
CAVR-1

AVR® IAR COMPILER
Reference Guide

for Atmel® Corporation’s
AVR® Microcontroller

CAVR-1

ii

COPYRIGHT NOTICE
© Copyright 2000 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR and C-SPY are registered trademarks of IAR Systems. IAR
Embedded Workbench, IAR XLINK Linker, and IAR XLIB Librarian are
trademarks of IAR Systems. Atmel and AVR are registered trademarks of
Atmel Corporation. Microsoft is a registered trademark, and Windows is
a trademark of Microsoft Corporation. Intel and Pentium are registered
trademarks of Intel Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

First edition: March 2000

Part number: CAVR-1

CAVR-1

iii

WELCOME Welcome to the AVR IAR Compiler Reference Guide.

This guide provides reference information about the IAR Systems C and
Embedded C++ Compiler for Atmel’s AVR microcontroller.

Before reading this guide we recommend you to read the initial chapters
of the AVR IAR Embedded Workbench™ User Guide, where you will find
information about installing the IAR Systems development tools, product
overviews, and tutorials that will help you get started. The AVR IAR
Embedded Workbench™ User Guide also contains complete reference
information about the IAR Embedded Workbench and the IAR C-SPY®
Debugger.

For information about programming with the AVR IAR Assembler, refer
to the AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide.

Refer to the chip manufacturer’s documentation for information about
the AVR architecture and instruction set.

If you want to know more about IAR Systems, visit the website
www.iar.com where your will find company information, product
news, technical support, and much more.

ABOUT THIS GUIDE This guide consists of the following parts:

◆ Part 1: Using the AVR IAR compiler

What’s new in this product summarizes the new product features.

Efficient coding techniques provides programming hints and
information about how to fine-tune your application and make it
benefit from the features of the AVR IAR Compiler’s features.

Configuration describes how to configure the compiler to suit the
requirements of your application.

Assembly language interface describes the interface between C or
Embedded C++ programs and assembly language routines.

PREFACE

CAVR-1

iv

◆ Part 2: Compiler reference

Data representation describes the available data types, pointers, and
structure types.

Segments gives reference information about the compiler’s use of
segments.

Compiler options explains how to set the compiler options, gives a
summary of the options, and contains detailed reference information
for each compiler option.

Extended keywords gives reference information about each of the
AVR-specific keywords that are extensions to the standard
C language.

#pragma directives gives reference information about the #pragma
directives.

Predefined symbols gives reference information about the predefined
preprocessor symbols.

Intrinsic functions gives reference information about the intrinsic
functions.

Library functions gives an introduction to the C or Embedded C++
library functions, and summarizes the header files.

Diagnostics describes the diagnostic messages and lists AVR-specific
warning and error messages.

◆ Part 3: Migration and portability

Migrating to the AVR IAR Compiler contains information that can be
useful when migrating from an existing IAR product to the new AVR
IAR Compiler.

Implementation-defined behavior describes how IAR C handles the
implementation-defined areas of the C language.

IAR C extensions describes the IAR extensions to the ISO/ANSI
standard for the C programming language.

PREFACE

CAVR-1

v

ASSUMPTIONS AND
CONVENTIONS

ASSUMPTIONS
This guide assumes that you already have a working knowledge of the
following:

◆ The architecture and instruction set of Atmel’s AVR
microcontroller.

◆ The C or Embedded C++ programming language.

◆ Windows 95/98 or Windows NT, depending on your host system.

CONVENTIONS
This guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type
as part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and
dialog boxes that appear on the screen.

... Multiple parameters can follow a command.

reference A cross-reference to another part of this guide, or to
another guide.

Identifies instructions specific to the versions of the
IAR Systems tools for the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line
versions of IAR Systems tools.

PREFACE

CAVR-1

vi

PREFACE

CAVR-1

vii

CONTENTS

PART 1: USING THE AVR IAR COMPILER 1

WHAT’S NEW IN THIS PRODUCT .. 3
Embedded C++ 3
Code and data storage 4
Inbuilt EEPROM 4
Optimization techniques 4

EFFICIENT CODING TECHNIQUES ... 5
Programming hints 5
Embedded C++ overview 7
Language extensions overview 8

CONFIGURATION .. 11
Project options 11
Memory location 15
Linker command file 17
Run-time library 24
Initialization 26
Input and output 29
Module consistency 33
Optimizations 36

ASSEMBLY LANGUAGE INTERFACE 37
C calling convention 37
Creating skeleton code 41
Compiler function directives 45
Interrupt handling 47
Embedded C++ 47

PART 2: COMPILER REFERENCE......................... 49

DATA REPRESENTATION .. 51
Data types 51
Pointers 54

CONTENTS

CAVR-1

viii

Structure types 56

SEGMENTS.. 59
Introduction 59
Summary of segments 61

COMPILER OPTIONS ... 79
Setting compiler options 79
Environment variables 81
Options summary 82

EXTENDED KEYWORDS.. 111
Summary of extended keywords 111
Data storage 112
Function execution 117
Function calling convention 121
Function storage 122
Embedded C++ 123

#PRAGMA DIRECTIVES .. 125
Type attribute 125
Memory 127
Object attribute 128
Dataseg 128
Constseg 129
Location 129
Vector 130
Diagnostics 130
Language 131
Optimize 131
Pack 132
Bitfields 133

PREDEFINED SYMBOLS.. 135

INTRINSIC FUNCTIONS .. 141

LIBRARY FUNCTIONS... 145
Introduction 145
Library definitions summary 146

CONTENTS

CAVR-1

ix

DIAGNOSTICS... 151
Severity levels 151
Messages 152

PART 3: MIGRATION AND PORTABILITY........ 155

MIGRATING TO THE AVR IAR COMPILER......................... 157
Introduction 157
The migration process 157
Extended keywords 158
#pragma directives 161
Predefined symbols 163
Intrinsic functions 164
Compiler options 164

IMPLEMENTATION-DEFINED BEHAVIOR 171
Translation 171
Environment 172
Identifiers 172
Characters 172
Integers 174
Floating point 174
Arrays and pointers 175
Registers 175
Structures, unions, enumerations,
and bitfields 175
Qualifiers 176
Declarators 176
Statements 177
Preprocessing directives 177
C library functions 179

IAR C EXTENSIONS ... 183
Available extensions 183
Extensions accepted in normal
EC++ mode 186
Language features not accepted
in EC++ 187

INDEX.. 189

CONTENTS

CAVR-1

x

CAVR-1

1

PART 1: USING THE AVR
IAR COMPILER
This part of the AVR IAR Compiler Reference Guide includes the
following chapters:

◆ What’s new in this product

◆ Efficient coding techniques

◆ Configuration

◆ Assembly language interface.

PART 1: USING THE AVR IAR COMPILER

CAVR-1

2

CAVR-1

3

WHAT’S NEW IN THIS
PRODUCT
The AVR IAR Compiler supports C and Embedded C++ for the Atmel
AVR microcontrollers with RAM, including the Classic and Mega
families.

It is based on the latest IAR compiler technology and replaces the A90
IAR C Compiler, ICCA90.

This chapter summarizes the new key features in the AVR IAR Compiler.
For details about the differences between this product and the A90 IAR
C Compiler, ICCA90, see the chapter Migrating to the AVR IAR Compiler.

EMBEDDED C++ Embedded C++, or EC++, can be seen as a subset to C++ designed
to suit the development of embedded applications. The C++ features not
found in EC++ are those that were considered to be costly for some
reason, for example due to the risk of increasing code size or increased
execution speed overhead.

The resulting language, EC++, is well suited for modern modeling and
development techniques. Compared to C—the most widely used language
in the embedded field—EC++ adds a number of new language features.

Obviously, most important is the support for object-oriented
programming (OOP), a technique used for modularizing an application
which makes it easier to structure and maintain larger applications. OOP
also increases the reusability of code, and in the same time reduces the
time to test new applications inherited from existing ones, both factors
working to shorten the time to market for new products.

The AVR IAR Compiler conforms to the free-standing implementation of
the ISO/ANSI C standard and Embedded C++ specifications. All
required data types are supported. Notice, however, that by default the
type double is implemented as float.

CODE AND DATA STORAGE WHAT’S NEW IN THIS PRODUCT

CAVR-1

4

CODE AND DATA
STORAGE

The AVR microcontroller has three separate address spaces: one space
each for code, data, and the inbuilt EEPROM. The AVR IAR Compiler
provides various memory models, pointer types, and language extensions
for efficient use of memory.

INBUILT EEPROM The AVR IAR Compiler introduces a new keyword, __eeprom, that
allows the programmer to place initialized and non-initialized variables in
the inbuilt EEPROM of the AVR microcontroller. These variables can be
used as any other variable and provides a convenient way to access the
inbuilt EEPROM.

It is also possible to override the supplied support functions to make the
__eeprom keyword access an EEPROM or flash memory that is placed
externally but not on the normal data bus, for example on an I2C bus.

OPTIMIZATION
TECHNIQUES

To generate efficient and compact code for the AVR architecture, the AVR
IAR Compiler has an inbuilt data-flow analyzer and a global optimizer.
The compiler also uses many optimization techniques, for example
dead-code elimination, jump optimizations, and loop optimizations.

The basic approach is to optimize for either size or speed, and to enable
or disable the optimizations during the different phases of your
application development project.

For additional information, see Optimizations, page 36.

CAVR-1

5

EFFICIENT CODING
TECHNIQUES
In this chapter you will find hints on how to write programs that make
efficient use of the AVR IAR Compiler.

The chapter Configuration contains information about how to use and
modify the IAR toolkit to satisfy your application requirements.

If you are porting code or migrating from a previous IAR Systems product
such as the AT90S IAR C Compiler, see the chapter Migrating to the AVR
IAR Compiler in Part 3: Migration and portability of this guide, for
additional information.

PROGRAMMING
HINTS

This section contains recommendations on how to write efficient code
for the AVR microcontroller using the AVR IAR Compiler.

