
local, global, or static variable that is in scope. You can monitor the value
of a macro, variable, or expression in the Watch window as you step
through the program.

Viewing and editing memory and registers
You can display the contents of the processor registers in the Register
window, and specified areas of memory in the Memory window.

The Register window allows you to edit the content of any register, and
the register is automatically updated to reflect the change.

The Memory window can display the contents of memory in groups of 8,
16, or 32 bits, and you can double-click any memory address to edit the
contents of memory at that address.

DEBUGGING PROJECTS INTRODUCTION TO C-SPY

UAVR-1

178

Terminal I/O
C-SPY can simulate terminal input and output using the Terminal I/O
window.

Macro language
C-SPY includes a powerful internal macro language, to allow you to
define complex sets of actions to be performed; for example, calculating
the stack depth or when breakpoints are encountered. The macro
language includes conditional and loop constructs, and you can use
variables and expressions.

Tutorial 3, page 53, shows how C-SPY macros can be used.

Profiling
The profiling tool provides you with timing information on your
application. This is useful for identifying the most time-consuming parts
of the code and optimizing your program.

Code coverage
The code coverage tool can be used for identifying unused code in an
application, as well as providing you with code coverage status at
different stages during execution.

UAVR-1

179

C-SPY EXPRESSIONS
In addition to C symbols defined in your program, C-SPY® allows you to
define C-SPY variables and macros, and to use them when evaluating
expressions. Expressions that are built with these components are called
C-SPY expressions and can be used in the Watch and QuickWatch
windows and in C-SPY macros.

This chapter describes the syntax of C-SPY expressions.

EXPRESSION SYNTAX C-SPY expressions can include any type of C expression, except function
calls. The following types of symbols can be used in expressions:

◆ C symbols.

◆ Assembler symbols; i.e. CPU register names and assembler labels.

◆ C-SPY variables and C-SPY macros; see the chapter C-SPY macros.

C SYMBOLS
C symbols can be referenced by their names or using an extended C-SPY
format which allows you to reference symbols outside the current scope.

Note: When using the module name to reference a C symbol, the module
name must be a valid C identifier or it must be encapsulated in
backquotes C�(ASCII character 0x60), for example:

nice_module_name\func\i
Cvery strange () module + - nameC\func\i

In case of a name conflict, C-SPY variables have a higher precedence than
C variables. Extended C-SPY format can be used for solving such
ambiguities.

Expression What it means

i C variable i in the current scope or C-SPY variable
i.

\i C variable i in the current function.

\func\i C variable i in the function func.

mod\func\i C variable i in the function func in the module mod.

EXPRESSION SYNTAX C-SPY EXPRESSIONS

UAVR-1

180

Examples of valid C-SPY expressions are:

i = my_var * my_mac() + #asm_label
another_mac(2, my_var)
mac_var = another_module\another_func\my_var

ASSEMBLER SYMBOLS
Assembler symbols can be used in C expressions if they are preceded by #.
These symbols can be assembler labels or CPU register names.

In case of a name conflict between a hardware register and an assembler
label, hardware registers have a higher precedence. To refer to an
assembler label in such a case, you must encapsulate the label in
backquotes C�(ASCII character 0x60). For example:

The following processor-specific symbols are available:

Example What it does

#pc++ Increments the value of the program counter.

myptr = #main Sets myptr to point to label main.

Example What it does

#pc Refers to program counter.

#CpcC Refers to assembler label pc.

Symbol Description Size

PC Program Counter Depends on the
processor variant.

R0-R31 General purpose
registers

8 bits

X R27, R26 16 bits

Y R29, R28 16 bits

Z R31, R30 16 bits

SREG Status Register 8 bits

SP Stack pointer 16 bits

CYCLES Cycle Counter 32 bits

C-SPY EXPRESSIONS EXPRESSION SYNTAX

UAVR-1

181

FORMAT SPECIFIERS
The following format specifiers can be used in the Display Format
drop-down list in the Symbol Properties dialog box (see Inspecting
expression properties, page 215) and in a macro message statement:

The precision for the default float format is seven or 15 decimals for four
and eight byte floats.

Strings with format %s are printed in quotation marks. If no NULL
character (’\0’) is found within 1000 characters, the printout will stop
without a final quotation mark.

Macro message specifier Description

%b Binary format

%c Char format

%o Unsigned octal format

%s String format

%x Unsigned hexadecimal format

%X Unsigned hexadecimal format (capital
letters)

EXPRESSION SYNTAX C-SPY EXPRESSIONS

UAVR-1

182

UAVR-1

183

C-SPY MACROS
The IAR C-SPY® Debugger provides comprehensive macro capabilities
allowing you to automate the debugging process and to simulate
peripheral devices. Macros can be used in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks.
The C-SPY macros work in a way similar to the C or Embedded C++
functions, and for your convenience they follow the C or Embedded
C++ language naming conventions and statement syntax as closely as
possible.

This chapter first describes how to use the C-SPY macros. It then
describes the C-SPY setup macros. Finally, there is complete reference
information for each built-in system macro provided with C-SPY.

Tutorial 3 in the chapter Compiler tutorials gives an example of how the
C-SPY macros can be used.

USING C-SPY
MACROS

C-SPY allows you to define both macro variables (global or local) and
macro functions. In addition, several predefined system macro variables
and macro functions are provided; they return information about the
system status, and perform complex tasks such as opening and closing
files, and file I/O operations. System macro names start with double
underscore and are reserved names.

Note: To view the available macros, select Load macro... from the
Options menu. The available macros will be displayed in the Macro
Files dialog box, under Registered Macros. You can select whether to
view all macros, the predefined system macros, or the user-defined
macros. For more information, see Load Macro…, page 239.

Defining macros
To define a macro variable or macro function, you should first create a
text file containing its definition. You can use any suitable text editor,
such as the IAR Embedded Workbench™ Editor. Then you should register
the macro file. There are several ways to do this:

◆ You can register a macro by choosing Load Macro… from the
Options menu. For more information, see Load Macro…, page 239.

USING C-SPY MACROS C-SPY MACROS

UAVR-1

184

◆ In the IAR Embedded Workbench, you can specify which setup file
to use with a project. See Setting C-SPY options, page 135, for more
information.

◆ When starting C-SPY with the Windows Run... command, you can
use the -f command line option to specify the setup file. See Setting
C-SPY options from the command line, page 243, for more
information.

◆ Macros can also be registered using the system macro
__registerMacroFile. This macro allows you to register macro
files from other macros. This means that you can dynamically select
which macro files to register, depending on the run-time conditions.
For more information, see __registerMacroFile, page 201.

Executing C-SPY macros
You can assign values to a macro variable, or execute a macro function,
using the Quick Watch… command on the Control menu, or from
within another C-SPY macro including setup macros. For details of the
setup macros, see C-SPY setup macros, page 188.

A macro can also be executed if it is associated with a breakpoint that is
activated.

MACRO VARIABLES
A macro variable is a variable defined and allocated outside the user
program space. It can then be used in a C-SPY expression.

The command to define one or more macro variables has the following
form:

var nameList;

where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and
retains its value and type through the whole debugging session. A macro
variable defined within a macro body is created when its definition is
executed and deallocated on return from the macro.

By default a macro variable is initialized to signed integer 0. When a
C-SPY variable is assigned a value in an expression its type is also
converted to the type of the operand.

C-SPY MACROS USING C-SPY MACROS

UAVR-1

185

For example:

A complex type (struct or union) cannot be assigned to a macro variable
but a macro variable can contain an address to such an object.

MACRO FUNCTIONS
C-SPY macro functions consist of a series of C-SPY variable definitions
and macro statements which are executed when the macro is called. An
unlimited number of parameters can be passed to a macro, and macros
can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro formal names separated by
commas, and macroBody is any series of C-SPY variable definitions and
C-SPY statements.

Type checking is not performed on the values passed to the macro
parameters. When an array, struct, or union is passed, only its address
is passed.

MACRO STATEMENTS
The following C-SPY macro statements are accepted:

Expressions
expression;

Conditional statements
if (expression)
 statement

if (expression)
 statement

Expression What it means

myvar = 3.5 myvar is now type float, value 3.5.

myvar =
(int*)i

myvar is now type pointer to int, and the value is the
same as i.

USING C-SPY MACROS C-SPY MACROS

UAVR-1

186

else
 statement

Loop statements
for (init_expression; cond_expression; after_expression)
 statement

while (expression)
 statement

do
 statement
while (expression);

Return statements
return;

return (expression);

If the return value is not explicitly set by default, signed int 0 is
returned.

Blocks
{
 statement1
 statement2
 .
 .
 .
 statementN
}

In the above example, expression means a C-SPY expression; statements
are expected to behave in the same way as corresponding C statements
would do.

Printing messages
The message statement allows you to print messages while executing a
macro. Its definition is as follows:

message argList;

where argList is a list of C-SPY expressions or strings separated by
commas. The value of expression arguments or strings are printed to the
Report window.

C-SPY MACROS USING C-SPY MACROS

UAVR-1

187

It is possible to override the default display format of an element in
argList by suffixing it with a : followed by a format specifier, for
example:

message int1:%X, int2;

This will print int1 in hexadecimal format and int2 in default format
(decimal for an integer type).

Resume statement
The resume statement allows you to resume execution of a program after
a breakpoint is encountered. For example, specifying:

resume;

in a breakpoint macro will resume execution after the breakpoint.

Error handling in macros
Two types of errors can occur while a macro is being executed:

◆ Stop errors, which stop execution.

◆ Minor errors, which cause the macro to return an error number.

Stop errors are caused by mismatched macro parameter types, missing
parameters, illegal addresses when setting a breakpoint or map, or illegal
interrupt vectors when setting up an interrupt. They are handled by the
C-SPY error handler, and execution stops with an appropriate error
message.

Minor errors are caused by actions such as failing to open a file, or
cancelling a non-existing interrupt. You can test for minor errors by
checking the value returned by the system macro; zero indicates
successful execution, any other value is a C-SPY error number.

C-SPY SETUP MACROS C-SPY MACROS

UAVR-1

188

C-SPY SETUP
MACROS

The setup macros are reserved macro names that will be called by C-SPY
at specific stages during execution. To use them you should create and
register a macro with the name specified in the following table:

The following sections provide reference information for each of the
C-SPY system macros.

Macro Description

execUserExit() Called each time the program is about to exit.
Implement this macro to save status data, etc.

execUserInit() Called before communication with the target
system is established.
If you have not already chosen the processor
option using the IAR Embedded Workbench or
the C-SPY command line option, you can use this
macro. It can also be used for performing other
initialization, for example, port initialization for
the emulator and ROM-monitor variants. Notice
that since there is still no code loaded, you cannot,
for example, set a breakpoint from this macro.

execUserPreload() Called after communication with the target
system is established but before downloading the
target program.
Implement this macro to initialize memory
locations and/or registers which are vital for
loading data properly.

execUserReset() Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserSetup() Called once after the target program is
downloaded.
Implement this macro to set up the memory map,
breakpoints, interrupts, register macro files, etc.

execUserTrace() Called each time C-SPY issues a trace printout
(when the Trace command is active).

C-SPY MACROS __autoStep

UAVR-1

189

__autoStep Steps continuously, with selectable time delay, until a breakpoint or the
program exit is detected.

SYNTAX
__autoStep(delay)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__autoStep(12);

For additional information, see Autostep..., page 223.

__calls Toggles calls mode on or off.

SYNTAX
__calls(what)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__calls("ON");

For additional information, see Calls window, page 214.

delay Delay between steps in tenth of a second (integer)

what Predefined string, one of:

"ON" turns calls mode on

"OFF" turns calls mode off

__cancelAllInterrupts C-SPY MACROS

UAVR-1

190

__cancelAllInterrupts Cancels all ordered interrupts.

SYNTAX
__cancelAllInterrupts()

RETURN VALUE
int 0

EXAMPLE
__cancelAllInterrupts();

For additional information, see Interrupt…, page 231.

__cancelInterrupt Cancels an interrupt.

SYNTAX
__cancelInterrupt(interrupt_id)

PARAMETERS

RETURN VALUE

EXAMPLE
__cancelInterrupt(interrupt_id)

For additional information, see Interrupt…, page 231.

interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)

Result Value

Successful int 0

Unsuccessful Non-zero error number

C-SPY MACROS __clearAllBreaks

UAVR-1

191

__clearAllBreaks Clears all user-defined breakpoints.

SYNTAX
__clearAllBreaks()

RETURN VALUE
int 0

EXAMPLE
__clearAllBreaks();

For additional information, see Edit Breakpoints…, page 225.

__clearAllMaps Clears all user-defined memory mappings.

SYNTAX
__clearAllMaps()

RETURN VALUE
int 0

EXAMPLE
__clearAllMaps();

For additional information, see Memory Map…, page 228.

__clearBreak Clears a given breakpoint.

SYNTAX
__clearBreak(address, segment, access)

PARAMETERS

address The breakpoint location (string)

segment The memory segment name (string), one of: CODE,
DATA, EEPROM, and I/O-SPACE

__clearMap C-SPY MACROS

UAVR-1

192

RETURN VALUE

EXAMPLE
The following example shows how a line in the source file is specified as
address:

__clearBreak(".demo\\12", "CODE", "F");

The following example shows how address is specified in hexadecimal
notation:

__clearBreak("0x1300", "CODE", "F");

For additional information, see Edit Breakpoints…, page 225.