OPTIMIZING
◆ To achieve minimum code size, you would normally use the size

optimization. Notice, however, that in certain cases a high level of
speed optimization can generate smaller code than the size
optimization would. See Optimizations, page 36, for additional
information.

◆ Sensible use of the memory attributes (see the chapter Extended
keywords) can enhance both speed and code size in critical
applications.

◆ Small local functions may be inlined by the compiler if declared
static, which allows further optimizations. This feature can be
turned off with the --no_inline option. See page 98 for
information about this option.

◆ Global scalar variables that are not used outside their module should
be declared as static.

◆ Avoid using inline assembler. Instead, try writing the code in C or
Embedded C++, use intrinsic functions, or write a separate
assembler module.

PROGRAMMING HINTS EFFICIENT CODING TECHNIQUES

CAVR-1

6

SAVING STACK SPACE AND RAM MEMORY
◆ Avoid long call chains and recursive functions in order to save stack

space.

◆ Declare variables with a long life span as global in order to save stack
space.

◆ Declare variables with a short life span as local variables. When the
life spans for these variables end, they will be popped from the stack
and the previously occupied memory can than be reused. Globally
declared variables will occupy data memory during the whole
program execution. Be careful with auto variables though, as the
stack size can exceed its limits.

◆ Avoid passing large non-scalar parameters; in order to save RAM
memory, you should instead pass them as pointers. Small parameters
can be passed in registers; see C calling convention, page 37, for
additional information.

USING EFFICIENT DATA TYPES
◆ Use ISO/ANSI prototypes since they allow the compiler to generate

efficient code and provide type checking of function parameters.

◆ Use small and unsigned data types (unsigned char and unsigned
short) unless your application really requires a greater precision.

◆ Try to avoid 64-bit data types, such as double and long long.

◆ Pointers to the near memory are smaller than the default pointer in
the large memory model. Pointers to the tiny memory are smaller
than the default pointer in the small memory model.

◆ Bitfields with sizes other than 1 bit should be avoided since they will
result in inefficient code compared to bit operations.

MIGRATING FROM ICCA90
If you have code written for the A90 IAR Compiler, ICCA90, use the file
comp_a90.h for the migration. This file, which is provided with the
product, contains macros that facilitate the migration. You should also
modify the code by replacing, for example, keywords and intrinsics. More
information about the differences between the A90 IAR Compiler and
the AVR IAR Compiler is provided in the chapter Migrating to the AVR
IAR Compiler.

EFFICIENT CODING TECHNIQUES EMBEDDED C++ OVERVIEW

CAVR-1

7

EMBEDDED C++
OVERVIEW

Embedded C++ is a subset of the C++ programming language, which is
aimed at embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical Committee. The fact that
performance and portability are particularly important in embedded
systems development was considered when defining the language.

Like full C++, the following extensions of the C programming language
are provided:

◆ Classes, which are user-defined types that incorporate both data
structure and behavior. The essential feature of inheritance allows
data structure and behavior to be shared among classes.

◆ Polymorphism, which means that an operation can behave
differently on different classes, is provided by virtual functions.

◆ Overloading of operators and function names, which allows several
operators or functions with the same name, provided that there is a
sufficient difference in their argument lists.

◆ Type-safe memory management using operators new and delete.

◆ Inline functions, which are indicated as particularly suitable for
inline expansion.

Excluded features in C++are those, which introduce overheads in
execution time or code size that are beyond the control of the
programmer. Also excluded are recent additions to the ISO/ANSI C++
standard. This is motivated by potential portability problems, due to the
fact that few development tools support the standard. Embedded C++
thus offers a subset of C++, which is efficient and fully supported by
existent development tools.

Embedded C++ lacks the following C++features:

◆ Templates

◆ Multiple inheritance

◆ Exception handling

◆ Run-time type information

◆ New cast syntax (operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

◆ Name spaces.

LANGUAGE EXTENSIONS OVERVIEW EFFICIENT CODING TECHNIQUES

CAVR-1

8

The excluded language features also make the run-time library
significantly more efficient. The Embedded C++ library furthermore
differs from the full C++library in that:

◆ The Standard Template Library (STL) is excluded.

◆ Streams, strings, and complex numbers are supported, without using
templates.

◆ Library features, which relate to exception handling and run-time
type information (headers <except>, <stdexcept> and
<typeinfo>) are excluded.

LANGUAGE
EXTENSIONS
OVERVIEW

This section briefly describes the extensions provided in the AVR IAR
Compiler to support specific features of the AVR microcontroller.

Note: For a summary of the IAR extensions to the ISO standard for the C
programming language, see the chapter IAR C extensions in this guide.

EXTENDED KEYWORDS
By default the address range in which the compiler places data and
functions is determined by which memory model you select for your
application. In order to achieve maximum efficiency in your application,
you may want to override these and other defaults by using the extended
keywords which provide the following facilities:

◆ Keywords such as __tiny, __near, __far, and __huge allow you to
override the default storage of data objects.

◆ The keywords __farfunc and __nearfunc allow you to define the
memory range where a function will be located.

◆ The __no_init keyword prevents initialization of variables. Use it
to reduce the amount of initialization code that is generated or for
data that will be placed in non-volatile RAM.

◆ The keyword __C_task allows you to save stack size and reduce
code size. It is typically used for main.

◆ Function modifiers allow you to override the default mechanism by
which the compiler calls a function, for example __interrupt and
__monitor.

EFFICIENT CODING TECHNIQUES LANGUAGE EXTENSIONS OVERVIEW

CAVR-1

9

By default language extensions are always enabled in the IAR Embedded
Workbench.

The command line option -e make the extended keywords available, and
reserves them so that they cannot be used as variable names; see page 89
for additional information.

For detailed descriptions of the extended keywords, see the chapter
Extended keywords.

#PRAGMA DIRECTIVES
The #pragma directives control the behavior of the compiler, for example
how it allocates memory, whether it allows extended keywords, and
whether it outputs warning messages.

The #pragma directives are always enabled in the AVR IAR Compiler.
They are consistent with the ISO/ANSI C and are very useful when you
want to make sure that the source code is portable.

For detailed descriptions of the #pragma directives, see the chapter
#pragma directives.

PREDEFINED SYMBOLS
With the predefined preprocessor symbols, you can inspect your
compile-time environment, for example, the time and date of compilation.

For detailed descriptions of the predefined symbols, see the chapter
Predefined symbols.

INTRINSIC FUNCTIONS
The intrinsic functions provide direct access to low-level processor
operations and can be very useful in, for example, time-critical routines.
The intrinsic functions compile into in-line code, either as a single
instruction or as a short sequence of instructions.

For detailed reference information, see the chapter Intrinsic functions.

Inline assembler
The asm intrinsic function assembles and inserts the supplied assembler
statement in-line. The statement can include instruction mnemonics,
register mnemonics, constants, and/or a reference to a global variable. For
example:

asm("LDI R16,0\n LDI R17,0\n RET");

LANGUAGE EXTENSIONS OVERVIEW EFFICIENT CODING TECHNIQUES

CAVR-1

10

Note: The asm function reduces the compiler’s ability to optimize the
code. We recommend the use of modules written in assembly language
instead of inline assembler since the function call to an assembler routine
causes less performance reduction.

CAVR-1

11

CONFIGURATION
The IAR toolkit for the AVR microcontroller contains a number of
components that you can modify according to the requirements of your
application. This chapter provides information about the configuration:

◆ The options used for specifying the AVR derivative and memory
model for your project.

◆ The linker command file which is used for specifying how the
application will fit on your selected chip. This file contains
information about the segments and their address ranges, the stack
size, and the heap size.

◆ Run-time libraries

◆ Initialization procedure

◆ I/O operations

◆ Module consistency

◆ Optimization.

Note: Some of the configuration procedures involve customizing the
standard files. We strongly recommend that you never alter the original
files. Instead, make copies of the originals and store the copies in a project
directory, together with your project source code files. There you can edit
the files to suit your application requirements.

For information about how to configure the hardware or peripheral
devices, refer to the hardware documentation.

PROJECT OPTIONS This section describes the project options that are used for configuring
the IAR development tools according to your AVR derivative and your
application requirements.

PROCESSOR
The AVR IAR Compiler supports many of the AVR microcontroller
derivatives. The processor option reflects the addressing capability of the
target processor. When you select a particular processor option for your
project, several target-specific parameters are tuned to best suit that
derivative.

PROJECT OPTIONS CONFIGURATION

CAVR-1

12

Use either the --cpu or -v option to specify the AVR derivative; see the
chapter Compiler options for syntax information.

See the chapter General options in the AVR IAR Embedded Workbench™
User Guide for information about setting project options in the IAR
Embedded Workbench.

Mapping of processor options and AVR derivatives
The following table shows the mapping of --cpu and -v options and
which derivatives they support:

Your program may use only one processor option at a time, and the same
processor option must be used by all user and library modules in order to
maintain module consistency.

Processor option Alternative option Supported AVR derivative

--cpu=2313 -v0 AT90S2313

--cpu=2323 -v0 AT90S2323

--cpu=2333 -v0 AT90S2333

--cpu=2343 -v0 AT90S2343

--cpu=4414 -v1 AT90S4414

--cpu=4433 -v0 AT90S4433

--cpu=4434 -v1 AT90S4434

--cpu=8515 -v1 AT90S8515

--cpu=8534 -v1 AT90S8534

--cpu=8535 -v1 AT90S8535

--cpu=m103 -v3 AT90mega103

--cpu=m161 -v3 AT90mega161

--cpu=m603 -v3 AT90mega603

--cpu=tiny22 -v0 AT90tiny22

CONFIGURATION PROJECT OPTIONS

CAVR-1

13

Implicit assumptions when using -v
Notice that the --cpu option is more precise since it has more
information about the intended target than the generic -v option. The
--cpu option, for example, knows how much flash memory is available in
the given target and allows the compiler to optimize accesses to code
memory in a way that the -v option does not.

It is also important to remember that all implicit assumptions in a given
-v options are also true for the --cpu option.

-v0 and -v2: When compiling code for the -v0 or -v2 processor option,
the compiler assumes that the index registers X, Y, and Z are eight bit wide
when accessing the inbuilt SRAM. It also assumes that it is not possible
to attach any external memory to the microcontroller and that it therefore
should not generate any _C segment. Instead the compiler adds an
implicit -y command line option. It will also try to place all aggregate
initializers in flash memory, i.e. an implicit --initializers_in_flash
is also added to the command line.

-v0 and -v1: When compiling code for the -v0 or -v1 processor options,
the compiler assumes that RJMP and RCALL can reach the entire code
space. It also assumes that the interrupt vectors are two bytes each.

-v1, -v3, -v4, -v5, and -v6: The compiler assumes that it is possible to
have external memory and will therefore generate _C segments.

-v2, -v4, -v5, and -v6: There are currently no derivatives that match
these processor options which have been added to support future
derivatives.

The following table summarizes the code characteristics:

Processor
option

Default function
memory
attribute

Max module
and/or program
size

Comment

-v0, -v1 __nearfunc ≤ 8 Kbytes The code memory
space is physically
limited to 8 Kbytes.
Interrupt vectors are 2
bytes long.

PROJECT OPTIONS CONFIGURATION

CAVR-1

14

MEMORY MODEL
The memory model specifies the data memory which is used for storing:

◆ Non-stacked variables, i.e. global data and variables declared as
static.

◆ Stacked data, for example locally declared data.

◆ Dynamically allocated data, for example data allocated with malloc
and calloc.

You choice of processor option determines which memory models are
available. The following table summarizes the characteristics of the
different memory models:

-v2, -v3,
-v4

__nearfunc ≤ 128 Kbytes Two bytes are used for
all function pointers.
Interrupt vectors are 4
bytes long.

-v5, -v6 __farfunc ≤ 8 Mbytes Three bytes can be
used for function
pointers. Interrupt
vectors are 4 bytes
long.

Memory
model

Default memory
attribute

Default data
pointer

Max. stack
size

Processor
option

tiny __tiny __tiny ≤ 256 bytes -v0, -v1, -v2,
-v3, -v5

small __near __near ≤ 64 Kbytes -v1, -v3, -v4,
-v5, -v6

large __far __far ≤ 64 Kbytes -v4, -v6

generic __tiny __generic ≤ 256 bytes -v0, -v2

__near ≤ 64 Kbytes -v1, -v3, -v5

__far ≤ 64 Kbytes -v4, -v6

Processor
option

Default function
memory
attribute

Max module
and/or program
size

Comment

CONFIGURATION MEMORY LOCATION

CAVR-1

15

For information about the mapping of processor option and AVR
derivative, see the table on page 12.

Your program may use only one memory model at a time, and the same
model must be used by all user modules and all library modules.

If you do not specify a memory model option, the compiler will use the
tiny memory model for all processor options except -v4 and -v6 where
the small memory model will be used.

Note: The entire stack and data objects without defined memory
attributes must be linked at addresses that can be reached by the default
pointer type.

All default behaviors originating from the selected memory model can be
altered by the use of extended keywords and #pragma directives.

Use the --memory_model option to specify the memory model for your
project; see page 95 for syntax information.

See the chapter General options in the AVR IAR Embedded Workbench™
User Guide for information about setting options in the IAR Embedded
Workbench.

MEMORY LOCATION Code and different types of data (e.g. volatility and address range) are
located in the memory areas as follows:

◆ The internal FLASH areas are used for code, constants, and initial
values.

◆ The external ROM areas are used for constants.

◆ The RAM areas are used for the stack and for variables.

A number of named segments are available to locate code and the
different types of data in the most efficient part of the memory. The
compiler automatically selects a segment depending on your choice of
memory model and processor option. If you use #pragma directives and
extended keywords to override the default memory attributes, this also
affects the location.

The available segments are described in the chapter Segments in Part 2:
Compiler reference in this guide.

MEMORY LOCATION CONFIGURATION

CAVR-1

16

Use the segment control directives in the AVR IAR Assembler to control
the segments; these directives are described in the AVR IAR Assembler,
IAR XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

The AVR IAR Compiler uses the following memory types:

◆ CODE is used for code, constants and initial values.

◆ DATA is used for stacks and variables.

◆ CONST is used for constants.

◆ EEPROM is used for variables declared with the __eeprom keyword.
These variables are located to the XLINK segment type XDATA.

It is important to understand the fact that the CONST segments are
assumed to be placed in an external PROM. Targets that do not have the
possibility to add external memory should not place variables and
constants in the CONST area. Use the -y command line option to redirect
all objects to the initialized DATA area instead. For additional
information, see -y, page 107.

It is also important to notice that DATA and CONST share address spaces,
i.e. they are both data space areas, whereas the CODE area resides in code
space and the EEPROM area resides in the inbuilt EEPROM.

Non-initialized memory
The compiler supports the declaration of variables that are not to be
initialized at startup through the __no_init type modifier and the
#pragma object_attribute directive. The compiler places such
variables in separate segments, depending on which memory keyword is
used. These segments should be assigned to, for example, the address
range of the non-volatile RAM of the hardware environment.

Notice that __no_init can also be used for other types of variables that
need not be initialized, for example input buffers. The run-time system
does not initialize variables located in these segments.

To assign the __no_init segment to the address of the non-volatile
RAM, you need to modify the linker command file.

For information about the __no_init keyword, see __no_init, page 115.
For information about the #pragma object_attribute, see Object
attribute, page 128.

CONFIGURATION LINKER COMMAND FILE

CAVR-1

17

LINKER COMMAND
FILE

The linker command file is an extended command line file, required for
the generation of object code. The IAR XLINK Linker uses the file to
select the program modules to combine and to specify the location of the
generated code and data, thereby assuring that your application fits on the
selected chip.

Since the chip-specific details are specified in the linker command file and
not in the source code, the linker command file also ensures code
portability. Basically, you can use the same source code with different
derivatives just by recompiling the code with different processor and
memory model options, and by specifying the appropriate linker
command file.

In particular, the linker command file specifies:

◆ The placement of segments

◆ The stack size

◆ The heap size.

This section first discusses the stack size and the heap size, and then
describes how to modify the contents of a linker command file.

For further information about the IAR XLINK Linker and the XLINK
options, see the XLINK section in the AVR IAR Assembler, IAR XLINK
Linker™, and IAR XLIB Librarian™ Reference Guide.

STACK SIZE
The compiler uses the internal data stack, CSTACK, for a variety of user
program operations, and the required stack size depends heavily on the
details of these operations. If the given stack size is too small, the stack
will normally overwrite the variable storage which is likely to result in
program failure. If the given stack size is too large, RAM will be wasted.

Notice that there is also an internal return stack, RSTACK. See Cstack, page
64, and Rstack, page 75, for additional information about the segments
used for the data stack and return stack, respectively.

Estimating the required data stack size
The stack is used for storing:

◆ Local variables and parameters not passed in registers.

◆ Temporary results in expressions.

LINKER COMMAND FILE CONFIGURATION

CAVR-1

18

◆ Function return addresses (RSTACK).

◆ Temporary values in run-time library routines (CSTACK/RSTACK).

◆ Processor state during interrupts.

The total required stack size is the worst case total of the required sizes
for each of the above, including the size of all concurrently active
interrupt functions.

Notice that there is a C-SPY macro, StackChk.mac, that helps you
calculate the required stack size. To use this macro, follow the
instructions in the macro file.

To change the data stack size, edit the linker command file and replace the
default size by the value of your choice. The procedure is described in the
section Customizing the linker command file in this chapter.

HEAP SIZE
If the library functions malloc or calloc are used in the program, they
allocate memory from a heap of memory in the HEAP segment.

To change the heap size, edit the linker command file and replace the
default size with the value of your choice. See Defining the malloc HEAP
segment, page 22.

CUSTOMIZING THE LINKER COMMAND FILE
The only change you will normally have to make to the supplied linker
command file is to suit the details of the target hardware memory map.
For details of individual segments, see the chapter Segments.

The avr\config directory contains ready-made linker command files.
These files contain the information required by the linker and are ready
to be used. If, for example, your application uses external RAM, you will
only need to provide details about the external RAM memory area.

The name of the linker command file indicates the supported derivative;
for example, lnk2313.xcl supports the AT90S2313 derivative.

If a ready-made linker command file is not availabile for your derivative,
select the linker command file of a similar derivative in the avr\config
directory, and create a copy that suits your derivative. To create a linker
command file for a particular project, you could also use one of the
templates located in the avr\src\template directory.

CONFIGURATION LINKER COMMAND FILE

CAVR-1

19

The template filename indicates the supported processor option and
memory model; for example, lnk0t.xcl supports the -v0 processor
option with the tiny memory model, and lnk3s.xcl supports the -v3
processor option with the small memory model.

Notice that each of the supplied linker command files includes comments
explaining the entire contents.

The following section explains the contents of a linker command file. The
example is based on the lnk1s.xcl file, which is the linker command file
template for the -v1 processor option and the small memory model. The
file will be modified to suit the AT90S8515 derivative, where the flash
memory area is located within the 0x0–0x1FFF address range, and the
RAM memory area is located within the 0x60–0x25F address range.

Defining the stack and heap segments
In the first section of the linker command file, we use the XLINK option
-D to specify the size of the segments used for the data stack (CSTACK), the
return stack (RSTACK), and the heap (HEAP), respectively:

Modify the template to suit the requirements of your application, for
example:

-D_CSTACK_SIZE=40 /* 64 bytes for auto variables and
 register save. */
-D_RSTACK_SIZE=10 /* 16 bytes for return addresses,
 equivalent to 8 levels of calls, */
 /* including interrupts. */
-D_HEAP_SIZE=10 /* 16 bytes of heap. */

Defining the CPU
In the next section of the linker command file, we use the -c XLINK
option to specify the processor:

-cavr

We will then define segments in flash memory.