__clearMap Clears a given memory mapping.

SYNTAX
__clearMap(address, segment)

PARAMETERS

access The memory access type (string); concatenation of
any of “R”, “W”, “F”, “I”, or “O”:

Result Value

Successful int 0

Unsuccessful Non-zero error number

Type Description

R Read

W Write

F Fetch

I Read immediate

0 Write immediate

address The address (integer)

C-SPY MACROS __closeFile

UAVR-1

193

RETURN VALUE

EXAMPLE
__clearMap(0x0040, "DATA");

For additional information, see Memory Map…, page 228.

__closeFile Closes a file previously opened by __openFile.

SYNTAX
__closeFile(filehandle)

PARAMETERS

RETURN VALUE
int 0.

EXAMPLE
__closeFile(filehandle);

__disableInterrupts Disables the generation of interrupts.

SYNTAX
__disableInterrupts()

segment The memory segment name (string), one of:
CODE, DATA, EEPROM, and I/O-SPACE

Result Value

Successful int 0

Unsuccessful Non-zero error number

filehandle The macro variable used as filehandle by the
__openFile macro

__enableInterrupts C-SPY MACROS

UAVR-1

194

RETURN VALUE

EXAMPLE
__disableInterrupts();

For additional information, see Interrupt…, page 231.

__enableInterrupts Enables the generation of interrupts.

SYNTAX
__enableInterrupts()

RETURN VALUE

EXAMPLE
__enableInterrupts();

For additional information, see Interrupt…, page 231.

__getLastMacroError Returns the last macro error code (excluding stop errors).

SYNTAX
__getLastMacroError()

RETURN VALUE
Value of the last system macro error code.

EXAMPLE
__getLastMacroError();

Result Value

Successful int 0

Unsuccessful Non-zero error number

Result Value

Successful int 0

Unsuccessful Non-zero error number

C-SPY MACROS __go

UAVR-1

195

__go Starts execution.

SYNTAX
__go()

RETURN VALUE
int 0

EXAMPLE
__go();

For additional information, see Go, page 223.

__multiStep Executes a sequence of steps.

SYNTAX
__multiStep(kindOf, noOfSteps)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__multiStep("INTO", 12);

For additional information, see Multi Step…, page 223.

kindOf Predefined string, one of:

"OVER" does not enter C or Embedded C++
functions or assembler subroutines

"INTO" enters C or Embedded C++ functions or
assembler subroutines

noOfSteps Number of steps to execute (integer)

__openFile C-SPY MACROS

UAVR-1

196

__openFile Opens a file for I/O operations.

SYNTAX
__openFile(filehandle, filename, access)

PARAMETERS

RETURN VALUE

EXAMPLE
var filehandle;
__openFile(filehandle, "C:\\TESTDIR\\TEST.TST", "r");

__orderInterrupt Generates an interrupt.

SYNTAX
__orderInterrupt(address, activation_time,
repeat_interval, jitter, latency, probability)

PARAMETERS

filehandle The macro variable to contain the file handle

filename The filename as a string

access The access type (string); one of the following:
“r” ASCII read
“rb” Binary read
“w” ASCII write
“wb” Binary write

Result Value

Successful int 0

Unsuccessful Non-zero error number

address The interrupt vector (string)

activation_time The activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

C-SPY MACROS __printLastMacroError

UAVR-1

197

RETURN VALUE
The macro returns an interrupt identifier (unsigned long).

EXAMPLE
The following example generates a reset after 5000 cycles:

__orderInterrupt ("0", 5000, 0, 50, 0, 75);

For additional information, see Interrupt…, page 231.

__printLastMacroError Prints the last system macro error message (excluding stop errors) to the
Report window.

SYNTAX
__printLastMacroError()

RETURN VALUE
int 0

EXAMPLE
__printLastMacroError();

__processorOption Sets a given processor option.

SYNTAX
__processorOption(procOption)

jitter The timing variation range (integer between 0
and 100)

latency The latency (integer)

probability The probability in percent (integer between 0
and 100)

__readFile C-SPY MACROS

UAVR-1

198

PARAMETERS

RETURN VALUE
int 0

DESCRIPTION
This macro can only be called from the execUserInit() macro.

For additional information, see Processor option (-v), page 245.

EXAMPLE
__processorOption("-v2");

__readFile Reads from a file.

SYNTAX
__readFile(filehandle)

PARAMETERS

RETURN VALUE
The return value depends on the access type of the file.

In ASCII mode a series of hex digits, delimited by space, are read and
converted to an unsigned long, which is returned by the macro.

In binary mode one byte is read and returned.

DESCRIPTION
When the end of the file is reached, the file is rewound and a message is
printed in the Report window. For additional information, see Report
window, page 217.

procOption The processor option given in the same way it
would have been given on the command line
(string)

filehandle The macro variable used as the filehandle by the
__openFile macro

C-SPY MACROS __readFileGuarded

UAVR-1

199

EXAMPLE
Assuming a file was opened with r access type containing the following
data:

1234 56 78

Calls to __readFile() would return the numeric values 0x1234, 0x56,
and 0x78.

__readFileGuarded Reads from a file.

SYNTAX
__readFileGuarded(filehandle, errorstatus)

PARAMETERS

RETURN VALUE

DESCRIPTION
This macro works in exactly the same way as __readFile, except that
when the end of the file is encountered -1L is returned, and the value of
errorstatus is set to the corresponding error number.

EXAMPLE
__readFileGuarded(filehandle, errorstatus)

filehandle The macro variable used as the file handle by the
__openFile macro

errorstatus A C-SPY variable to contain the error status

Result Value

Successful The value read

Unsuccessful -1L

__readMemoryByte C-SPY MACROS

UAVR-1

200

__readMemoryByte Reads one byte from a given memory location.

SYNTAX
__readMemoryByte(address, segment)

PARAMETERS

RETURN VALUE
The macro returns the value from memory.

EXAMPLE
__readMemoryByte(0x0108, "DATA");

__realtime Toggles real-time mode on or off. Notice that real-time mode only applies
to the emulator and ROM-monitor versions of C-SPY.

SYNTAX
__realtime(what)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__realtime("OFF");

For additional information, see Realtime, page 234.

address The memory address (integer)

segment The memory segment name (string), one of:
CODE, DATA, EEPROM, and I/O-SPACE

what Predefined string, one of:

"ON" turns real-time mode on

"OFF" turns real-time mode off

C-SPY MACROS __registerMacroFile

UAVR-1

201

__registerMacroFile Registers macros from a specified macro file.

SYNTAX
__registerMacroFile(filename)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__registerMacroFile("c://testdir//macro.mac");

For additional information, see Load Macro…, page 239.

__reset Resets the target processor.

SYNTAX
__reset()

RETURN VALUE
int 0

EXAMPLE
__reset();

For additional information, see Reset, page 224.

__rewindFile Rewinds the file previously opened by __openFile.

SYNTAX
__rewindFile(filehandle)

filename A file containing the macros to be registered
(string)

__setBreak C-SPY MACROS

UAVR-1

202

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__rewindFile(filehandle);

__setBreak Sets a given breakpoint.

SYNTAX
__setBreak(address, segment, length, count, condition,
cond_type, access, macro)

PARAMETERS

filehandle The macro variable used as filehandle by the
__openFile macro

address The address in memory or any expression that
evaluates to a valid address, for example a
function or variable name. A . (period) must
precede a code breakpoint.

segment The memory segment name (string), one of:
CODE, DATA, EEPROM, and I/O-SPACE

length The number of bytes to be covered by the
breakpoint (integer)

count The number of times that a breakpoint condition
must be fulfilled before a break occurs (integer)

condition The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE”
(string)

C-SPY MACROS __setBreak

UAVR-1

203

RETURN VALUE

EXAMPLES
The following example shows a code breakpoint:

__setBreak(".demo.c\\12", "CODE", 1, 3, "d>16", "TRUE",
"RF", "afterMacro ()");

The following example shows a data breakpoint:

__setBreak("0x32", "I/O-SPACE", 1, 1, "", "TRUE", "I",
"_readTCNT()");

For additional information, see Edit Breakpoints…, page 225.

access The memory access type (string); concatenation
of any of “R”, “W”, “F”, “I”, or “O”.

macro The expression to be executed after the
breakpoint is accepted (string)

Result Value

Successful 0

Unsuccessful Non-zero error number

Type Description

R Read

W Write

F Fetch

I Read immediate

O Write immediate

__setMap C-SPY MACROS

UAVR-1

204

__setMap Sets a given memory mapping.

SYNTAX
__setMap(address, segment, length, type)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__setMap(0x0500, "DATA", 1000, "G");

For additional information, see Memory Map…, page 228.

__step Executes the next statement or instruction.

SYNTAX
__step(kindOf)

PARAMETERS

address The start location (integer)

segment The memory segment name (string), one of: CODE,
DATA, EEPROM, and I/O-SPACE

length The number of bytes to be covered by mapping
(integer)

type The memory mapping type; “G” (guarded) or “P”
(protected) (string)

kindOf Predefined string, one of:

"OVER" does not enter C or Embedded C++
functions or assembler subroutines

 "INTO" enters C or Embedded C++ functions
or assembler subroutines

C-SPY MACROS C-SPY SETUP MACROS

UAVR-1

205

RETURN VALUE
int 0

EXAMPLE
__step("OVER");

For additional information, see Step, page 223.

__writeFile Writes to a file.

SYNTAX
__writeFile(filehandle, value)

PARAMETERS

RETURN VALUE
int 0

EXAMPLE
__writeFile(filehandle, 123);

__writeMemoryByte Writes one byte to a given memory location.

SYNTAX
__writeMemoryByte(value, address, segment)

PARAMETERS

filehandle The macro variable used as the file handle set by
the __openFile macro

value The value to be written to the file. value is written
using a format depending on with what access type
the file was opened. In ASCII mode the value is
written to the file as a string of hex digits
corresponding to value. In binary mode the lowest
byte of value is written as a binary byte

value The value to be written (integer)

C-SPY SETUP MACROS C-SPY MACROS

UAVR-1

206

RETURN VALUE
int 0

EXAMPLE
__writeMemoryByte(0x2F, 0x1F, "I/O-SPACE");

address The memory address (integer)

segment The memory segment name (string), one of:
CODE, DATA, EEPROM, and I/O-SPACE

UAVR-1

207

C-SPY REFERENCE
This chapter provides complete reference information about the IAR
C-SPY® Debugger.

It first gives information about the components of the C-SPY window,
and each of the different types of window it encloses.

It then gives details of the menus, and the commands on each menu.

THE C-SPY WINDOW The following illustration shows the main C-SPY window:

Menu bar

Toolbar Debug
bar

Source
window

Status bar

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

208

TYPES OF C-SPY WINDOWS
The following windows are available in C-SPY:

◆ Source window

◆ Watch window

◆ Report window

◆ Register window

◆ SFR window

◆ Profiling window

◆ Terminal I/O window

◆ Locals window

◆ Memory window

◆ Calls window

◆ Code Coverage window.

These windows are described in greater detail on the following pages.

MENU BAR
Gives access to the C-SPY menus:

Menu Description

File The File menu provides commands for opening and
closing files, and exiting from C-SPY.

Edit The Edit menu provides commands for use with the
Source window.

View The View menu provides commands to allow you to
select which windows are displayed in the C-SPY
window.

Execute The Execute menu provides commands for executing
and debugging the source program. Most of the
commands are also available as icon buttons in the
debug bar.

Control The Control menu provides commands allowing you to
control the execution of the program.

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

209

The menus are described in greater detail on the following pages.

TOOLBAR AND DEBUG BAR
The toolbar and debug bar provide buttons for the most frequently-used
commands on the menus.

You can move each bar to a different position in the C-SPY window, or
convert it to a floating palette, by dragging it with the mouse.

You can display a description of any button by pointing to it with the
mouse pointer. When a command is not available the corresponding
button will be grayed out and you will not be able to select it.

Toolbar
The following diagram shows the command corresponding to each of the
toolbar buttons:

You can choose whether the toolbar is displayed by using the Toolbar
command on the View menu.

Options The commands on the Options menu allow you to
change the configuration of your C-SPY environment,
register and display macros.

Window The Window menu lets you select or open C-SPY
windows and control the order and arrangement of the
windows.

Help The Help menu provides help about C-SPY.

Menu Description

Open

Cut

Copy

Paste

Memory
window

Watch
window

Cascade

Tile
vertical

Help

Calls
window

Register
window

Tile Horizontal

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

210

Debug bar
The following diagram shows the command corresponding to each
button:

Use the Debug Bar command on the View menu to toggle the debug bar
on and off.

SOURCE WINDOW
The C-SPY Source window shows the source program being debugged, as
either C or assembler source code or disassembled program code. You can
switch between source mode and disassembly mode by choosing Toggle
Source/Disassembly from the View menu, or by clicking the Toggle
Source/Disassembly button in the debug bar.

Clicking the right mouse button in the Source window displays a pop-up
menu which gives you access to several useful commands.

When you start C-SPY, the first executable statement in the main function
will be displayed in the Source window. If the Source window is initially
blank, a main function has not been found and the program actually starts
in a low-level assembler module—assembled without debug
information—so there is no source code corresponding to this.

Source file and function
The Source file and Function boxes show the name of the current
source file and function displayed in the Source window, and allow you
to move to a different module or function by selecting a name from the
corresponding drop-down list.