Defining the reset and interrupt vectors
We will use the XLINK option -Z to define each segment in the program
address space, the internal flash memory.

The AT90S8515 derivative has 13 interrupt vectors and one reset vector.
We therefore specify 14 interrupt vectors, each of two bytes.

LINKER COMMAND FILE CONFIGURATION

CAVR-1

20

The reset vector and interrupt vectors must be placed at address 0 and
forwards:

-Z(CODE)INTVEC=0-1B /* 14 Interrupt vectors * 2 bytes
 each */

Defining objects declared __tinyflash
We will now define the segment for constant objects that have been
declared with the __tinyflash keyword:

-Z(CODE)TINY_F=0-FF

Defining compiler-generated segments
Next we will define the segments that are generated by the compiler.
These are used for storing information that is vital to the operation of the
program.

◆ The SWITCH segment which contains data statements used in the
switch library routines. These tables are encoded in such a way as to
use as little space as possible.

◆ The INITTAB segment contains the segment initialization
description blocks that are used by the __segment_init function
which is called by CSTARTUP. This table consist of a number of
SegmentInitBlock_Type objects. This type is declared in the
segment_init.h file which is located in the avr\src\lib directory.

◆ The DIFUNCT segment is only used when a source file has been
compiled in EC++ mode and the file contains global objects (class
instances). The segment will then contain a number of function
pointers that point to constructor code that should be performed for
each object.

-Z(CODE)SWITCH,INITTAB,DIFUNCT=0-1FFF

Defining objects declared __flash
Constant objects that have been declared with the __flash keyword will
be placed in this segment:

-Z(CODE)NEAR_F=0-1FFF

CONFIGURATION LINKER COMMAND FILE

CAVR-1

21

Defining functions declared __nearfunc
Code that comes from functions declared __nearfunc is placed in the
CODE segment. This segment must be placed in the first 128 Kbytes of the
flash memory. The reason for this is that function pointers to
__nearfunc functions are 2 bytes large. All function pointers are word
pointers.

-Z(CODE)CODE=0-1FFF

Defining initialization segments
We will then define the TINY_ID and NEAR_ID segments.

If any non-zero initialized variables are present in the application the
corresponding segment_ID segment will contain the initial values of
those variables. The CSTARTUP module will initialize the segment_I
segments at system start-up by calling the __segment_init function.

-Z(CODE)TINY_ID,NEAR_ID=0-1FFF

This completes the definition of segments in code memory and we will
now define data memory segments.

Defining objects declared __tiny
The TINY_I, TINY_Z, and TINY_N segments contain objects that have
been declared with the __tiny keyword. After CSTARTUP has run,
segment_I has been initialized with the values in segment_ID and
segment_Z has been cleared so that it contains all zeros.

-Z(DATA)TINY_I,TINY_Z,TINY_N=60-FF

Defining objects declared __near
We will now define the segments that contain objects that have been
declared with the __near keyword. After CSTARTUP has run, segment_I
has been initialized with the values in segment_ID and segment_Z has
been cleared so that it contains all zeros.

-Z(DATA)NEAR_I,NEAR_Z=60-25F

Defining the data stack
The data stack, CSTACK, is used for auto variables, function parameters,
and temporary storage. It is therefore important that the data stack is
large enough. However, a too large stack will waste valuable RAM space.

To determine approximately how much data stack an application
requires, simply add the stack information given at the end of each
compiler list file in your project.

LINKER COMMAND FILE CONFIGURATION

CAVR-1

22

The given value does not include stack used by interrupts and assembler
functions written by the user. It is therefore necessary to add a small
safety margin to the value given in the list files.

-Z(DATA)CSTACK+_CSTACK_SIZE=60-25F

Notice that the segment size was defined earlier in the linker command
file, see Defining the stack and heap segments, page 19.

If external SRAM is available it is possible to place the stack there.
However, the external memory is slower than the internal so moving the
stacks to external memory will decrease the system performance.

Defining the malloc HEAP segment
If the application uses the library functions malloc or calloc, the
memory is allocated from the HEAP segment. It is therefore important that
the segment is placed so that a default pointer can point to it. Since this
linker command file assumes that the small memory model is used, the
heap must be placed in the range 0x0–0xFFFF.

The library technology is such that if no calls are made to malloc,
calloc, or realloc, this segment will not be included. It is therefore safe
to include it in all your linker command files.

-Z(DATA)HEAP+_HEAP_SIZE=60-25F

Notice that the segment size was defined earlier in the linker command
file, see Defining the stack and heap segments, page 19.

Defining the return address stack
The return address stack is used for storing the return address when a
CALL, RCALL, ICALL, or EICALL instruction is executed. Each call will use
three bytes of return address stack. An interrupt will also place a return
address on this stack.

To determine the size of the return address stack, use the same technique
as when determining the size of the data stack; see page 21. Notice
however that if the cross-call optimization has been used (-z9 without
--no_cross_call), the value can be off by as much as a factor of six
depending on how many times the cross-call optimizer has been run
(--cross_call_passes). Each cross-call pass adds one level of calls, for
example, two cross-call passes would result in a tripled stack usage.

-Z(DATA)RSTACK+_RSTACK_SIZE=60-25F

The segment size was defined earlier in the linker command file, see
Defining the stack and heap segments, page 19.

CONFIGURATION LINKER COMMAND FILE

CAVR-1

23

If external SRAM is available it is possible to place the stack there.
However, the external memory is slower than the internal memory so
moving the stacks to external memory will decrease the system
performance.

Defining external memory
The linker command file must contain information about any external
memory devices used. Notice that you must also turn on the external data
and address buses in __low_level_init if external memory is used.

If your application uses external EPROM, include the following
definition:

-Z(CONST)NEAR_C=_EXT_EPROM_BASE-(_EXT_EPROM_BASE+_EXT_EPR
OM_SIZE)

If your application uses external EEPROM, include the following
definition:

-Z(DATA)NEAR_N=_EXT_EEPROM_BASE-(_EXT_EEPROM_BASE+_EXT_EE
PROM_SIZE)

Note: The _EXT_EEPROM_BASE and _EXT_EEPROM_SIZE variables are
defined in the linker command file template, where they have the value 0.
If you want to use these variables, you must provide values that suit the
hardware.

Defining the input and output formatters
Now we shall specify the formatters for the input and output functions.

First we select which printf and sprintf formatter to use. Here we use
the smaller printf in order to reduce the library size:

-e_Printf_1=_Printf

Next we select which scanf and sscanf formatter to use. In order to
reduce the library size, we disable the support for floating point, format
modifiers, and field widths in scanf:

-e_Scanf_1=_Scanf

For further information about the input and output formatters, see Input
and output, page 29.

RUN-TIME LIBRARY CONFIGURATION

CAVR-1

24

Suppressing warnings
Then we suppress one XLINK warning that is not relevant for this
processor:

-w29

This completes the contents of the linker command file.

Defining a linker command file
To specify a linker command file, use the XLINK option -f. For example,
to use the AT90S2313 linker command file (lnk2313.xcl), enter the
command:

xlink filename(s) -f lnk2313

In the IAR Embedded Workbench, the appropriate linker command file
is selected automatically based on which processor configuration and
memory model you have select for your project. You can use the XLINK
options in the IAR Embedded Workbench to override the default choice.
See the AVR IAR Embedded Workbench™ User Guide for additional
information.

RUN-TIME LIBRARY The run-time library includes all run-time functions and the program
initialization module CSTARTUP; see Initialization, page 26, for additional
information. The linker will include only those routines that are
required—directly or indirectly—by your application.

In order to support many AVR microcontroller derivatives, a large
number of run-time libraries are supplied. The library files are by default
located in the avr\lib directory.

A very simple version of the __low_level_init function is also supplied
in the run-time library. This function does nothing except to return 1
(one).

Use the -C XLINK option on the command line to specify which run-time
library to use.

Use the Include options in the XLINK category of the project options to
specify which run-time library to use. See the chapter XLINK options in
the AVR IAR Embedded Workbench™ User Guide for additional
information.

CONFIGURATION RUN-TIME LIBRARY

CAVR-1

25

The following table shows the mapping of run-time libraries, processor
options, and memory models:

For information about the mapping of the -v processor option and AVR
derivative, see Mapping of processor options and AVR derivatives, page 12.

The IAR XLIB Librarian can be used for maintaining and modifying
libraries. For additional information, see the AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide.

Library file Processor option Memory model

dl10t.r90 -v0 tiny

dl10g.r90 -v0 generic

dl11t.r90 -v1 tiny

dl11s.r90 -v1 small

dl11g.r90 -v1 generic

dl12t.r90 -v2 tiny

dl12g.r90 -v2 generic

dl13t.r90 -v3 tiny

dl13s.r90 -v3 small

dl13g.r90 -v3 generic

dl14s.r90 -v4 small

dl14l.r90 -v4 large

dl14g.r90 -v4 generic

dl15t.r90 -v5 tiny

dl15s.r90 -v5 small

dl15g.r90 -v5 generic

dl16s.r90 -v6 small

dl16l.r90 -v6 large

dl16g.r90 -v6 generic

INITIALIZATION CONFIGURATION

CAVR-1

26

INITIALIZATION This section describes the initialization of variables and I/O.

CSTARTUP
The assembly module CSTARTUP is a highly target-specific, vital part of
the run-time model. On processor reset, execution passes to the run-time
system routine CSTARTUP, which normally performs the following:

◆ Enables the external data and address buses if requested in
__low_level_init.

◆ Initializes the stack pointers to the end of CSTACK and RSTACK,
respectively.

◆ Calls __low_level_init; the return value states whether the next
step should be performed.

Note: If you use Embedded C++ and have either global objects, i.e.
the constructor runs before main, or objects with initialized—zero or
non-zero—static data members, you must run the segment
initialization.

◆ Initializes C file-level and static variables except __no_init
variables.

◆ Calls the start of the user program in main().

CSTARTUP is also responsible for receiving and retaining control if the
user program exits, whether through exit or abort.

Customizing CSTARTUP using the command line
Do not modify CSTARTUP unless required by your application. If you need
to modify it, the overall procedure for creating a modified copy of
CSTARTUP and adding it to your project is as follows:

1 Copy the assembly source file cstartup.s90, which is supplied in
the avr\src\lib\ directory, to your project directory.

2 Make any required modifications and save the file under the same
name.

3 Assemble your copy of CSTARTUP using target options that match
your selected compiler options. Also define a symbol for the
appropriate memory model.

CONFIGURATION INITIALIZATION

CAVR-1

27

The assembler option -v corresponds to the compiler option -v. For
information about how the compiler options -v and --cpu map, see
Mapping of processor options and AVR derivatives, page 12.

For example, if you have compiled for the AT90S8515 processor
variant (--cpu=8515 or -v1) and the small memory model, assemble
cstartup.s90 with the command:

aavr cstartup -v1 -DMEMORY_MODEL=s

The assembler option -D defines the memory model symbol.

This will create an object module file named cstartup.r90.

4 Use the -C XLINK option on the command line to specify the library.

5 Link your code using the modified linker command file.

Customizing CSTARTUP using the IAR Embedded Workbench
1 Copy the assembly source file cstartup.s90, which is supplied in

the avr\src\lib\ directory, to your project directory.

2 Make any required modifications and save the file under the same
name.

Define the assembler symbol MEMORY_MODEL=s using the
preprocessor options in the assembler category in the IAR Embedded
Workbench.

3 Assemble your copy of cstartup.s90 using the same processor
configuration and memory model as you have specified for your
project.

This will create an object module file named cstartup.r90.

4 Add the customized CSTARTUP module to your project.

5 Select the option Ignore CSTARTUP in library on the Include
page in the XLINK category of project options. See the chapter
XLINK options in the AVR IAR Embedded Workbench™ User Guide
for additional information.

6 Rebuild your project.

INITIALIZATION CONFIGURATION

CAVR-1

28

Maintaining library files
The IAR XLIB Librarian command REPLACE-MODULES allows you to
permanently replace the original CSTARTUP with your customized
version. See Part 3: The IAR XLIB Librarian in AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide for detailed
information.

VARIABLE AND I/O INITIALIZATION
In some applications you may want to initialize I/O registers, or omit the
default initialization of data segments performed by CSTARTUP.

You can do this by providing a customized version of the routine
__low_level_init, which is called from CSTARTUP before the data
segments are initialized.

The value returned by __low_level_init determines whether data
segments are initialized.

If the application has external memory this functions must be modified,
so that it enables the external data bus. A skeleton for this function is
supplied in the file low_level_init.c which is by default located in the
avr\src\lib directory. It is vital that the external data bus has been
enabled if RSTACK or CSTACK is placed in the external memory.

To enable the external data bus in __low_level_init, uncomment the
line:

__require(__RSTACK_in_external_ram);

in the skeleton source file low_level_init.c.

This line will make sure that code which enables the external data bus
with one wait state per access is added at the start of the CSTARTUP
module.

Customizing __low_level_init from the command line
In most cases you can use the __low_level_init module provided with
the product. If your application requires that you modify it, the overall
procedure for creating a modified copy of __low_level_init is as
follows:

1 Copy low_level_init.c, by default located in the avr\src\lib
directory, to your project directory.

CONFIGURATION INPUT AND OUTPUT

CAVR-1

29

2 Make any required modifications, including the code necessary for
the initializations. If you also want to disable the initialization of
data segments, make the routine return 0. Save the file using the
same filename.

3 Compile the customized version of low_level_init.c using the
same processor option and memory model as for your project.

4 Link the file to the rest of your code.

Customizing __low_level_init in the IAR Embedded Workbench
In most cases you can use the __low_level_init module provided with
the product. If your application requires that you modify it, the overall
procedure for creating a modified copy of __low_level_init is as
follows:

1 Copy low_level_init.c, by default located in the avr\src\lib
directory, to your project directory.

2 Make any required modifications, including the code necessary for
the initializations. If you also want to disable the initialization of
data segments, make the routine return 0. Save the file using the
same filename.

3 Add the customized version of low_level_init.c to your project.

4 Compile the customized routine using the same processor
configuration and memory model as for the project.

5 Rebuild the project.

INPUT AND OUTPUT The standard C library contains a large number of powerful functions for
I/O operations. In order to simplify adaption to specific hardware, all I/O
functions call a small set of primitive functions, each designed to
accomplish one particular task; for example, __open acts as if it opens a
file and __write outputs a number of characters.

The primitive I/O files are located in the avr\src\lib directory.

I/O function File Description

__open() open.c Open a file.

__close() close.c Close a file.

INPUT AND OUTPUT CONFIGURATION

CAVR-1

30

I/O FUNCTIONS

The primitive I/O functions are the fundamental functions through
which C performs all character-based I/O. For any character-based I/O to
be available, you must provide definitions for these functions using
whatever facilities the hardware environment provides.

The creation of new I/O routines is based upon the files listed above.

The primitive functions identify I/O streams such as an open file, with a
file descriptor that is a unique integer. The I/O streams normally
associated with stdin, stdout, and stderr have file descriptors 0, 1,
and 2, respectively.

The default implementation of the primitive functions maps the I/O
streams associated with stdin and stdout to the debugger; all other
operations are ignored.

Customizing a primitive I/O function on the command line
In most cases you can use the primitive I/O functions provided with the
product. The following section describes how to modify a primitive
function in case your application requires it. The example is based on
__writechar() but applies also to the other primitive I/O functions.

Notice that __writechar serves as the low-level part of the printf
function.

1 Copy the file writechar.c, which is provided in the avr\src\lib
directory, to your project directory.

__read() read.c Read a character buffer.

__readchar() readchar.c Read a character.

__write() write.c Write a character buffer.

__writechar() writechar.c Write a character.

__lseek() lseek.c Set the file position indicator.

remove() remove.c Remove a file.

rename() rename.c Rename a file.

I/O function File Description

CONFIGURATION INPUT AND OUTPUT

CAVR-1

31

2 Make the required additions to your copy of writechar.c, and save
it under the same name. The code in the following example uses
memory-mapped I/O to write to an LCD display:

#include <stdio.h>
#include <yfuns.h>

_STD_BEGIN

int __writechar(int handle, unsigned char ch)
{
 unsigned char * LCD_IO;

 LCD_IO = (unsigned char *) 0x8000;
 *LCD_IO = ch;
 // ch on success, -1 on failure.
 return ch;
}

_STD_END

3 Compile the modified writechar.c using the appropriate processor
and memory model options.

For example, if your program uses the small memory model and the
AT90S8515 microcontroller, compile writechar.c from the
command line with the command:

iccavr writechar -ms --cpu=8515 --library_module
--module_name ?writechar -Ic:\program files\iar
systems\ew23\avr\inc\

Note: The name of each module in the standard library always begins
with ? in order to avoid name collision with user modules.

This will create an optimized replacement object module file named
writechar.r90.

4 Add the following to your XLINK command line:

-A writechar

5 Link your code using the modified linker command file.

INPUT AND OUTPUT CONFIGURATION

CAVR-1

32

Customizing a primitive I/O function in the IAR Embedded
Workbench
In most cases you can use the primitive I/O functions provided with the
product. The following section describes how to modify a primitive
function in case your application requires it. The example is based on
__writechar() but applies also to the other primitive I/O functions.

Notice that __writechar serves as the low-level part of the printf
function.

1 Copy the file writechar.c, which is provided in the avr\src\lib
directory, to your project directory.

2 Make the required additions to your copy of writechar.c, and save
it under the same name. The code in the following example uses
memory-mapped I/O to write to an LCD display:

#include <stdio.h>
#include <yfuns.h>

_STD_BEGIN

int __writechar(int handle, unsigned char ch)
{
 unsigned char * LCD_IO;

 LCD_IO = (unsigned char *) 0x8000;
 *LCD_IO = ch;
 // ch on success, -1 on failure.
 return ch;
}

_STD_END

3 Add the modified writechar to your project.

4 Compile the modified writechar.c using the same processor
configuration and memory model options as for the project.

This will create an optimized replacement object module file named
writechar.r90.

5 Rebuild the project.

CONFIGURATION MODULE CONSISTENCY

CAVR-1

33

Maintaining library files
The IAR XLIB Librarian command REPLACE-MODULES allows you to
permanently replace the original CSTARTUP with your customized
version. See Part 3: The IAR XLIB Librarian in AVR IAR Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™ Reference Guide for detailed
information.

ACCESSING THE I/O SYSTEM
Your application may access the AVR I/O system by using the
memory-mapped internal special function registers (SFRs).

To efficiently access the AVR I/O system, the __io keyword should be
included in the code.

All operators that apply to integral types may be applied to SFR registers.
Predefined declarations for the AVR Family are supplied; see Input and
output, page 29.

Predefined special function registers (SFRs) and interrupt vectors for the
most common AVR derivatives are given in the iochip.h files. These
files are provided with the product. The filename indicates which
derivative the file supports; for example, iom103.h supports the
AT90mega103 derivative. Notice that these target-specific header files
can be included also in assembly source code.

I/O files for other AVR derivatives can easily be created by using the I/O
file of a similar derivative as a template.

MODULE
CONSISTENCY

The overall purpose of maintaining module consistency is to avoid
unexpected behavior in the generated code and to make sure that the
modules can be linked properly.

PROJECT OPTIONS
In order to support many different AVR derivatives, the AVR IAR
Compiler includes a large number of processor variants and memory
models.