Toggle
Breakpoint

Reset

Stop

Step

Step Into

Go Out

Autostep

Go

Go to Cursor
Toggle

Source/Disassembly

Find

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

211

The following types of highlighting are used in the Source window:

Current position
The current position indicates the next C statement or assembler
instruction to be executed, and is highlighted in blue.

Cursor
Any statement in the Source window can be selected by clicking on it
with the mouse pointer. The selected statement is indicated by the cursor.

Alternatively, you can move the cursor using the navigation keys.

The Go to Cursor command on the Execute menu will execute the
program from the current position up to the statement containing the
cursor.

Breakpoint
C statements or assembler instructions at which breakpoints have been
set are highlighted in the Source window.

To set a breakpoint choose Toggle Breakpoint... from the Control
menu or click the Toggle Breakpoint button in the toolbar.

Data tip
If you position the mouse pointer over a function, variable, or constant
name in the C source shown in the Source window, the function start
address or the current value of the variable or constant is shown below
the mouse pointer.

Source file

Current position

Cursor
Breakpoint

Data tip

Function

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

212

REGISTER WINDOW
The Register window gives a continuously updated display of the
contents of the processor registers, and allows you to edit them. When a
value changes it becomes highlighted.

To change the contents of a register, edit the corresponding text box. The
register will be updated when you tab to the next register or press Enter.

You can configure the registers displayed in the Register window using
the Register Setup page in the Settings dialog box.

Note: If the contents of a register changes during execution, the change
will be highlighted in this window.

SFR WINDOW
The SFR window allows you to view and edit the contents of the special
function registers.

In order to make this window available, you must specify a device
description file (ddf) with SFR definitions when you start C-SPY. Use the
option Device description file in the IAR Embedded Workbench as
described on page 136, or the command line option -p, page 244, to
specify the device description file.

The contents of the window is controlled by the SFR settings; see
Settings…, page 235, for additional information.

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

213

Use the drop-down list to select which group of SFRs to display:

To edit the contents of an SFR, double-click its current value and type a
new value. Then press Enter. The new contents will be highlighted, both
in the SFR window and in the Memory window. If C-SPY during
execution changes the memory or SFR contents, the change will be
highlighted in this window.

Note: The value 0x-- signifies a write-only register.

MEMORY WINDOW
The Memory window gives a continuously updated display of a specified
block of memory and allows you to edit it.

If C-SPY during execution changes the memory or SFR contents, the
change will be highlighted in this window.

Choose 8, 16, or 32 to display the memory contents in blocks of 8, 16, or
32 bits. The available memory segments are called CODE, DATA,
EEPROM, and I/O-SPACE.

Clicking the right mouse button in the Memory window displays a pop-up
menu which gives you access to several useful commands.

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

214

To edit the contents of memory, double-click the address or value you
want to edit:

The following dialog box then allows you to edit the memory:

CALLS WINDOW
Displays the C call stack. Each entry has the format:

module\function(values)

where values is a list of the parameter values, or void if the function
does not take any parameters.

STATUS BAR
Shows help text, and the position of the cursor in the Source window.

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

215

Use the Status Bar command on the View menu to toggle the status bar
on and off.

WATCH WINDOW
Allows you to monitor the values of C expressions or variables:

Viewing the contents of an expression
To view the contents of an expression such as an array, a structure or a
union, click the plus sign icon to expand the tree structure.

Adding an expression to the Watch window
To add an expression to the Watch window, click in the dotted rectangle,
then hold down and release the mouse button.

Alternatively, click the right mouse button in the Watch window and
choose Add from the pop-up menu. Then type the expression and press
Enter.

You can also drag and drop an expression from the Source window.

Inspecting expression properties
Select an expression in the Watch window and choose Properties... from
the pop-up menu. You can then edit the value of the expression and
change the display format in the Symbol Properties dialog box:

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

216

Removing an expression
Select the expression and press the Delete key, or choose Remove from
the pop-up menu.

When a value changes it becomes highlighted.

LOCALS WINDOW
Automatically displays the local variables and their parameters:

Editing the value of a local variable
To change the value of a local variable, click the right mouse button, and
choose Properties... from the pop-up menu.

You can then change the value or display format in the Symbol
Properties dialog box.

TERMINAL I/O WINDOW
Allows you to enter input to your program, and display output from it.

To use this window, you need to link the program with the option Debug
info with terminal I/O. C-SPY will then direct stdout and stderr to
this window. The window will only be available if your program uses the
terminal I/O functions in the C library.

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

217

If the Terminal I/O window is open, C-SPY will write output to it, and
read input from it.

If the Terminal I/O window is closed, C-SPY will open it automatically
when input is required, but not for output.

REPORT WINDOW
Displays debugger output, such as diagnostic messages and trace
information.

CODE COVERAGE WINDOW
Reports the current code coverage status. The report includes all modules
and functions and the statements that have not yet been executed.

The code coverage information is displayed in a tree structure, showing
the program, module, function, and statement levels. The plus sign and
minus sign icons allow you to expand and collapse the structure.

THE C-SPY WINDOW C-SPY REFERENCE

UAVR-1

218

The percentage displayed at the end of every line shows the amount of
code that has been covered so far. In addition, the following colors are
used for giving you an overview of the current status on all levels:

◆ Red signifies that 0% of the code has been covered.

◆ Yellow signifies that some of the code has been covered.

◆ Green signifies that 100% of the code has been covered.

When a statement has been executed, it is removed from this window.

When the contents becomes dimmed and an asterisk (*) appears in the
title bar, this indicates that C-SPY has continued to execute and that the
Code Coverage window needs to be refreshed because the displayed
information is no longer up to date.

Clicking the right mouse button in the Code Coverage window displays a
pop-up menu that gives you access to several useful commands.

Double-clicking on a statement line in the Code Coverage window
displays that statement as current position in the Source window, which
becomes the active window.

The code coverage information is reset when the processor is reset.

PROFILING WINDOW
Displays profiling information:

Clicking on the column header sorts the complete list depending on
column. Double-clicking on an item in the Function column
automatically displays the function in the Source window.

The information in the colums Flat time and Accumulated time can be
displayed either as digits or as column diagrams. Flat time signifies the
time in a function excluding child functions, while accumulated time
signifies time in a function including its child functions.

C-SPY REFERENCE THE C-SPY WINDOW

UAVR-1

219

Clicking the right mouse button in the Profiling window displays a
pop-up menu which gives you access to several useful commands.

The following diagram shows the commands corresponding to the
Profiling bar buttons:

Profiling On/Off
Switches profiling on and off during execution. Alternatively, use the
Profiling command on the Control menu to toggle profiling on and off.

New Measurement
Starts a new measurement. By clicking on the icon the values displayed
are reset to zero.

Graph On/Off
Displays the relative numbers as graph or numbers.

Save List
Saves list to file.

Current Cycle Count
Displays the current value of the cycle counter.

Profiling

On/Off

Graph

On/Off

Save List

Current cycle
count

New
Measurement

FILE MENU C-SPY REFERENCE

UAVR-1

220

FILE MENU The File menu provides commands for opening and closing files, and
exiting from C-SPY.

OPEN…
Displays a standard Open dialog box to allow you to select a program file
to debug.

If another file is already open it will be closed first.

CLOSE SESSION
Closes the current C-SPY session.

RECENT FILES
Displays a list of the files most recently opened, and allows you to select
one to open it.

EXIT
Exits from C-SPY.

EDIT MENU The Edit menu provides commands for use with the Source window.

UNDO, CUT, COPY, PASTE
Provides the usual Windows editing features for editing text in some of
the windows and dialog boxes.

FIND…
Allows you to search for text in the Source window.

This dialog box allows you to specify the text to search for:

Enter the text you want to search for in the Find What text box.

C-SPY REFERENCE VIEW MENU

UAVR-1

221

Select Match Whole Word Only to find the specified text only if it
occurs as a separate word. Otherwise int will also find print, sprintf
etc.

Select Match Case to find only occurrences that exactly match the case
of the specified text. Otherwise specifying int will also find INT and Int.

Select Up or Down to specify the direction to search.

Choose Find Next to start searching. The source pointer will be moved
to the next occurrence of the specified text.

VIEW MENU The View menu provides commands to allow you to select which
windows are displayed in the C-SPY window.

TOOLBAR
Toggles on or off the display of the toolbar.

DEBUG BAR
Toggles on or off the display of the debug bar.

SOURCE BAR
Toggles on or off the Source window toolbar.

MEMORY BAR
Toggles on or off the Memory window toolbar.

LOCALS BAR
Toggles on or off the Locals window toolbar.

PROFILING BAR
Toggles on or off the Profiling window toolbar.

SFR BAR
Toggles on or off the SFR window toolbar, provided that you have
specified the device description file (ddf) to be used. This file contains
information about the SFRs, such as I/O registers (SFR) definitions,
vector, and control register definitions.

For additional information, see Device description file, page 136.

VIEW MENU C-SPY REFERENCE

UAVR-1

222

STATUS BAR
Toggles on or off the display of the status bar, along the bottom of the
C-SPY window.

GOTO…
Displays the following dialog box to allow you to move the source pointer
to a specified location in the Source window.

To go to a specified source line, prefix the line number with a period (.).
For example:

MOVE TO PC
Moves the source pointer to the current program counter (PC) position in
the Source window.

TOGGLE SOURCE/DISASSEMBLY
Switches between source and disassembly mode debugging.

Location Description

.12 Moves to line 12 in current file.

.tutor.c\12 Moves to line 12 in file tutor.c.

main Moves to function main in current scope.

0x1000 Moves to address 0x1000 (C-level debugging)

1000 Moves to address 1000 (assembly-level debugging)

C-SPY REFERENCE EXECUTE MENU

UAVR-1

223

EXECUTE MENU The Execute menu provides commands for executing and debugging the
source program. Most of the commands are also available as icon buttons
in the debug bar.

STEP
Executes the next statement or instruction, without entering C functions
or assembler subroutines.

STEP INTO
Executes the next statement or instruction, entering C functions or
assembler subroutines.

AUTOSTEP...
Steps continuously, with a selectable time delay, until a breakpoint or
program exit is detected.

MULTI STEP…
Allows you to execute a specified number of Step or Step Into
commands.

Displays the following dialog box to allow you to specify the number of
steps:

Select Over to step over C functions or assembler subroutines, or Into to
step into each C function or assembler subroutine.

Then choose OK to execute the steps.

GO
Executes from the current statement or instruction until a breakpoint or
program exit is reached.

CONTROL MENU C-SPY REFERENCE

UAVR-1

224

GO TO CURSOR
Executes from the current statement or instruction up to a selected
statement or instruction.

GO OUT
Executes from the current statement up to the statement after the call to
the current function.

RESET
Resets the target processor.

STOP
Stops program execution or automatic stepping.

CONTROL MENU The Control menu provides commands to allow you to define
breakpoints and change the memory mapping.

TOGGLE BREAKPOINT
Toggles on or off a breakpoint at the statement or instruction containing
the cursor in the Source window.

This command is also available as an icon button in the debug bar.

C-SPY REFERENCE CONTROL MENU

UAVR-1

225

EDIT BREAKPOINTS…
Displays the following dialog box which shows the currently defined
breakpoints, and allows you to edit them or define new breakpoints:

This dialog box lists the breakpoints you have set with the Toggle
Breakpoint command, and allows you to define, modify, or remove
breakpoints with break conditions.

To define a new breakpoint, enter the characteristics of the breakpoint
you want to define and choose Add.

To modify an existing breakpoint, select it in the Breakpoints list and
choose one of the following buttons:

Choose this To do this

Clear Remove the selected breakpoint.

Clear All Removes all the breakpoints in the list.

Modify Modifies the breakpoint to the settings you select.

Disable/Enable Toggles the breakpoint on or off. Enabled
breakpoints are prefixed with a + in the
Breakpoints list.

CONTROL MENU C-SPY REFERENCE

UAVR-1

226

For each breakpoint you can define the following characteristics:

Location
The address in memory or any expression that evaluates to a valid
address, for example a function or variable name.

When setting a code breakpoint, you can specify a location in the C source
program with the formats .source\line or .line.

Notice that the line must start with a . (period) which indicates the code
breakpoint. For example, .common.c\l2 sets a breakpoint at the first
statement on line 12 in the source file common.c.

For an example of how to use a conditional code breakpoint, see Defining
complex breakpoints, page 80.

When setting a data breakpoint, enter the name of a variable or any
expression that evaluates to a valid memory location. For example,
my_var refers to the location of the variable my_var, and arr[3] refers to
the third element of the array arr.

For an example of how to use data breakpoints, see Initializing the system
in Tutorial 3, page 58.

Note: You cannot set a breakpoint on a variable that does not have a
constant address in memory.

Segment
The memory segment in which the location or address belongs. The valid
segment names are CODE, DATA, EEPROM, and I/O-SPACE.

Length
The number of bytes to be guarded by the breakpoint.

Count
The number of times that the breakpoint condition must be fulfilled
before a break takes place. Click Reset to reset this to 1.

Condition
A valid expression conforming to C-SPY expression syntax; see the
chapter C-SPY expressions.

Condition type Description

Condition True The breakpoint is triggered if the value of the
expression is true.

C-SPY REFERENCE CONTROL MENU

UAVR-1

227

Note: The condition is evaluated only when the breakpoint is
encountered.