It is very important to use the same project options for all modules in an
application since, for example, the maximum code size and maximum
stack size differ between the processor variants and memory models.

MODULE CONSISTENCY CONFIGURATION

CAVR-1

34

DATA TYPES
By default the double type is represented by 32-bit numbers in standard
IEEE format. The compiler option --64bit_doubles allows you to use
64-bit numbers instead; see Floating-point types, page 52, and
--64bit_doubles, page 109, for detailed information.

If your application requires the double type, make sure to use the same
representation in all modules.

REGISTER USAGE
The AVR IAR Compiler allows you to lock registers that can be used as
global register variables. It is possible to lock up to 12 registers.

In order to maintain module consistency, make sure to lock the same
number of registers in all modules.

For additional information, see Register usage, page 37, and --lock_regs,
page 94.

RUN-TIME MODEL ATTRIBUTES
Use the assembler directive RTMODEL to enforce compatibility between
modules. If a module defines a run-time model attribute, all modules that
are linked with this module must have the same value for that attribute,
or the special wild-card value *.

The following table shows the run-time model attributes that are
available for the AVR IAR Compiler. These can be included in assembler
code or in mixed C or Embedded C++and assembler code, and will at
link time be used by XLINK to ensure consistency between modules.

Run-time model attribute Value Description

__rt_version 2.20 Version number for run-time
model attributes.

__no_rampd Enabled or
disabled

Defined for targets with
>64 Kbytes of data memory.
Disabled if the target processor
has a RAMPD register, otherwise
enabled.

__cpu 0–6 Corresponds to the -v option.

CONFIGURATION MODULE CONSISTENCY

CAVR-1

35

The easiest way to find the proper settings of the RTMODEL directive is to
compile a C or Embedded C++ module and examine the result.

If you are using assembler routines in the C or Embedded C++ code,
refer to the chapter Assembler directives reference in the AVR IAR
Assembler, IAR XLINK Linker™, and IAR XLIB Librarian™ Reference
Guide.

__memory_model 1–4 Corresponds to the memory
model option:

__cpu_name AT90XXXX Corresponds to the processor
specified with the --cpu
compiler option, for example
AT90S2313 when the
--cpu=2313 option is used.

__enhanced_core enabled Available only if the compiler
option --enhanced_core or
--cpu for a target processor
with enhanced core has been
specified.

__double_size 32 or 64 States the size of double. The
default is 32. Use the compiler
option --64bit_doubles to
override the default.

Run-time model attribute Value Description

Memory model Value

Tiny 1

Small 2

Large 3

Generic 4

OPTIMIZATIONS CONFIGURATION

CAVR-1

36

OPTIMIZATIONS The AVR IAR Compiler allows you to generate code that is optimized
either for size or for speed, at a selectable optimization level. Both
compiler options and #pragma directives are available for specifying the
preferred type and level of optimization:

◆ The chapter Compiler options contains reference information about
the following command line options, which are used for specifying
optimization type and level: --no_code_motion,
--no_cross_call, --no_cse, --no_inline, -s[0–9], and
-z[0–9].

Notice that the --no_cross_call option decreases the RSTACK usage
on small derivatives and improves the readibility of the list file when
you use high levels of size optimizations.

Refer to the AVR IAR Embedded Workbench™ User Guide for
information about the compiler options available in the IAR
Embedded Workbench.

◆ Refer to Optimize, page 131, for information about the #pragma
directives that can be used for specifying optimization type and level.

Normally you would use the same optimization level for an entire project
or file, but the #pragma optimize directive allows you to fine-tune the
optimization for a specific code section, for example a time-critical
function.

The purpose of optimization is either to reduce the code size or to
improve the execution speed. In the AVR IAR Compiler, however, most
speed optimization alternatives also reduce the code size.

A high level of optimization will result in increased compile time and may
also make debugging more difficult since it will be less clear how the
generated code relates to the source code. We therefore recommend that
you use a low optimization level during the development and test phases
of your project, and a high optimization level for the release version.

CAVR-1

37

ASSEMBLY LANGUAGE
INTERFACE
The AVR IAR Compiler allows assembly language modules to be
combined with compiled C or Embedded C++ modules. This is
particularly useful for small, time-critical routines that need to be written
in assembly language and then called from a C or Embedded C++ main
program.

This chapter describes the interface between a C or Embedded C++
main program and the assembly language routines.

C CALLING
CONVENTION

REGISTER USAGE
The registers R4–R15 and R24–R27 are preserved by the called function.
This means that they are saved on the stack if used within the function.
All other registers, R0–R3, R16–R23, and R30–R31, are scratch registers.

Registers R15 and downward, in total 12 registers, can be locked from the
command line and used for global register variables; see the compiler
option --lock_regs, page 94, and Placing data in registers, page 113, for
details.

The return address stack and the data stack are separate. The return data
stack, RSTACK, uses internal I/O ports. These ports and the return address
stack pointer, SP, are described in the iochip.h include files provided
with the product.

The registers R16–R23 are used for passing as many as possible of the
parameters of the function. The remaining parameters are passed on the
stack. The compiler may change the order of the parameters in order to
achieve efficient register usage.

Notice that if you call C routines from assembly language, the values in
the scratch registers will be destroyed.

C CALLING CONVENTION ASSEMBLY LANGUAGE INTERFACE

CAVR-1

38

PARAMETER PASSING
Local or auto variables are by default placed on the stack. The compiler
stores local variables in registers when this is more efficient, regardless of
the register keyword. The compiler will then use either scratch or
non-scratch registers. The variables are stored according to the frequency
of their use, in decreasing order—less frequently used—from the stack
pointer.

Function return values are passed in registers R16–R19.

struct and union return values larger than 4 bytes are passed using a
pointer. The pointer is returned in the return registers, see the table
below. If the returned struct or union is 4 bytes or less, it will be passed
in registers. An implicit first parameter is passed to the function, pointing
to the memory to be used when storing the return value. If the return
value is larger than 4 bytes, it it always passed on the stack.

The __farfunc and __nearfunc keywords only affect the size of the
function pointers. It is always possible to call __farfunc functions from
__nearfunc functions and vice versa.

The called function exits by deallocating auto variables, restoring
registers, deallocating stack parameters, and finally performing a RET
instruction which pops the return address from the return stack.

Functions with ellipsis parameters (…) do not deallocate stack parameters;
this is done by the calling function instead.

RETURN VALUES
The following table shows in which registers the return values are passed:

Size Registers

1 byte R16

2 bytes R16–R17

3 bytes R16–R18

4 bytes R16–R19

ASSEMBLY LANGUAGE INTERFACE C CALLING CONVENTION

CAVR-1

39

STACK FRAMES
A function call creates a stack frame as follows:

Notice that only the registers that are used will be saved.

MONITOR FUNCTIONS
A monitor function causes interrupts to be disabled during execution of
the function. At function entry the status register SREG is saved and
global interrupts are disabled. At function exit the global interrupt-
enabled bit (I) is restored in the SREG register, and thereby the interrupt
status existing before the function call is also restored.

For additional information, see Monitor functions, page 118.

CALLING ASSEMBLY ROUTINES FROM C
An assembly routine that is to be called from C must:

◆ Conform to the calling convention described on page 37.

◆ Have a PUBLIC entry-point label.

◆ Be declared as external before any call, to allow type checking and
optional promotion of parameters, as in the following examples:

extern int foo(void)

Stack parameters

Any parameters that did not go into registers.

Saved registers

R4–R15, R24–R27

Auto variables

Area for local variables.

Temporary storage

Any temporary values.

High
address

Low
address Y

Stack pointer

C CALLING CONVENTION ASSEMBLY LANGUAGE INTERFACE

CAVR-1

40

or

extern int foo(int i, int j)

To fulfil these requirements, you should create a code skeleton as
described on page 41.

ICCA90 CALLING CONVENTION
This section describes the ICCA90 (version 1.x) calling convention, which
can be selected by the use of the compiler option --version1_calls ,
which is described on page 106, or the extended keyword __version_1,
which is described on page 121.

Register usage
The 30 registers (not counting the Y register pair, which is used as the
data stack pointer) are divided into two regions: 14 scratch registers
(R0–R3, R16–R23, and R30–R31) and 16 local registers. The local registers
are preserved across function calls whereas the scratch registers are not.

Register variables and temporary values are placed in local registers,
which are preserved during function calls. Scratch registers are used
when passing parameters and return values and can also be used for
in-between calls for other purposes.

Stack frames and parameter passing
During a function call the calling function places up to two parameters in
the scratch registers (as detailed below) and then pushes any other
parameters onto the data stack. Control is then passed to the called
function with the return address being pushed onto the return stack.

The called function stores any local registers required by the function on
the data stack. It allocates space for the function´s auto variables and
temporary values and then proceeds to run the function itself.

The called function exits by deallocating auto variables, restoring
registers, deallocating stack parameters, and finally performing a RET
instruction which pops the return address from the return stack.

Functions with ellipsis parameters (…) do not deallocate stack parameters;
this is done by the calling function instead.

The leftmost two parameters are passed in registers if they are scalar and
up to 32 bits in size. Unscalar values, structs, unions, and actual
parameters whose corresponding formal parameter is an elipsis (…), are
always passed on the stack, as are all parameters after the second.

ASSEMBLY LANGUAGE INTERFACE CREATING SKELETON CODE

CAVR-1

41

The following table shows some of the possible combinations:

* Where b denotes an 8-bit data type, w denotes a 16-bit data type, and l
denotes a 32-bit data type. If the first and/or second parameter is a 3-byte
pointer, it will be passed in R16–R19 or R20–R22 respectively.

See the table on page 38 for information about how the return values are
passed.

Interrupt functions
Interrupt functions differ from ordinary C functions in that:

◆ Flags and scratch registers are saved.

◆ Calls to interrupt functions are made via interrupt vectors, direct
calls are not allowed.

◆ No arguments can be passed to an interrupt function.

CREATING SKELETON
CODE

The recommended way to create an assembly language routine with the
correct interface is to start with an assembly language source created by
the compiler. Notice that you must create a skeleton for each given
routine. You must also test the register allocation since the calling
convention may change the order of arguments.

The following example shows how to create skeleton code to which you
can easily add the functional body of the routine. The skeleton source
needs only to declare the variables required and perform simple accesses
to them. In this example, the assembler routine takes int, char, and
long, and then returns a char:

char globChar;
int globInt;
long globLong;

Parameters* Parameter 1 Parameter 2

f(b1,b2,…) R16 R20

f(b1,w2,…) R16 R20, R21

f(w1,l1,…) R16, R17 R20, R21, R22, R23

f(l1,b2,…) R16, R17, R18, R19 R20

f(l1,l2,…) R16, R17, R18, R19 R20, R21, R22, R23

CREATING SKELETON CODE ASSEMBLY LANGUAGE INTERFACE

CAVR-1

42

char func(int arg1, char arg2, long arg3)
{
 char locChar = arg2; /* set local */
 globInt = arg1; /* use globInt/arg1 */
 globChar = arg2; /* use globChar/arg2 */
 globLong = arg3; /* use globLong/arg3 */
 return locChar; /* set return value */
}

void main(void)
{
 long locLong = globLong;
 globChar = func(globInt, globChar, locLong);
}

Note: In this example we use a low optimization level when compiling the
code to show local and global variable access. If a higher level of
optimization is used, the required references to local variables could be
removed during the optimization. The actual function declaration is not
changed by the optimization level.

The skeleton code should be compiled as follows:

iccavr shell --cpu=2313 -lA . -z3

The -lA option creates an assembly language output file including C or
Embedded C++ source lines as assembler comments. The . (period)
specifies that the assembler file should be named in the same way as the
C or Embedded C++ module, i.e. shell, but with the filename extension
s90.

In the IAR Embedded Workbench, use the same options as for your
project to compile the skeletod code but make sure to specify a low level
of optimization.

The result is the assembler source shell.s90 containing the
declarations, function call, function return, and variable accesses.

Viewing the output file
The output file contains the following important information:

◆ The calling conventions.

◆ The return values.

ASSEMBLY LANGUAGE INTERFACE CREATING SKELETON CODE

CAVR-1

43

◆ The global variables.

◆ The function parameters.

◆ How to create space on the stack (autovariables).

◆ The following list shows an example of an assembler output file with
C or Embedded C++ source comments.The list file has been
slightly modified to work as a good example.

NAME shell

 RTMODEL "__cpu", "0"

 RTMODEL "__cpu_name", "AT90S2313"

 RTMODEL "__memory_model", "1"

 RTMODEL "__rt_version", "2.20"

 RSEG CSTACK:DATA:NOROOT(0)

 RSEG RSTACK:DATA:NOROOT(0)

 PUBLIC func

 FUNCTION func,0203H

 PUBLIC globChar

 PUBLIC globInt

 PUBLIC globLong

 PUBLIC main

 FUNCTION main,021a03H

 LOCFRAME RSTACK, 2, STACK

; 1 char globChar;

; 2 int globInt;

 RSEG TINY_Z:DATA:NOROOT(0)

; 3 long globLong;

globLong:

 DS 4

globInt:

 DS 2

globChar:

 DS 1

; 4

 RSEG CODE:CODE:NOROOT(1)

CREATING SKELETON CODE ASSEMBLY LANGUAGE INTERFACE

CAVR-1

44

; 5 char func(int arg1, char arg2, long arg3)

; 6 {

; 7 char locChar = arg2; /* set local */

func:

 MOV R19,R18

; 8

; 9 globInt = arg1; /* use globInt/arg1 */

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 STD Z+4,R16

 STD Z+5,R17

; 10 globChar = arg2; /* use globChar/arg2 */

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 STD Z+6,R18

; 11 globLong = arg3; /* use globLong/arg3 */

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 ST Z,R20

 STD Z+1,R21

 STD Z+2,R22

 STD Z+3,R23

; 12

; 13 return locChar; /* set return value */

 MOV R16,R19

 RET

; 14 }

; 15

 RSEG CODE:CODE:NOROOT(1)

; 16 void main(void)

; 17 {

; 18 long locLong = globLong;

main:

 FUNCALL main, func

 LOCFRAME RSTACK, 2, STACK

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 LD R20,Z

 LDD R21,Z+1

 LDD R22,Z+2

ASSEMBLY LANGUAGE INTERFACE COMPILER FUNCTION DIRECTIVES

CAVR-1

45

 LDD R23,Z+3

; 19 globChar = func(globInt, globChar, locLong);

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 LDD R18,Z+6

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 LDD R16,Z+4

 LDD R17,Z+5

 RCALL func

 LDI R30,LOW(globLong)

 LDI R31,globLong >> 8

 STD Z+6,R16

; 20 }

 RET

 END

;

; 68 bytes in segment CODE

; 7 bytes in segment TINY_Z

;

; 68 bytes of CODE memory

; 7 bytes of DATA memory

;

;Errors: none

;Warnings: none

For information about the run-time model attributes used in this example,
see Module consistency, page 33.

COMPILER FUNCTION
DIRECTIVES

The compiler function directives are generated by the compiler to pass
information about functions and function calls to the IAR XLINK Linker.
To view these directives, you must create an assembler list file by using
the compiler option Assember file (-lA).

SYNTAX
FUNCTION <label>,<value>
ARGFRAME <segment>, <size>, <type>
LOCFRAME <segment>, <size>, <type>
FUNCALL <caller>, <callee>

COMPILER FUNCTION DIRECTIVES ASSEMBLY LANGUAGE INTERFACE

CAVR-1

46

PARAMETERS

DESCRIPTION
FUNCTION declares the label name to be a function. value encodes extra
information about the function.

FUNCALL declares that the function caller calls the function callee.
callee can be omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the
function uses in different memories. ARGFRAME declares the space used
for the arguments to the function, LOCFRAME the space for locals. segment
is the segment in which the space resides. size is the number of bytes
used. type is either STACK or STATIC, for stack-based allocation and static
overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or
FUNCALL directive.

After a FUNCTION directive for an external function, there can only be
ARGFRAME directives, which indicate the maximum argument frame usage
of any call to that function. After a FUNCTION directive for a defined
function there can be both ARGFRAME and LOCFRAME directives.

After a FUNCALL directive there will first be LOCFRAME directives
declaring frame usage in the calling function at the point of call, and then
ARGFRAME directives declaring argument frame usage of the called
function.

label Label to be decared as function.

value Function information.

segment Segment in which argument frame or local frame is to
be stored.

size Size of argument frame or local frame.

type Type of argument or local frame; one of STACK or
STATIC.

caller Caller to a function.

callee Called function.

ASSEMBLY LANGUAGE INTERFACE INTERRUPT HANDLING

CAVR-1

47

INTERRUPT
HANDLING

INTERRUPT FUNCTIONS
The calling convention for ordinary functions cannot be used for
interrupt functions since the interrupt can occur any time during
program execution. Hence the requirements for an interrupt routine are
different from those of a normal function, as follows:

◆ All registers that are changed by the interrupt service routine must
be saved. The compiler will automatically generate code to save all
used registers.

◆ The routine must also save the values of the SREG status register and
possible RAMP registers.

◆ Interrupt routines may call reentrant functions, but the use of
lengthy functions should be avoided to prevent conflicts with
real-time interrupts.

Notice than interrupts should not be enabled within an interrupt routine.

Templates for an interrupt service routine module written in C++
(tutor3.cpp) is provided with the product. For an example where it is
used, see the third compiler tutorial in the AVR IAR Embedded
Workbench™ User Guide.

DEFINING INTERRUPT VECTORS
When you have an assembler-written interrupt function, you must install
it in the interrupt vector table. See the AVR IAR Assembler, IAR XLINK
Linker™, and IAR XLIB Librarian™ Reference Guide for a description.

The interrupt vectors are located in the INTVEC segment.

EMBEDDED C++ The C calling convention, which is described on page 37, does not apply
to Embedded C++ functions. Most importantly, a function name is not
sufficient to identify an Embedded C++ function. The scope and the
type of the function are also required to guarantee type-safe linkage and
to resolve overloading.

Another difference is that non-static member functions get an extra,
hidden argument, the this pointer.

EMBEDDED C++ ASSEMBLY LANGUAGE INTERFACE

CAVR-1

48

Using C linkage, the calling convention however conforms to the above
description. An assembly routine may therefore be called from Embedded
C++ when declared in the following manner:

extern "C" {
 int my_routine(int x);
}

Member functions cannot be given C linkage. It is however possible to
construct the equivalent non-member functions. Member access control
is not an issue, since there is no way of preventing an assembly routine
from accessing private and protected members.

To achieve the equivalent to a non-static member function, the implicit
pointer has to be made explicit:

class X;

extern "C" {
 void doit(X *ptr, int arg);
}

It is possible to "wrap" the call to the assembly routine in a member
function. Using an inline member function removes the overhead of the
extra call—provided that function inlining is enabled:

class X {
public:
 inline void doit(int arg) { ::doit(this, arg); }
};

CAVR-1

49

PART 2: COMPILER
REFERENCE
This part of the AVR IAR Compiler Reference Guide contains the
following chapters:

◆ Data representation

◆ Segments

◆ Compiler options

◆ Extended keywords

◆ #pragma directives

◆ Predefined symbols

◆ Intrinsic functions

◆ Library functions

◆ Diagnostics.

PART 2: COMPILER REFERENCE

CAVR-1

50

CAVR-1

51

DATA REPRESENTATION
This chapter describes the data types and pointers supported in the
AVR IAR Compiler.

See the chapter Efficient coding techniques for information about which
data types and pointers provide the most efficient code.

DATA TYPES This section describes how the AVR IAR Compiler represents each of the
C data types.