For an example of a breakpoint with a condition, see Defining complex
breakpoints in Tutorial 6, page 80.

Type
Specifies the type of memory access guarded by the breakpoint:

The Read, Write, and Fetch breakpoint types never break execution
within a single assembler instruction. Read and Write breakpoints are
recorded and reported after the instruction is completed. If a Fetch
breakpoint is detected on the first byte of an instruction, it will be
reported before the instruction is executed; otherwise the breakpoint is
reported after the instruction is completed.

The Read Immediate and Write Immediate breakpoint types are only
applicable to simulators and will cause a break as soon as encountered,
even in the middle of executing an instruction. Execution will
automatically continue, and the only action is to execute the associated
macro. They are provided to allow you to simulate the behavior of a port.
For example, you can set a Read Immediate breakpoint at a port address,
and assign a macro to the breakpoint that reads a value from a file and
writes it to the port location.

Macro
An expression to be executed once the breakpoint is activated.

Condition Changed The breakpoint is triggered if the value of the
condition expression has changed.

Type Description

Read Read from location.

Write Write to location.

Fetch Fetch opcode from location.

Read Immediate Read from location, immediate break.

Write Immediate Write to location, immediate break.

Condition type Description

CONTROL MENU C-SPY REFERENCE

UAVR-1

228

QUICK WATCH…
Allows you to watch the value of a variable or expression and to execute
macros.

Displays the following dialog box to allow you to specify the expression to
watch:

Enter the C-SPY variable or expression you want to evaluate in the
Expression box. Alternatively, you can select an expression you have
previously watched from the drop-down list. For detailed information
about C-SPY expressions, see Expression syntax, page 179.

Then choose Recalculate to evaluate the expression, or Add Watch to
evaluate the expression and add it to the Watch window.

Choose Close to close the Quick Watch dialog box.

MEMORY MAP…
C-SPY allows the simulation of non-existing and read-only memory by
the use of memory maps.

A memory map is a specified memory area with an access type attached
to it, either no memory or read-only memory.

C-SPY REFERENCE CONTROL MENU

UAVR-1

229

The Memory Map dialog box allows you to define memory maps:

To define a new memory map, enter the Start Address, Length, and
Segment and choose the Type according to the following table:

To delete an existing memory map, select it in the Memory Map list and
choose Clear.

If a memory access occurs that violates the access type of that memory
map, C-SPY will regard this access as illegal and display it in the Report
window:

Type Description

Guarded Simulates addresses with no memory by flagging all
accesses as illegal.

Protected Simulates ROM memory by flagging all write
accesses to this address as illegal.

CONTROL MENU C-SPY REFERENCE

UAVR-1

230

MEMORY FILL…
Allows you to fill a specified area of memory with a value.

The following dialog box is displayed to allow you to specify the area to
fill:

Enter the Start Address and Length in hexadecimal notation, and select
the segment type from the Segment drop-down list.

Enter the Value to be used for filling each memory location and select the
logical operation. The default is Copy, but you may choose one of the
following operations:

Finally choose OK to proceed with the memory fill.

ASSEMBLE…
Displays the assembler mnemonic for a machine-code instruction, and
allows you to modify it and assemble it into memory.

Operation Description

Copy The Value will be copied to the specified memory
area.

AND An AND operation will be performed between the
Value and the existing contents of memory before
writing the result to memory.

XOR An XOR operation will be performed between the
Value and the existing contents of memory before
writing the result to memory.

OR An OR operation will be performed between the
Value and the existing contents of memory before
writing the result to memory.

C-SPY REFERENCE CONTROL MENU

UAVR-1

231

Assemble… is only available in disassembly mode. If you are debugging
in source mode, choose Toggle Source/Disassembly from the View
menu to change mode.

Then double-click a line in the Source window, or position the cursor in
the line and choose Assemble…. This dialog box shows the address and
assembler instruction at that address:

To modify the instruction, edit the text in the Assembler Input field and
click Assemble.

You can also enter an address in the Address field and then press Tab to
display the assembler instruction at that address.

INTERRUPT…
The interrupt simulation can be used in conjunction with macros and
complex breakpoints to simulate interrupt-driven ports. For example, to
simulate port input, first specify an interrupt that will cause the
appropriate interrupt handler to be called. Then set a breakpoint at the
entry of the interrupt-handler routine, and associate it with a macro that
sets up the input data by reading it from a file or by generating it using an
appropriate algorithm.

Note: C-SPY only polls for interrupts between instructions, regardless of
how many cycles an instruction takes.

The C-SPY interrupt system uses the cycle counter as a clock to
determine when an interrupt should be raised in the simulator. Changing
the cycle counter will affect any interrupts you have set up in the
Interrupt dialog box.

Performing a C-SPY reset will reset the cycle counter, and any interrupt
orders with a fixed activation time will be cleared.

For example, consider the case where the cycle counter is 123456, a
repeatable order raises an interrupt every 4000 cycles, and a single order
is about to raise an interrupt at 123500 cycles.

CONTROL MENU C-SPY REFERENCE

UAVR-1

232

After a system reset the repeatable interrupt order remains and will raise
an interrupt every 4000 cycles, with the first interrupt at 4000 cycles. The
single order is removed.

For an example where interrupts are used, see Tutorial 3, page 53.

The Interrupt... command displays the following dialog box to allow you
to configure C-SPY’s interrupt simulation:

To define a new interrupt enter the characteristics of the interrupt you
want to simulate and choose Set.

To edit an existing interrupt select it in the Interrupts list and choose
Modify to display or edit its characteristics, or Clear to delete it. Notice
that deleting an interrupt does not remove any pending interrupt from
the system.

For each interrupt you can define the following characteristics:

Vector
The interrupt vector table for a specific derivative can be defined in a
device definitions file (ddf) which you specify using the C-SPY option
Use description file in the IAR Embedded Workbench; see page 136 for
additional information.

An interrupt vector can be specified in the entry box or selected from the
drop-down list in the Interrupt dialog box.

C-SPY REFERENCE CONTROL MENU

UAVR-1

233

Use the following syntax to specify a vector:

<vector number>

For example, to generate a reset:

0

Activation Time
The time, in cycles, after which the specified type of interrupt can be
generated.

Repeat Interval
The periodicity of the interrupt in cycles.

Latency
Describes how long, in cycles, the interrupt remains pending until
removed if it has not been processed. Latency is not implemented for the
AVR microcontroller.

Probability
The probability, in percent, that the interrupt will actually appear in a
period.

Time Variance
A timing variation range, as a percentage of the repeat interval, in which
the interrupt may occur for a period. For example, if the repeat interval is
100 and the variance 5%, the interrupt may occur anywhere between
T=95 and T=105, to simulate a variation in the timing.

Simulation On/Off
Enables or disables interrupt simulation. If the interrupt is disabled the
definition remains but no interrupts will be generated.

CONTROL MENU C-SPY REFERENCE

UAVR-1

234

TRACE
Toggles trace mode on or off. When trace mode is on, each step and
function call is listed in the Report window:

Note: The trace information will be reduced if calls mode is off.

CALLS
Toggles calls mode on or off. Toggling calls mode off does not affect the
recognition of the program exit breakpoint. When calls mode is on, the
function calls are listed in the Calls window:

REALTIME
Reserved for the emulator and ROM-monitor versions of C-SPY.

LOG TO FILE
Toggles writing to the log file on or off. When log file mode is on, the
contents of the Report window are logged to a file. Choose Select Log
File… from the Options menu to enable the log file function.

PROFILING
Toggles profiling on or off. For further information regarding Profiling,
see Profiling window, page 218.

C-SPY REFERENCE OPTIONS MENU

UAVR-1

235

OPTIONS MENU The commands on the Options menu allow you to change the
configuration of your C-SPY environment, and register macros.

SETTINGS…
Displays the Settings dialog box to allow you to define the colors and
fonts used in the windows, and to set up registers.

Window Settings
Allows you to specify the colors and fonts used for text in the Source
window, the font used for text in other windows, and several general
settings:

To specify the style used for each element of C syntax in the Source
window, select the item you want to define from the Source window list.
The current setting is shown by the Sample below the list box.

You can choose a text color by clicking Color, and a font by clicking Font.
You can also choose the type style from the Type Style drop-down list.

To specify the font used in other windows, choose a window from the
drop-down list and click Font.

You can also specify the following general settings:

Settings Description

Data tip Shows the current value or function start address
when the mouse pointer is moved over a variable
constant, or function name in the Source window.

OPTIONS MENU C-SPY REFERENCE

UAVR-1

236

Then choose OK to use the new styles you have defined, or Cancel to
revert to the previous styles.

Register Setup
Allows you to specify which registers to be displayed in the Register
window and to define virtual registers.

To specify which registers are displayed in the Register window, select
them in the Displayed Register list and click OK.

Click Select All or Remove All to select or deselect all the registers.

The Virtual registers field allows you to specify any memory locations
to be displayed in the Register window, in addition to the standard
registers.

Restore states Restores breakpoints, memory maps, and interrupts
between sessions.

Syntax highlight Highlights the syntax of C programs in the Source
window.

Tab space Specifies the number of spaces used for expanding
tabs.

Settings Description

C-SPY REFERENCE OPTIONS MENU

UAVR-1

237

To define virtual registers, click New to display the Virtual Register
dialog box:

Enter the Name and Address for the virtual register, and select the Size
in bytes, Base, and Segment from the drop-down lists. Then choose OK
to define the register. It will be displayed in the Register window after the
standard registers you have selected.

For information about the processor-specific symbols, see Assembler
symbols, page 180.

SFR Setup
The special function registers are categorized into groups, and the
Display control tree structure allows you to select the registers or groups
of registers to be displayed in the SFR window (see SFR window, page
212, for additional information).

To view the contents of a group, click on its plus-sign icon or select the
Expand All button to view the contents of all groups. To hide the
contents of a group, click on its minus-sign icon or select the Collapse All
button to hide the contents of all groups.

OPTIONS MENU C-SPY REFERENCE

UAVR-1

238

To select a register or a group of registers, click on its check box. When
you select a group, all registers in that group become selected. If you want
to deselect one or more registers from a selected group, first expand the
group and then uncheck each register that should not be displayed in the
SFR window.

The Select All button selects all registers in all groups, and the Deselect
All button deselects all groups and the registers in them.

Choose OK to set the display of SFRs.

Note: The SFR Setup page is available only if you have specified the
device description file (.ddf) to be used. This file includes necessary
information about the SFRs. For additional information, see Device
description file, page 136.

Key Bindings
Displays the shortcut keys used for each of the menu options, and allows
you to change them:

To define a shortcut key select the command category from the Category
list, and then select the command you want to edit in the Command list.
Any currently defined shortcut keys are shown in the Current shortcut
list.

To add a shortcut key to the command click in the Press new shortcut
key box and type the key combination you want to use. Then click Set
Shortcut to add it to the Current shortcut list. You will not be allowed
to add it if it is already used by another command.

C-SPY REFERENCE OPTIONS MENU

UAVR-1

239

To remove a shortcut key select it in the Current shortcut list and click
Remove, or click Remove All to remove all shortcut keys for a command.

Then choose OK to use the key bindings you have defined, and the menus
will be updated to show the new shortcuts.

You can set up more than one shortcut for a command, but only one will
be displayed in the menu.

LOAD MACRO…
Displays the following dialog box, to allow you to specify a list of files
from which to read macro definitions into C-SPY:

Select the macro definition files you want to use in the file selection list,
and click Add to add them to the Selected Macro Files list or Add All
to add all the listed files.

You can remove files from the Selected Macro Files list using Remove
or Remove All.

OPTIONS MENU C-SPY REFERENCE

UAVR-1

240

Once you have selected the macro definition files you want to use click
Register to register them, replacing any previously defined macros or
variables. The macros are listed in the Report window as they are
registered:

Registered macros are also displayed in the scroll window under
Registered Macros.

Clicking on either Name or File under Registered Macros displays the
column contents sorted by macro names or by file. Clicking once again
sorts the contents in the reverse order. Selecting All displays all macros,
selecting User displays all user macros, and selecting System displays all
system macros.

Double-clicking on a user-defined macro in the Name column
automatically opens the file in Microsoft Notepad, where it is available
for editing.

Click Close to exit the Macro Files window.

SELECT LOG FILE...
Allows you to log input and output from C-SPY to a file. This command
displays a standard Save As dialog box to allow you to select the name
and the location of the log file.

Browse to a suitable folder and type in a filename; the default extension
is log. Then click Save to select the specified file.

Choose Log to File in the Control menu to turn on or off the logging to
the file.

C-SPY REFERENCE WINDOW MENU

UAVR-1

241

WINDOW MENU The first section of the Window menu contains commands to let you
control the order and arrangement of the C-SPY windows.

The central section of the menu lists each of the C-SPY windows. Select
a menu command to open the corresponding window.

The last section of the menu lists the open windows. Selecting a window
makes it the active window.

CASCADE
Rearranges the windows in a cascade on the screen.

TILE HORIZONTAL
Tiles the windows horizontally in the main C-SPY window.

TILE VERTICAL
Tiles the windows vertically in the main C-SPY window.

ARRANGE ICONS
Tidies minimized window icons in the main C-SPY window.

HELP MENU Provides help about C-SPY.

CONTENTS
Displays the Contents page for help about C-SPY.

SEARCH FOR HELP ON…
Allows you to search for help on a keyword.

HOW TO USE HELP
Displays help about using help.

EMBEDDED WORKBENCH GUIDE
Provides access to a hypertext version of this user guide.

ABOUT…
Displays the version number of the IAR C-SPY Debugger user interface
and of the C-SPY driver for the AVR.

HELP MENU C-SPY REFERENCE

UAVR-1

242

UAVR-1

243

C-SPY COMMAND LINE
OPTIONS
This chapter describes the C-SPY® command line options.

Normally you specify the C-SPY options among the other project options
in the IAR Embedded Workbench; see the chapter C-SPY options in Part
3: The IAR Embedded Workbench in this guide for detailed information.

SETTING C-SPY
OPTIONS

Setting C-SPY options from the command line
You can specify C-SPY options when you start the IAR C-SPY Debugger,
cw23.exe, with the Windows Run… command or from the command
line. When you run C-SPY outside the IAR Embedded Workbench, the
following dialog box will appear when you open a project:

The following command line options are available:

Option Description

-d driver Selects C-SPY driver.

--enhanced_core Specifies the enhanced instruction set.

-f file Use setup file.

--no_rampd Use RAMPZ instead of RAMPD

-p file Loads device description file.

-v{option} Specifies processor option.

--64bit_doubles Use 64-bit doubles

SETTING C-SPY OPTIONS C-SPY COMMAND LINE OPTIONS

UAVR-1

244

C-SPY DRIVER (-d)
Use this option to select the appropriate driver for use with C-SPY, for
example a simulator or an emulator. The following table shows the
currently available driver:

Syntax: -d driver

Example
To debug project1.d90 with the simulator driver:

cw23 -d savr project1.d90

ENHANCED CORE (--enhanced_core)
Use this option to use the enhanced instruction set that is available in
some AVR derivatives, for example AT90mega161.

Syntax: --enhanced_core

USE SETUP FILE (-f)
Use this option to register the contents of the specified macro file in the
C-SPY startup sequence. If no extension is specified, the extension mac is
assumed.

Syntax: -f file

Example
To register watchdog.mac at startup when debugging watchdog.d90:

cw23 -f watchdog.mac watchdog.d90

USE RAMPZ INSTEAD OF RAMPD (--no_rampd)
Use this option to specify that the RAMPZ register is used instead of RAMPD
in direct address mode. Using the RAMPZ registers corresponds to the
AVR instructions LDS and STS.

Syntax: --no_rampd

Driver C-SPY version

savr.cdr Simulator

C-SPY COMMAND LINE OPTIONS SETTING C-SPY OPTIONS

UAVR-1

245

USE DEVICE DESCRIPTION FILE (-p)

Syntax: -p file

Use this option to load a device description file which contains various
device specific information such as I/O registers (SFR) definitions,
vector, and control register definitions.

Example
To use the io2313.ddf description file, enter the following command:

cw23 -p io2313.ddf

PROCESSOR OPTION (-v)

Syntax: -v{option}

Specifies the processor type as follows:

64-BIT DOUBLES (--64bit_doubles)
Use this option to specify that the code contains 64-bit doubles instead of
32-bit doubles which is the default.

Syntax: --64bit_doubles

Option Description

-v0 Max 256 byte data, 8 Kbyte code

-v1 Max 64 Kbyte data, 8 Kbyte code

-v2 Max 256 byte data, 128 Kbyte code

-v3 Max 64 Kbyte data, 128 Kbyte code

-v4 Max 16 Mbyte data, 128 Kbyte code

-v5 Max 64 Kbyte data, 8 Mbyte code

-v6 Max 16 Mbyte data, 8 Mbyte code

SETTING C-SPY OPTIONS C-SPY COMMAND LINE OPTIONS

UAVR-1

246

INDEX

UAVR-1

247

A
AAVR options 113, 158
aavr read-me file 20
About... (Help menu)

C-SPY 241
Embedded Workbench 171

accumulated time, in Profiling window 85
activation time, in interrupts 233
Additional options (compiler option) 110
address range check, specifying in XLINK 127
aggregate initializers, placing in flash memory 102
Always generate output (XLINK option) 126
ANSI C mode, specifying in compiler 100
applications

examples 24
hardware-dependent aspects 21
profiling 178

example 85
testing 23

architecture, AVR microcontroller iii
argument variables 160–161
Arrange Icons (Window menu)

C-SPY 241
Embedded Workbench 170

assembler diagnostics 115
assembler directives 75
assembler documentation 19

aavr read-me file 20
assembler features 7
Assembler file (compiler option) 108
assembler instructions iii
assembler list files

conditional information, specifying 119
cross-references, generating 119
format 70

specifying 119
generating 118

header, including 120
in compiler, generating 108
lines per page, specifying 120
tab spacing, specifying 120

Assembler mnemonics (compiler option) 108
assembler options 113

Case sensitive user symbols 114
Code generation 114
Cross-reference 119
Debug 116
Defined symbols 117
factory settings 114
Generate debug information 116
Include header 120
Include paths 117
inherited settings, overriding 114
Lines/page 120
List 118
List format 119
Listing 119
Macro quote chars 115
Make library module 114
Predefined symbols 118
Preprocessor 117
setting in Embedded Workbench 113

example 68
Tab spacing 120
Warnings 115

assembler output, including debug information 116
assembler preprocessor 117
assembler symbols

defining 117
in C-SPY expressions, using 180
predefined, undefining 118

assembler tutorials 67
Assemble... (Control menu) 230
assembling a file, example 69
assumptions, programming experience v

INDEX

INDEX

UAVR-1

248

auto indent (editor option) 164
Autostep (button) 210
Autostep (Execute menu) 223
AVR microcontroller

architecture iii
instruction set iii
memory usage, specifying 102

avr (directory) 15
a90 (file extension) 17

B
Barr, Michael vi
batch files, specifying in Embedded Workbench 162
bin (subdirectory) 15
binary editor 148
Binary Editor window 148
Binary Editor... (Tools menu) 163
blocks, in C-SPY macros 186
bookmarks, showing in editor 164
brackets, matching (in editor) 144
breakpoints 176

adding 225
characteristics 226
conditional 226

example 80
count 226
defining 225

example 46
editing 225
highlight 211
inspecting details, example 65
length 226
location 226
macro 227
memory segment name 226
modifying 225
removing 225

example 47
toggling 224
type 227

Breakpoints (dialog box) 225
Build All (Project menu) 159
build tree, viewing 41
Build (in Messages window) 147
building a project 23

C
C compiler. See compiler
C function information, in C-SPY 177
C Library Reference Guide (Help menu) 171
C list file (compiler option) 108
C source (compiler option) 108
C symbols, using in C-SPY expressions 179
C syntax styles 143

customizing 168
C variables, using in C-SPY expressions 180
c (file extension) 17
Calls window 214

example 83
Calls window (button) 209
Calls (Control menu) 234
Cascade (Window menu)

C-SPY 241
Embedded Workbench 170

Case sensitive user symbols (assembler option) 114
Category 158
cfg (file extension) 18
’char’ is ’signed char’ (compiler option) 101
characters, in assembler macro quotes 115
checksum, generating in XLINK 132
clib read-me file 20
clibrary read-me file 20
Close Session (File menu) 220
Close (File menu) 150

INDEX

UAVR-1

249

cl.bat 16
code coverage 178

example 84
Code Coverage window 217
code generation

assembler 114
compiler

features 6
options 102

Code generation (assembler option) 114
code memory, filling unused 132
Code motion (compiler option) 105
Code (compiler option) 102
code, testing 23
Colors and Fonts settings, in Embedded Workbench 168
command line commands, specifying in
Embedded Workbench 162
command line options
(C-SPY) 243
Common Sources (group) 22, 35
Common-subexpr elimination (compiler option) 105
Compile (button) 140
Compile (Project menu) 158
compiler diagnostics 108

error messages, excluding from output files 107
suppressing 111

compiler documentation 6
iccavr read-me file 20

compiler features 5
compiler list files

assembler mnemonics, including 108
diagnostic information, including 108
example 37
generating 108
source code, including 108

compiler options
Additional options 110
Assembler file 108
Assembler mnemonics 108

C list file 108
C source 108
’char’ is ’signed char’ 101
Code motion 105
command line, specifying 110
Common-subexpr elimination 105
Cross call 106
Defined symbols 109
Diagnostics (in list file) 108
Disable Embedded C++ syntax 100
Disable extensions 101
Enable remarks 110
factory settings 100
Force generation of all global and static variables 103
Function inlining 105
Generate debug information 107
Include paths 109
inherited, overriding 100
Make library module 106
Memory utilization 102
No error messages in output files 107
Number of cross-call passes 106
Number of registers to lock for global variables 103
Object module name 107
Optimzations 104
Place aggregate initializers in flash memory 102
Place string literals and constants in
initialized RAM 102
Preprocessor 109
Preprocessor output to file 110
Register utilization 103
setting in Embedded Workbench 99

example 35
Strict ISO/ANSI 101
Suppress these diagnostics 111
Treat these as errors 111
Treat these as remarks 111
Treat these as warnings 111

INDEX

UAVR-1

250

Treat warnings as errors 111
Use ICCA90 1.x calling convention 103
Utilize inbuilt EEPROM 103
Warnings affect the exit code 112
--no_rampd 110
--segment 110

compiler output
debug information, including 107
error messages, excluding 107
module name 107

compiler preprocessor 109
compiler symbols, defining 109
compiler tutorials 49
compiler, command line version 4
compiling a file or project 158
conditional breakpoints 226

example 80
conditional statements, in C-SPY macros 185
Condition, in Breakpoints dialog box 226
config (subdirectory) 15
configuration, of C-SPY 243
Configure Tools... (Tools menu) 160
constants, placing in initialized RAM 102
const, external segment 102
Contents (Help menu)

C-SPY 241
Embedded Workbench 170

contents, product package 13
Control menu 224
conventions, typographical v
Copy (Edit menu)

C-SPY 220
Embedded Workbench 151

Count
in Breakpoints dialog box 226
in Profiling window 85

cpp (file extension) 17
CRC 70

Cross call (compiler option) 106
cross-reference section, in map files 41
Cross-reference (assembler option) 119
crypto-controller (C-SPY version) 11
csavr read-me file 20
current position, in C-SPY Source window 211

example 42
cursor, in C-SPY Source window 211
Cut (Edit menu)

C-SPY 220
Embedded Workbench 151

cw23.exe 14, 243
C-SPY 9, 175

configuring 243
exiting from 220

example 62
resetting 62
running 14
starting 159

C-SPY expressions 179–181
in C-SPY macros 185
watching 228

C-SPY features 9–10
C-SPY macros 178, 183

blocks 186
conditional statements 185
C-SPY expressions 185
defining 183
error handling 187
execUserExit() 188

example 62
execUserInit() 188
execUserPreload() 188
execUserReset() 188

example 62
execUserSetup

example 58
execUserSetup() 188

INDEX

UAVR-1

251

example 58
executing 184
functions 185
loop statements 186
macro statements 185
printing messages 186
registering 239
resume 187
setup 188
using 183
variables 184
_ _autoStep (system macro) 189, 197
_ _calls (system macro) 189
_ _cancelAllInterrupts (system macro) 190
_ _cancelInterrupt (system macro) 190
_ _clearAllBreaks (system macro) 191
_ _clearAllMaps (system macro) 191
_ _clearBreak (system macro) 191
_ _clearMap (system macro) 192
_ _closeFile (system macro) 193
_ _disableInterrupts (system macro) 193
_ _enableInterrupts (system macro) 194
_ _getLastMacroError (system macro) 194
_ _go (system macro) 195
_ _multiStep (system macro) 195
_ _openFile (system macro) 196
_ _orderInterrupt (system macro) 196

example 59
_ _printLastMacroError (system macro) 197
_ _readFile (system macro) 198
_ _readFileGuarded (system macro) 199
_ _readMemoryByte (system macro) 200
_ _realtime (system macro) 200
_ _registerMacroFile (system macro) 201
_ _reset (system macro) 201
_ _rewindFile (system macro) 201
_ _setBreak (system macro) 202

example 60–61

_ _setMap (system macro) 204
_ _step (system macro) 204
_ _writeFile (system macro) 205
_ _writeMemoryByte (system macro) 205

example 61
C-SPY options 135, 158

command line 243
Device description file 136
Driver 136
setting from the command line 243
setting in Embedded Workbench 135
Setup file 136
-d 244
-f 244
-p 244
-v 245
--enhanced_core 244
--no_rampd 244
--64bit_doubles 245

C-SPY read-me file 20
C-SPY reference information 207
C-SPY system macros. See C-SPY macros
C-SPY versions 11
C-SPY warning 72
C-SPY windows 208

Calls 83, 214
Code Coverage 217
Locals 216
main 207
Memory 213

example 87
Register 212

example 89
Report 217
SFR 212
Source 175, 210

example 42
Terminal I/O 216

INDEX

UAVR-1

252

example 47
Watch 215

D
data segments, initialized 102
data tip, in C-SPY 211
DDE, calling external editor 165
ddf (file extension) 17, 136
debug bar 210
Debug Bar (View menu) 221
Debug info with terminal I/O (XLINK option) 124
Debug info (XLINK option) 123
debug information

in assembler, generating 116
in compiler, generating 107

Debug target 141
Debug (assembler option) 116
Debugger (button) 140
Debugger (Project menu) 159
debugger. See C-SPY
debugging projects 175

in disassembly mode 175
example 86

in source mode 175
example 41

Define symbol (XLINK option) 125
Defined symbols (assembler option) 117
Defined symbols (compiler option) 109
development projects, examples 24
Device description file (C-SPY simulator option) 136
device description files 15, 136
diagnostics

assembler, suppressing 115
compiler

including in list file 108
suppressing 111

XLINK, suppressing 127

Diagnostics (compiler option) 110
Diagnostics (XLINK option) 126
Diagnostics, in list file (compiler option) 108
directives, assembler 75
directories

bin 15
config 15
doc 16
inc 16, 109
lib 16
license 16
src 16
tutor 17

directory structure 15
Disable Embedded C++ syntax (compiler option) 100
Disable extensions (compiler option) 101
disassembly mode debugging 175

example 86
do (macro statement) 186
doc (subdirectory) 16
documentation 13

assembler 7
compiler 6
online 16
product 18
XLIB 9
XLINK 8

Driver (C-SPY option) 136
Dynamic Data Exchange (DDE), calling external
editor 165
d90 (file extension) 17

E
edit bar 138–139
Edit Bar (View menu) 154
Edit Breakpoints... (Control menu) 225

example 80

INDEX

UAVR-1

253

Edit menu
C-SPY 220
Embedded Workbench 151

editing source files 142
editor

binary 148
external, specifying 165
features 4
keyboard commands 144

using macros 163
options 164

editor window 142
opening a new 148
splitting into panes 146, 170

Editor (Settings panel) 164
EEPROM, using inbuilt 103
Embedded C++ 5
Embedded C++ syntax

disabling in compiler 100
Embedded Workbench 137

customizing 163
exiting from 150
running 14
version number, displaying 171

Embedded Workbench features 4
Embedded Workbench Guide (Help menu)

C-SPY 241
Embedded Workbench 171

Embedded Workbench read-me file 20
Embedded Workbench reference information 137
Embedded Workbench tutorial 29
Embedded Workbench windows

Binary Editor 148
Editor 142
main 137
Messages 147
Project 141

emulator (C-SPY version) 11

emulators, third-party 3
Enable remarks (compiler option) 110
Enable Virtual Space (editor option) 165
enabled transformations, in compiler 105
Enhanced core (target option) 96
environment variables

XLINK_DFLTDIR 16
error handling, during macro execution 187
error messages

compiler
excluding from output 107
specifying 111

XLINK
reclassifying 128
reducing 128

ewavr read-me file 20
ew23.exe 14
examples

assembling a file 69
breakpoints, removing 47
changing assembler statements in C-SPY 90
compiling files 36
creating a project 29
creating virtual registers 52
defining conditional breakpoints 80
defining interrupts 53
disassembly mode debugging 86
displaying code coverage information 84
displaying function calls in C-SPY 83
displaying Terminal I/O 47
editing the memory contents in C-SPY 88
executing until a condition is true 82
executing up to a breakpoint 47
executing up to the cursor 82
generating interrupts 59
linking

a compiler program 39
an assembler program 71

INDEX

UAVR-1

254

monitoring memory 87
monitoring registers 89
running a compiler project in C-SPY 41
running an assembler program in C-SPY 72
setting breakpoints 60–61
simulating interrupts 53
specifying target options 30
stepping 42
using C-SPY macros 53, 58
using libraries 73, 76
using the Embedded Workbench 29
using the profiling tool 85
using XLIB 76

execUserExit() (C-SPY setup macro) 188
example 62

execUserInit() (C-SPY setup macro) 188
execUserPreload() (C-SPY setup macro) 188
execUserReset() (C-SPY setup macro) 188

example 62
execUserSetup() (C-SPY macro)

example 58
execUserSetup() (C-SPY setup macro) 188

example 58
Executables (output directory) 97
Execute menu 223
executing a program 223
execution, up to a breakpoint 47
Exit label missing (C-SPY warning) 72
Exit (File menu)

C-SPY 220
Embedded Workbench 150

EXIT (XLIB option) 77
expressions. See C-SPY expressions
extended keywords

_ _eeprom 103
_ _interrupt 58
_ _root 103
_ _version_1 103

extended linker command line file. See linker command
file
extensions. See filename extensions or language
extensions
external const segment 102
External Editor (Settings panel) 165
external editor, specifying 165

F
factory settings

assembler 114
compiler 100
XLINK 122

FAQ 20
features

assembler 7
compiler 5
C-SPY 10
editor 4
Embedded Workbench 4
XLIB 9
XLINK 8

FETCH-MODULES (XLIB option) 76
file extensions 17

a90 17
c 17
cfg 18
cpp 17
ddf 17
d90 17
h 17
inc 17
ini 18
lst 17
mac 17
map 18
prj 17

INDEX

UAVR-1

255

r90 17
s90 17
xcl 17
xlb 17

File menu
C-SPY 220
Embedded Workbench 148

file types
device description 15, 212

specifying in Embedded Workbench 136
specifying on the command line 245

documentation 16
header 16
include 16
library 16
linker command 15
macro 136
map 128
read me 16, 20

files
adding to a project 34
adding to group 155
assembling 158

example 69
compiling 158

example 36
editing 142
linking 159
removing from group 156

Files... (Project menu) 142, 155
Fill unused code memory (XLINK option) 132
Filler byte (XLINK option) 132
filtering messages, in Embedded Workbench 169
Find in Files (in Messages window) 147
Find in Files... (Edit menu) 152
Find (button)

C-SPY 210
Embedded Workbench 139

Find... (Edit menu) 151, 220
first.s90 (assembler tutorial file) 67
flash memory 102
flash memory, placing aggregate initializers 102
Flat Time (profiling) 85
for (macro statement) 186
Force generation of all global and static variables
(compiler option) 103
format specifiers, in C-SPY 181
Format variant (XLINK option) 124
Format (XLINK option) 123
formats

assembler list file 70
specifying 119

compiler list file 37
C-SPY input 10
XLINK output 8

default, overriding 124
specifying 123

frequently asked questions (FAQ) 20
function calls

displaying in C-SPY 214
example 83

See also Calls window
Function inlining (compiler option) 105

G
general options 95, 158
Generate checksum (XLINK option) 132
Generate debug information (assembler option) 116
Generate debug information (compiler option) 107
Generate linker listing (XLINK option) 128
global variables

forcing generation of 103
locking registers 103

Go Out (button) 210
Go Out (Execute menu) 224

INDEX

UAVR-1

256

Go to Cursor (button) 210
Go to Cursor (Execute menu) 224

example 83
Go (button) 210

example 82
Go (Execute menu) 223

example 82
Goto Line... (View menu) 154
Goto (button) 139
Goto... (View menu) 222
groups 22, 142

adding files to 155
removing files from 156

H
h (file extension) 17
header files 16
Help menu

C-SPY 241
Embedded Workbench 170

help, online 19
How to use help (Help menu)

C-SPY 241
Embedded Workbench 171

I
IAR Assembler, IAR XLINK Linker, and
IAR XLIB Librarian Reference Guide 19

accessing from Embedded Workbench 171
IAR C library 16
IAR Compiler Reference Guide 18

accessing from Embedded Workbench 171
IAR C-SPY Debugger. See C-SPY
IAR Embedded Workbench. See Embedded Workbench
IAR on the Web (Help menu) 171

IAR website 20
ICCAVR options 99, 158
iccavr read-me file 20
ICCA90 calling convention, using in compiler 103
IDE 4
if else (macro statement) 186
if (macro statement) 185
Ignore CSTARTUP in library (XLINK option) 130
inc (file extension) 17
inc (subdirectory) 16, 109
include files 16

assembler, specifying path 117
compiler, specifying path 109
XLINK, specifying path 129

Include header (assembler option) 120
Include options (XLINK) 129
Include paths (assembler option) 117
Include paths (compiler option) 109
Include paths (XLINK option) 129
Indent Size (editor option) 164
information, product 18
Inherent (XLINK option) 131
Inherent, no object code (XLINK option) 131
inherited settings

overriding in assembler 114
overriding in compiler 100
overriding in XLINK 122

ini (file extension) 18
initialized data segments 102
inlining of functions, in compiler 105
input formats, C-SPY 10
input modules, specifying status in XLINK 131
Input options (XLINK) 130
installation 13
installed files 15

documentation 16
executables 15
include 16

INDEX

UAVR-1

257

library 16
linker command 15

instruction set, AVR microcontroller iii
Integrated Development Environment (IDE) 3
integrated development environment (IDE) 4
INTEL-EXTENDED, C-SPY input format 10
Internet 20
Interrupt (dialog box) 232
interrupts

defining 232
editing 232
example 53
generating 196

example 59
simulation of 177

Interrupt... (Control menu) 231
iomacro.h (header file) 16
ISO/ANSI C, adhering to 101

K
Kernighan, Brian W. vi
key bindings

C-SPY 238
Embedded Workbench 167

key summary, editor 144
keystrokes, recording in editor 163
Kühnel, Claus vi

L
Labrosse, Jean J. vi
language extensions

disabling in compiler 101
example 49

language facilities, in compiler 5
Language (compiler options) 100

Latency (in Interrupt dialog box) 233
Length (in Breakpoints dialog box) 226
lib (subdirectory) 16
Librarian (Project menu) 159
librarian. See XLIB
library files 16
library modules

creating 73
example 74
loading in XLINK 131
specifying in assembler 114
specifying in compiler 106

library source files 16
Library (XLINK option) 130
license (subdirectory) 16
Lines/page (assembler option) 120
Lines/page (XLINK option) 129
line, moving to in Editor window 154
Link (Project menu) 159
linker command file 15

path, specifying 129
specifying in XLINK 130

linker. See XLINK
list files 97

assembler 70
conditional information, specifying 119
cross-references, generating 119
format, specifying 119
header, including 120
in compiler, generating 108
lines per page, specifying 120
tab spacing, specifying 120

compiler
assembler mnemonics, including 108
diagnostic information, including 108
example 37
generating 108
source code, including 108

INDEX

UAVR-1

258

XLINK
generating 128
including segment map 128
specifying lines per page 129

List format (assembler option) 119
List (assembler options) 118
List (compiler options) 108
List (XLINK options) 128
Listing (assembler option) 119
LIST-MODULES (XLIB option) 77
litterature, recommended vi
Load as LIBRARY (XLINK option) 131
Load as PROGRAM (XLINK option) 131
Load Macro... (Options menu) 239
Locals Bar (View menu) 221
Locals window 216
location (breakpoint) 226
Log to File (Control menu) 234
loop statements, in C-SPY macros 186
loop-invariant expressions 105
lst (file extension) 17

M
mac (file extension) 17
machine-code programs. See assembler tutorials
macro files, specifying 136
macro message specifiers 181
Macro quote chars (assembler option) 115
macro statements 185
macros 178

See also C-SPY macros
using in editor 163
using in Embedded Workbench 163

Macro, in Breakpoints dialog box 227
main.s90 (assembler tutorial file) 74
Make library module (assembler option) 114
Make library module (compiler option) 106

Make (button) 140
Make (Project menu) 23, 159
Mann, Bernhard vi
map files 128

example 40
viewing 41

map (file extension) 18
Match Brackets (Edit menu) 144, 154
Match Case (in Find in Files) 153
Match Case (in Find)

C-SPY 221
Embedded Workbench 151

Match Whole Word Only (in Find)
C-SPY 221
Embedded Workbench 151

Match Whole Word (in Find in Files) 153
memory

editing 177, 214
filling unused 132
monitoring 213

example 87
viewing 177

Memory Bar (View menu) 221
Memory Fill... (Control menu) 230
Memory Map... (Control menu) 228
Memory model (target option) 96
memory types

EEPROM, inbuilt 103
flash 102
RAM 102

Memory utilization (compiler option) 102
Memory window 213

example 87
pop-up menu 213

Memory window (button) 209
menu bar

C-SPY 208
Embedded Workbench 138

INDEX

UAVR-1

259

Message Window (Window menu) 170
message (C-SPY macro statement) 186
messages

filtering in Embedded Workbench 169
printing during macro execution 186

Messages window 147
migrate read-me file 20
module map, in map files 41
module name, specifying in compiler 107
Module status (XLINK option) 131
module types

library
loading in XLINK 131
specifying in assembler 114
specifying in compiler 106

program, loading in XLINK 131
MODULE (assembler directive) 75
modules

including local symbols in input 124
maintaining 73
specifying status in XLINK 131

Module-local symbols (XLINK option) 124
Motorola, C-SPY input format 10
Move to Current PC (View menu) 222
Multi Step... (Execute menu) 223

example 43

N
New Group... (Project menu) 156
New Project (dialog box) 29
New Window (Window menu) 170
New... (File menu) 148
No error messages in output files (compiler option) 107
No global type checking (XLINK option) 126
Number of cross-call passes (compiler option) 106
Number of registers to lock for global variables
(compiler option) 103

O
object files, specifying output directory 97
Object module name (compiler option) 107
online documentation

guides 16
help 19

Open... (File menu)
C-SPY 220
Embedded Workbench 150

optimization levels 104
optimization models 104
optimization techniques

code motion 105
common-subexpression elimination 105
cross call 106
function inlining 105

Optimizations (compiler option) 104
options

AAVR 113, 158
assembler 113, 158
compiler 99, 158
C-SPY 135, 158

command line 243
editor 164
file level 23
general 95, 158
ICCAVR 99, 158
output directories 97
target 30
target level 22
XLINK 121, 158

Options menu
C-SPY 235
Embedded Workbench 163

Options (dialog box) 157
Options... (Project menu) 157
Oram, Andy vi

INDEX

UAVR-1

260

output
assembler

generating library modules 114
including debug information 116

compiler
excluding error messages 107
preprocessor, generating 110

XLINK
generating 126
specifying filename 123

Output Directories (general option) 97
Output file (XLINK option) 123
Output format (XLINK option) 124
output formats

debug (ubrof) 123
XLINK 8

overriding default 124
specifying 123

Output options (XLINK) 123
Output (compiler options) 106
overview, product 3

P
package contents 13
Paste (Edit menu)

C-SPY 220
Embedded Workbench 151

paths
assembler include files 117
compiler include files 109
relative, in Embedded Workbench 156
XLINK include files 129

peripherals, using with compiler 49
Pin button 141, 147
Place aggregate initializers in flash memory
(compiler option) 102

Place string literals and constants in initialized RAM
(compiler option) 102
Play Macro (Tools menu) 163
Predefined symbols (assembler option) 118
Preprocessor output to file (compiler option) 110
Preprocessor (assembler option) 117
preprocessor (compiler options) 109
prerequisites, programming experience v
Print Setup... (File menu) 150
Print... (File menu) 150
prj (file extension) 17
Probability, in Interrupt dialog box 233
Processing options (XLINK) 132
Processor configuration (target option) 96

example 31, 67
product overview 3

documentation 18
package 13

profiling 178
example 85

profiling bar 219
Profiling Bar (View menu) 221
Profiling window 218

pop-up menu 219
Profiling (Control menu) 234
program counter (PC) 222
program execution, in C-SPY 176
program modules, loading in XLINK 131
programming experience v
project bar 138–140
Project Bar (View menu) 141, 154
Project menu 155
project model 21
Project window 141

example 30
groups 142
new 149
source files 142

INDEX

UAVR-1

261

targets 141
Project (menu) 23
projects

adding files to 155
example 34

assembling 158
example 68

building 23, 159
compiling 158

example 36
creating 29

example 29, 75
debugging 175
developing 21
linking 159
mixed C and assembly, example 90
moving files 142
organization 21
removing items 142
testing 23
updating 159

PUBLIC (assembler directive) 75

Q
Quick Watch... (Control menu) 228
QUIT (XLIB option) 77

R
RAM, initialized 102
Range checks (XLINK option) 127
reading, recommended vi
read-me files 16, 20
Real Time (Control menu) 234
Recent files (File menu) 220
Record Macro (Tools menu) 163

Redo (Edit menu) 151
reference guides 18
reference information

C-SPY 207
Embedded Workbench 137

Register Setup settings 236
Register utilization (compiler option) 103
Register window 212, 236

example 89
Register window (button) 209
registers

defining virtual 236
displaying 212, 236
editing 177
locking for global register variables 103
viewing 177

relative paths 156
Release target 141
remarks, compiler diagnostics 111
repeat interval 233
Replace (button) 139
Replace... (Edit menu) 152
Report window 217
requirements, system 13
Reset (button) 210
Reset (Execute menu) 48, 224
resume statement, in C-SPY macros 187
return (macro statement) 186
revision control system 3
Ritchie, Dennis M. vi
ROM-monitor (C-SPY version) 11
root directory 15
run-time model attributes, in map files 41
r90 (file extension) 17

S
sample applications 24

INDEX

UAVR-1

262

Save All (File menu) 150
Save As... (File menu) 150
Save (File menu) 150
Scan for Changed Files (editor option) 164
Search for help on... (Help menu) 170, 241
search toolbar 140
Segment map (XLINK option) 128
Segment overlap warnings (XLINK option) 126
segments

overlap errors, reducing 126
range checks, controlling 127
section in map files 41

Segment, in Breakpoints dialog box 226
Select Log File... (Options menu) 240
Settings... (Options menu)

C-SPY 235
Embedded Workbench 163

Setup file (C-SPY option) 136
setup macros, in C-SPY 188

See also C-SPY macros
SFR Bar (View menu) 221
SFR header files 16
SFR Setup 237
SFR window 212
shifts.s90 (assembler tutorial file) 74
shortcut keys

C-SPY 238
Embedded Workbench 167

Show Bookmarks (editor option) 164
Show Line Number (editor option) 164
signed char, specifying in compiler 101
simulation

of incoming values 60
of interrupts 177
of peripheral devices 177
on/off 233

simulator (C-SPY version) 11
single stepping 176

example 42
size optimization 104
Source Bar (View menu) 221
source code, including in compiler list file 108
source file paths 156
source files 22, 142

adding to a project 34
editing 142
moving between groups 142

source mode debugging 175
example 41

Source window 175, 210
example 42

special function registers (SFR), header files 16
speed optimization 104
Split (Window menu) 170
src (subdirectory) 16
static variables, forcing generation of 103
status bar

C-SPY 214
Embedded Workbench 146

Status Bar (View menu)
C-SPY 222
Embedded Workbench 147, 154

Step Into (button) 210
Step Into (Execute menu) 223
Step (button) 210
Step (Execute menu) 223
Stop Build (Project menu) 159
Stop building (button) 140
Stop Record Macro (Tools menu) 163
Stop (button) 210
Stop (Execute menu) 224
Strict ISO/ANSI (compiler option) 101
string literals, placing in initialized RAM 102
Stroustrup, Bjarne vi
support, technical 20
Suppress all warnings (XLINK option) 127

INDEX

UAVR-1

263

Suppress these diagnostics (compiler option) 111
Suppress these diagnostics (XLINK option) 127
Symbol properties 181
Symbol Properties (dialog box) 215
symbols

See also user symbols
defining in assembler 117
defining in compiler 109
defining in XLINK 125
in input modules 124
using in C-SPY expressions 179

Syntax Highlighting (editor option) 164
syntax highlighting, in Editor window 142
system macros. See C-SPY macros
system requirements 13
s90 (file extension) 17

T
Tab Key Function (editor option) 164
Tab Size (editor option) 164
Tab spacing (assembler option) 120
Target CPU Family 30
Target options 96, 158

Enhanced core 96
Memory model 96
Processor configuration 96
specifying 96

example 30
Use 64-bit doubles 96

target processors 21
target support, compiler 6
targets 22, 141

changing groups in 157
creating 157
debug 24
release 24

Targets... (Project menu) 157

technical support 20
Terminal I/O window 216

example 47
terminal I/O, simulating 124, 178
testing, of code 23
Tile Horizontal (Window menu)

C-SPY 241
Embedded Workbench 170

Tile Vertical (Window menu)
C-SPY 241
Embedded Workbench 170

time
accumulated, in Profiling window 85
activation, in interrupts 233
flat, in Profiling window 85
variance, in interrupts 233

timing information. See profiling
Toggle Breakpoint (button) 210
Toggle Breakpoint (Control menu) 224

example 46
Toggle C/Assembler (View menu) 210, 222

example 86
Toggle Source/Disassembly (button) 210
Tool Output (in Messages window) 147
Toolbar search text box 139
Toolbar search (button) 139
Toolbar (View menu) 221
toolbars 138

edit bar 139
project bar 140
search 140

Tools menu 160
Trace (Control menu) 234
transformations, enabled in compiler 105
Treat these as errors (compiler option) 111
Treat these as errors (XLINK option) 128
Treat these as remarks (compiler option) 111
Treat these as warnings (compiler option) 111

INDEX

UAVR-1

264

Treat these as warnings (XLINK option) 127
Treat warnings as errors (compiler option) 111
tutor (subdirectory) 17
tutorial files 17

common.c 32
tutor.c 31
tutor2.c 49
tutor3.cpp 53
tutor3.mac 58

tutorials
assembler 67
compiler 49
Embedded Workbench 29

type checking 6
disabling at link time 126

type (breakpoint) 227
typographical conventions v

U
UART 49
UBROF 10
Undo (Edit menu)

C-SPY 220
Embedded Workbench 151

Universal Asynchronous Receiver/Transmitter
(UART) 49
Universal Binary Relocatable Object Format (UBROF) 10
Use ICCA90 1.x calling convention (compiler option) 103
Use 64-bit doubles (target option) 96
user symbols, making case sensitive 114
Utilize inbuilt EEPROM (compiler option) 103

V
variables

forcing generation of global and static 103

using in arguments 160–161
using in C-SPY expressions 180
watching in C-SPY 228

example 44
Vector (in Interrupt dialog box) 232
vector (#pragma directive) 58
version number, of Embedded Workbench 171
versions, of C-SPY 11
View menu

C-SPY 221
Embedded Workbench 154

Virtual Register (dialog box) 237
virtual registers 236

creating 52

W
warnings

assembler 115
compiler 111–112
XLINK 127

Warnings affect the exit code (compiler option) 112
Warnings (assembler option) 115
Warnings/Errors (XLINK option) 127
Watch window 215

pop-up menu 215
Watch window (button) 209
watchpoints, setting 44
website, IAR 20
while (macro statement) 186
Window menu

C-SPY 241
Embedded Workbench 170

Window Settings, in C-SPY 235
windows. See Embedded Workbench windows or
C-SPY windows
www.iar.com 20

INDEX

UAVR-1

265

X
XCL filename (XLINK option) 130
xcl (file extension) 17
xlb (file extension) 17
XLIB 9, 73

example 76
starting in Embedded Workbench 159

XLIB documentation 9
XLIB features 9
XLIB options

EXIT 77
FETCH-MODULES 76
LIST-MODULES 77
QUIT 77

XLINK 8
XLINK documentation 8

xlink read-me file 20
XLINK features 8
XLINK list files

generating 128
including segment map 128
specifying lines per page 129

XLINK options 121, 158
Always generate output 126
Debug info 123
Debug info with terminal I/O 124
Define symbol 125
factory settings 122
Fill unused code memory 132
Filler byte 132
Format 123
Format variant 124
Generate checksum 132
Generate linker listing 128
Ignore CSTARTUP in library 130
Include paths 129
Inherent 131

Inherent, no object code 131
Library 130
Lines/page 129
Load as LIBRARY 131
Load as PROGRAM 131
Module status 131
Module-local symbols 124
No global type checking 126
Output file 123
Output format 124
override inherited settings 122
Range checks 127
Segment map 128
Segment overlap warnings 126
setting in Embedded Workbench 122
Suppress all warnings 127
Suppress these diagnostics 127
Treat these as errors 128
Treat these as warnings 127
Warnings/Errors 127
XCL filename 130

XLINK output
formats 8
overriding default format 124
specifying format 123

xlink read-me file 20
XLINK symbols, defining 125
XLINK_DFLTDIR (environment variable) 16
xman read-me file 20

Symbols
#define options (XLINK) 125
#define statement, in compiler 109
#line directives, generating in compiler 110
#pragma directives

language 49
vector 58

INDEX

UAVR-1

266

CUR_DIR (argument variable) 161
CUR_LINE (argument variable) 161
EW_DIR (argument variable) 161
EXE_DIR (argument variable) 161
$FILE_DIR$ (argument variable) 161
$FILE_FNAME$ (argument variable) 161
$FILE_PATH$ (argument variable) 161
$LIST_DIR$ (argument variable) 161
OBJ_DIR (argument variable) 161
$PROJ_DIR$ (argument variable) 161
$PROJ_FNAME$ (argument variable) 161
$PROJ_PATH$ (argument variable) 161
$TARGET_DIR$ (argument variable) 161
$TARGET_FNAME$ (argument variable) 161
$TARGET_PATH$ (argument variable) 161
$TOOLKIT_DIR$ (argument variable) 161
%b (format specifier) 181
%c (format specifier) 181
%o (format specifier) 181
%s (format specifier) 181
%u (format specifier) 181
%X (format specifier) 181
* (asterisk) 86
-d (C-SPY option) 244
-f (C-SPY option) 244
-p (C-SPY option) 244
-v (C-SPY option) 245
--enhanced_core (C-SPY option) 244
--no_rampd (compiler option) 110
--no_rampd (C-SPY option) 244
--segment (compiler option) 110
--64bit_doubles (C-SPY option) 245
_ _autoStep (C-SPY system macro) 189
_ _calls (C-SPY system macro) 189–190, 205
_ _cancelAllInterrupts (C-SPY system macro) 190
_ _clearAllBreaks (C-SPY system macro) 191
_ _clearAllMaps (C-SPY system macro) 191
_ _clearBreak (C-SPY system macro) 191

_ _clearMap (C-SPY system macro) 192
_ _closeFile (C-SPY system macro) 193
_ _disableInterrupts (C-SPY system macro) 193
_ _eeprom (extended keyword) 103
_ _enableInterrupts (C-SPY system macro) 194
_ _getLastMacroError (C-SPY system macro) 194
_ _go (C-SPY system macro) 195
_ _interrupt (extended keyword) 58
_ _multiStep (C-SPY system macro) 195
_ _openFile (C-SPY system macro) 196
_ _orderInterrupt (C-SPY system macro) 196

example 59
_ _printLastMacroError (C-SPY system macro) 197
_ _processorOption (C-SPY system macro) 197
_ _readFile (C-SPY system macro) 198
_ _readFileGuarded (C-SPY system macro) 199
_ _readMemoryByte (C-SPY system macro) 200
_ _realtime (C-SPY system macro) 200
_ _registerMacroFile (C-SPY system macro) 201
_ _reset (C-SPY system macro) 201
_ _rewindFile (C-SPY system macro) 201
_ _root (extended keyword) 103
_ _setBreak (C-SPY system macro) 202

example 60–61
_ _setMap (C-SPY system macro) 204
_ _step (C-SPY system macro) 204
_ _version_1 (extended keyword) 103
_ _writeMemoryByte (C-SPY system macro) 205

example 61

	Copyright notice
	Disclaimer
	Trademarks
	Welcome
	About this guide
	Assumptions and conventions
	Assumptions
	Conventions

	Further reading
	Contents
	Part 1: The IAR development tools
	The IAR Embedded Workbench
	The framework
	Integrated tools

	IAR Embedded Workbench
	Features
	General features
	The IAR Embedded Workbench editor
	Compiler and assembler projects
	Documentation

	IAR Compiler
	Features
	Language facilities
	Type checking
	Code generation
	Target support
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR�XLIB�Librarian
	Features
	Documentation

	IAR C-SPY Debugger
	Features
	General
	High-level-language debugging
	Assembler-level debugging
	Documentation

	Versions
	Simulator version
	Emulator version
	ROM-monitor version

	Installation and documentation
	Included in this package
	System requirements
	Running the program
	Running the IAR Embedded Workbench
	Running the IAR C-SPY Debugger
	Upgrading to a new version
	Uninstalling the products

	Directory structure
	Root directory
	The bin directory
	The config directory
	The doc directory
	The inc directory
	The lib directory
	The license directory
	The src directory
	The tutor directory

	File types
	Documentation
	The user and reference guides
	AVR IAR Embedded Workbench™ User Guide
	AVR IAR Compiler Reference Guide
	AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference Guide

	Online help and documentation
	Online documentation
	Recent information

	IAR on the web

	The project model
	Developing projects
	How projects are organized
	Targets
	Groups
	Source files

	Setting options
	Building a project
	Testing the code
	Sample applications
	A basic application
	A more complex project

	Part 2: Tutorials
	IAR Embedded Workbench tutorial
	Tutorial 1
	Creating a new project
	The source files
	The tutor.c program
	The common.c program

	Adding files to the project
	Setting compiler options
	Compiling the tutor.c and common.c files
	Viewing the list file
	Linking the tutor.c program
	Viewing the map file
	Viewing the build tree

	Running the program
	Watching variables
	Setting a watchpoint

	Setting breakpoints
	Executing up to a breakpoint
	Continuing execution
	Exiting from C-SPY

	Compiler tutorials
	Tutorial 2
	The tutor2.c serial program
	Compiling and linking the tutor2.c serial program
	Running the tutor2.c serial program
	Defining virtual registers

	Tutorial 3
	The tutor3.cpp timer program
	The C-SPY tutor3.mac macro file
	Initializing the system
	Generating interrupts
	Using breakpoints to simulate incoming values
	Resetting the system
	Exiting the system

	Compiling and linking the tutor3.cpp program
	Running the tutor3.cpp interrupt program

	Assembler tutorials
	Tutorial 4
	The first.s90 program
	Assembling the program
	Viewing the first.lst list file
	Linking the program
	Running the program

	Tutorial 5
	Using libraries
	The main.s90 program
	The library routines
	Creating a new project
	Assembling and linking the source files
	Using the IAR XLIB librarian
	Giving XLIB options

	Advanced tutorials
	Tutorial 6
	Creating project4
	Defining complex breakpoints
	Executing until a condition is true
	Executing up to the cursor
	Displaying function calls
	Displaying code coverage information
	Profiling the application

	Tutorial 7
	Monitoring memory
	Changing memory
	Monitoring registers
	Changing assembler values

	Tutorial 8
	Creating a combined compiler and assembler project

	Part 3: The IAR Embedded Workbench
	General options
	Setting general options
	Target
	Processor configuration
	Enhanced core
	Use 64-bit doubles

	Memory model

	Output directories
	Executables
	Object files
	List files

	Compiler options
	Setting compiler options
	Setting compiler options

	Language
	Disable Embedded C++ syntax
	Disable extensions
	Strict ISO/ANSI

	‘char’ is ‘signed char’

	Code
	Memory utilization
	Place string literals and constants in initialized RAM
	Place aggregate initializers in flash memory
	Utilize inbuilt EEPROM
	Force generation of all global and static variables
	Force generation of all global and static variables

	Register utilization
	Number of registers to lock for global variables
	Use ICCA90 1.x calling convention

	Optimizations
	Size and speed
	Enabled transformations
	Common sub-expression elimination
	Function inlining
	Code motion
	Cross call

	Number of cross-call passes

	Output
	Make library module
	Object module name
	Generate debug information
	No error messages in output files

	List
	Preprocessor
	Include paths
	Defined symbols
	Preprocessor output to file
	Additional options

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat warnings as errors
	Warnings affect the exit code

	Assembler options
	Setting assembler options
	Code generation
	Case sensitive user symbols
	Make library module
	Warnings
	Macro quote chars

	Debug
	Generate debug information

	Preprocessor
	Include paths
	Defined symbols
	Predefined symbols

	List
	Listing
	Cross-reference
	List format
	Include header
	Lines/page
	Tab spacing

	XLINK options
	Setting XLINK options
	Output
	Output file
	Override default

	Format
	Debug info
	Debug info with terminal I/O
	Output format
	Format variant
	Module-local symbols

	#define
	Define symbol

	Diagnostics
	Always generate output
	Segment overlap warnings
	No global type checking
	Range checks
	Warnings/Errors
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Generate linker listing
	Segment map
	Symbols
	Lines/page

	Include
	Include paths
	Library
	Ignore CSTARTUP in library

	XCL filename

	Input
	Module status
	Inherent
	Inherent, no object code
	Load as PROGRAM
	Load as LIBRARY

	Processing
	Fill unused code memory
	Filler byte
	Generate checksum

	C-SPY options
	Setting C-SPY options
	Setup
	Driver
	Setup file
	Device description file

	IAR Embedded Workbench reference
	The IAR Embedded Workbench window
	Menu bar
	Toolbars
	Edit bar
	Toolbar search
	Project bar

	Project window
	Pin button
	Targets
	Groups
	Source files
	Editing a file
	Moving a source file between groups
	Removing items from a project

	Editor window
	Auto indent
	Matching brackets
	Read-only and modification indicators
	Editor options
	Editor key summary
	Splitting the Editor window into panes

	Status bar
	Messages window
	Pin button
	Build
	Find in Files
	Tool Output

	Binary Editor window

	File menu
	New…
	Open…
	Close
	Save
	Save As…
	Save all
	Print…
	Print Setup…
	Exit

	Edit menu
	Undo
	Redo
	Cut, Copy, Paste
	Find…
	Replace…
	Find in Files…
	Match brackets

	View menu
	Edit Bar
	Project Bar
	Status bar
	Goto Line…

	Project menu
	Files…
	Adding files to a group
	Removing files from a group
	Source file paths

	New Group…
	Targets…
	Options…
	Compile
	Make
	Link
	Build all
	Stop build
	Librarian
	Debugger

	Tools menu
	Configure tools…
	Specifying command line commands or batch files

	Binary Editor…
	Record Macro
	Stop Record Macro
	Play Macro

	Options menu
	Settings…
	Editor
	External Editor
	Key Bindings
	Colors and Fonts
	Make Control

	Window menu
	New Window
	Cascade, Tile Horizontal, Tile Vertical
	Arrange icons
	Close all
	Split
	Message window

	Help menu
	Contents
	Search for help on…
	How to use help
	Embedded Workbench Guide
	Compiler Reference Guide
	Assembler, Linker, and Librarian Guide
	C Library Reference Guide
	EC++ Library Reference Guide
	IAR on the Web
	About…

	Part 4: The C-SPY simulator
	Introduction to C-SPY
	Debugging projects
	Disassembly and source mode debugging
	Source window

	Program execution
	Single stepping
	Breakpoints
	Interrupt simulation
	C function information
	Viewing and editing memory and registers
	Terminal I/O
	Macro language
	Profiling
	Code coverage

	C-SPY expressions
	Expression syntax
	C symbols
	Assembler symbols
	Format specifiers

	C-SPY macros
	Using C-SPY macros
	Defining macros
	Executing C-SPY macros
	Macro variables
	Macro functions
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks
	Printing messages
	Resume statement
	Error handling in macros

	C-SPY setup macros
	_�_autoStep
	Syntax
	Parameters
	Return value
	Example

	_�_calls
	Syntax
	Parameters
	Return value
	Example

	_�_cancelAllInterrupts
	Syntax
	Return value
	Example

	_�_cancelInterrupt
	Syntax
	Parameters
	Return value
	Example

	_�_clearAllBreaks
	Syntax
	Return value
	Example

	_�_clearAllMaps
	Syntax
	Return value
	Example

	_�_clearBreak
	Syntax
	Parameters
	Return value
	Example

	_�_clearMap
	Syntax
	Parameters
	Return value
	Example

	_�_closeFile
	Syntax
	Parameters
	Return value
	Example

	_�_disableInterrupts
	Syntax
	Return value
	Example

	_�_enableInterrupts
	Syntax
	Return value
	Example

	_�_getLastMacroError
	Syntax
	Return value
	Example

	_�_go
	Syntax
	Return value
	Example

	_�_multiStep
	Syntax
	Parameters
	Return value
	Example

	_�_openFile
	Syntax
	Parameters
	Return value
	Example

	_�_orderInterrupt
	Syntax
	Parameters
	Return value
	Example

	_�_printLastMacroError
	Syntax
	Return value
	Example

	_�_processorOption
	Syntax
	Parameters
	Return value
	Description
	Example

	_�_readFile
	Syntax
	Parameters
	Return value
	Description
	Example

	_�_readFileGuarded
	Syntax
	Parameters
	Return value
	Description
	Example

	_�_readMemoryByte
	Syntax
	Parameters
	Return value
	Example

	_�_realtime
	Syntax
	Parameters
	Return value
	Example

	_�_registerMacroFile
	Syntax
	Parameters
	Return value
	Example

	_�_reset
	Syntax
	Return value
	Example

	_�_rewindFile
	Syntax
	Parameters
	Return value
	Example

	_�_setBreak
	Syntax
	Parameters
	Return value
	Examples

	_�_setMap
	Syntax
	Parameters
	Return value
	Example

	_�_step
	Syntax
	Parameters
	Return value
	Example

	_�_writeFile
	Syntax
	Parameters
	Return value
	Example

	_�_writeMemoryByte
	Syntax
	Parameters
	Return value
	Example

	C-SPY reference
	The C-SPY window
	Types of C-SPY windows
	Menu bar
	Toolbar and debug bar
	Toolbar

	Open
	Debug bar

	Toggle Breakpoint
	Source window
	Source file and function
	Current position
	Cursor
	Breakpoint
	Data tip

	Register window
	SFR window
	Memory window
	Calls window
	Status bar
	Watch window
	Viewing the contents of an expression
	Adding an expression to the Watch window
	Inspecting expression properties
	Removing an expression

	Locals window
	Editing the value of a local variable

	Terminal I/O window
	Report window
	Code coverage window
	Profiling window

	Profiling
	On/Off
	Profiling On/Off
	New Measurement
	Graph On/Off
	Save List
	Current Cycle Count

	File menu
	Open…
	Close session
	Recent files
	Exit

	Edit menu
	Undo, Cut, Copy, Paste
	Find…

	View menu
	Toolbar
	Debug Bar
	Source Bar
	Memory Bar
	Locals Bar
	Profiling bar
	SFR Bar
	Status Bar
	Goto…
	Move to PC
	Toggle Source/Disassembly

	Execute menu
	Step
	Step into
	Autostep...
	Multi Step…
	Go
	Go to cursor
	Go out
	Reset
	Stop

	Control menu
	Toggle breakpoint
	Edit Breakpoints…
	Location
	Segment
	Length
	Count
	Condition
	Type
	Macro

	Quick watch…
	Memory Map…
	Memory Fill…
	Assemble…
	Interrupt…
	Vector
	Activation Time
	Repeat Interval
	Latency
	Probability
	Time Variance
	Simulation On/Off

	Trace
	Calls
	Realtime
	Log to file
	Profiling

	Options menu
	Settings…
	Window Settings
	Register Setup
	SFR Setup
	Key Bindings

	Load Macro…
	Select log file...

	Window menu
	Cascade
	Tile horizontal
	Tile vertical
	Arrange icons

	Help menu
	Contents
	Search for help on…
	How to use help
	Embedded Workbench Guide
	About…

	C-SPY command line options
	Setting C-SPY options
	Setting C-SPY options from the command line
	C-SPY driver (-d)
	Syntax: -d driver
	Example

	Enhanced core (--enhanced_core)
	Syntax: --enhanced_core

	Use setup file (-f)
	Syntax: -f file
	Example

	Use RAMPZ instead of RAMPD (--no_rampd)
	Syntax: --no_rampd

	Use device description file (-p)
	Syntax: -p file
	Example

	Processor option (-v)
	Syntax: -v{option}

	64-bit doubles (--64bit_doubles)
	Syntax: --64bit_doubles

	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols

	Index