The AVR IAR Compiler supports all ISO/ANSI C basic data types. Signed
variables are stored in two’s complement form.

Notice that the AVR microcontroller has a byte-oriented architecture.
This means that while the compiled code has alignment 2, all data types
have alignment 1.

INTEGER TYPES
The following table gives the size and range of each C integer data type:

Data type Size Range

char 8 bits 0 to 255

signed char 8 bits -128 to 127

unsigned char 8 bits 0 to 255

short 16 bits -32768 to 32767

signed short 16 bits -32768 to 32767

unsigned short 16 bits 0 to 65535

int 16 bits -32768 to 32767

signed int 16 bits -32768 to 32767

unsigned int 16 bits 0 to 65535

long 32 bits -231 to 231-1

signed long 32 bits -231 to 231-1

unsigned long 32 bits 0 to 232-1

DATA TYPES DATA REPRESENTATION

CAVR-1

52

Enum type
The enum keyword creates each object with the shortest integer type
(char, short, or int/long) required to contain its value.

Char type
The char type is, by default, unsigned in the compiler, but the
--char_is_signed option allows you to make it signed. Notice,
however, that the library is compiled with char types as unsigned.

Bitfields
The char, short, and long bitfields are extensions to the ANSI C integer
bitfields.

Bitfields in expressions will have the same data type as the base type
(signed or unsigned char, short, or int/long).

By default the AVR IAR Compiler places bitfield members from the least
significant to the most significant bit in the container type. By using the
directive #pragma bitfields=reversed the bitfield members are placed
from the most significant to the least significant bit.

FLOATING-POINT TYPES

Floating-point values are represented by 32-bit numbers in standard IEEE
format.

The ranges and sizes for the different floating-point types are:

Notice that the double size is controlled using the compiler option
--64bit_doubles; see page 109 for additional information.

signed long long 64 bits -263 to 263-1

unsigned long long 64 bits 0 to 264-1

Type Range (+/-) Decimals Exponent Mantissa

float ±1.18E-38 to
±3.39E+38

7 8 23

double ±2.23E-308 to
±1.79E+308

15 11 52

Data type Size Range

DATA REPRESENTATION DATA TYPES

CAVR-1

53

4-byte floating-point format
The memory layout of 4-byte floating-point numbers is:

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The precision of the float operators (+, -, *, and /) is approximately
7 decimal digits.

8-byte floating-point format
The memory layout of 8-byte floating-point numbers is:

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The precision of the float operators (+, -, *, and /) is approximately
15 decimal digits.

Special cases
For both 4-byte and 8-byte floating-point formats:

◆ Zero is represented by zero mantissa and exponent. The sign bit
signifies positive or negative zero.

◆ Infinity is represented by setting the exponent to the highest value
and the mantissa to zero. The sign bit signifies positive or negative
infinity.

◆ Not a number (NaN) is represented by setting the exponent to the
highest positive value and the mantissa to a non-zero value. The
value of the sign bit is ignored.

S

31 30 23 22 0

Exponent Mantissa

S

63 62 52 51 0

Exponent Mantissa

POINTERS DATA REPRESENTATION

CAVR-1

54

POINTERS This section describes the available function pointers and data pointers.

FUNCTION POINTERS
The following function pointers are available:

DATA POINTERS
The following data pointers are available:

Pointer Address range Pointer size Description

__nearfunc 0–0x1FFFE 2 bytes Can be called from any part
of the code memory, but
must reside in the first
128K of that space.

__farfunc 0–0x7FFFFE 3 bytes No restrictions on code
placement.

Keyword Storage Memory Range

__tiny 8 bits Data 0x0–0xFF

__near 16 bits Data 0x0–0xFFFF

__far 24 bits Data 0x0–0xFFFFFF
(16-bit arithmetics)

__huge 24 bits Data 0x0–0xFFFFFF

__tinyflash 8 bits Code 0x0–0xFF

__flash 16 bits Code 0x0–0xFFFF

__farflash 24 bits Code 0x0–0xFFFFFF
(16-bit arithmetics)

__hugeflash 24 bits Code 0x0–0xFFFFFF

__eeprom 8 or 16
bits

EEPROM 0x0–0xFF or 0x0–0xFFFF

DATA REPRESENTATION POINTERS

CAVR-1

55

CASTING
Casting a value of an integer type to a pointer of a smaller size is
performed by truncation. Casting to a larger pointer is performed by zero
extension.

Casting a pointer type to a smaller integer type is performed by truncation.
Casting to a larger integer type is performed by first casting the pointer to
the largest possible pointer that fits in the integer.

Casting data pointers to function pointers and vice versa is illegal.

Casting function pointers to integer types would give an undefined result.

size_t
size_t is the unsigned integer type required to hold the maximum size
of an object. The following table shows the typedef of size_t depending
on the processor option:

ptrdiff_t
ptrdiff_t is the type of integer required to hold the difference between
two pointers to elements of the same array. The following table shows the
typedef of ptrdiff_t depending on the processor option:

__generic 1+15
bits
1+23
bits

Data/Code The most significant bit
(MSB) determines whether
__generic points to CODE (1)
or DATA (0). The small generic
pointer is generated for
processor options -v0 and
-v1.

Processor option Typedef

-v0, -v1 unsigned int

-v2, -v3, -v4, -v5, and -v6 unsigned long

Processor option Typedef

-v0, -v1 signed int

-v2, -v3, -v4, -v5, and -v6 signed long

Keyword Storage Memory Range

STRUCTURE TYPES DATA REPRESENTATION

CAVR-1

56

STRUCTURE TYPES Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

GENERAL LAYOUT
Members of a structure (fields) are always allocated in the order given in
the declaration. The members are placed in memory according to the
given alignment (offsets).

For example:

struct {
short s; // stored in byte 0 and 1
char c; // stored in byte 2
long l; // stored in byte 3, 4, 5, and 6
char c2; // stored in byte 7

} s;

The following diagram shows the layout in memory:

ANONYMOUS STRUCTURES AND UNIONS
An anonymous structure or union is a structure or union object that is
declared without a name. Its members are promoted to the surrounding
scope. An anonymous structure or union may not have a tag. In the
example below, the members in the anonymous union can be accessed, in
function f, without explicitly specifying the union name:

struct s
{
 char tag;
 union
 {
 long l;
 float f;
 };
} st;

void f()
{

s.s s.c s.l s.c2

1 byte 4 bytes 1 byte2 bytes

DATA REPRESENTATION STRUCTURE TYPES

CAVR-1

57

st.l = 5;
}

The member names must be unique in the surrounding scope. Having
anonymous structures and unions at file scope, as a global, external,
or static is also allowed. This is for instance used for declaring special
function registers, SFRs, as in the following example, where the union is
anonymous:

__no_init volatile __io union
 {
 unsigned char PIND;
 struct
 {
 unsigned char Bit0:1;
 unsigned char Bit1:1;
 unsigned char Bit2:1;
 unsigned char Bit3:1;
 unsigned char Bit4:1;
 unsigned char Bit5:1;
 unsigned char Bit6:1;
 unsigned char Bit7:1;
 } PIND_bits;
 } @ 0x10

This declares an SFR byte register (PIND) at address 0x10.

Notice that anonymous structures and unions are only available when
language extensions are enabled in the AVR IAR Compiler.

In the IAR Embedded Workbench, language extensions are enabled by
default.

Use the -e compiler option to enable language extensions. See -e, page 89
for additional information.

STRUCTURE TYPES DATA REPRESENTATION

CAVR-1

58

CAVR-1

59

SEGMENTS
The AVR IAR Compiler places code and data into named segments which
are referred to by the IAR XLINK Linker™. Details about the segments
are required for programming assembly language modules, and are also
useful when interpreting the assembly language output from the
compiler.

This chapter mentions many of the extended keywords. For detailed
information about the keywords, see the chapter Extended keywords.

For information about how to define segments in the linker command
file, see Customizing the linker command file, page 18.

INTRODUCTION The following section describes how the segment names are constructed,
and how the declaration of an object affects how it is placed in a segment.

NAMING CONVENTION

Variable segments
All variable segment names consist of a prefix named after the storage
keyword plus a suffix that tells what kind of segment it is.

For example, the keyword:

__near

would yield the prefix NEAR.

For information about the storage keywords, see Data storage, page 112.

Segment suffix
The suffix states the kind of segment. The following suffixes are
available:

Suffix Description

_AN Located data, for example EEPROM_AN. For additional
information, see Absolute location, page 116, and Segment
placement, page 117.

_C Constants. See -y, page 107.

_F Flash memory. See Storing data in code memory, page 112.

INTRODUCTION SEGMENTS

CAVR-1

60

DECLARATION OF OBJECTS

Uninitialized variables
The __no_init keyword gives the user the responsibility for initializing
objects. For __no_init, the const keyword implies that an object is read
only, rather than that the object is stored in read-only memory. It is not
possible to give a __no_init object an initial value. __no_init const
objects are normally located, but may be useful if you want to declare the
object in a special data segment and to assign the address at link time.

For additional information about the keyword, see __no_init, page 115.

Static objects
Declaring an object as volatile does not affect its placement. It is
possible to combine volatile with all of the extended keywords.

Auto objects
const or non-const auto objects are always stored on the stack in
segment CSTACK. They are not allowed to have memory attributes or the
__no_init attribute.

Notice that the address range for some segments may exceed the available
address range on your selected derivative. The address range should then
be truncated from the end to where the address range of the derivative
ends. For example, the AT90S8515 has a 16 bit external address range
allowing a data space of 64 Kbytes or 0–0xFFFF. The address range of the
ABSOLUTE segment below should the be read as 0x0–0xFFFF.

_I Initialized memory. See -y, page 107, for additional
information.

_ID Initial data. Copied to _I at startup.

_N Uninitialized memory. See __no_init, page 115.

_Z Zero initialized memory.

Suffix Description

SEGMENTS SUMMARY OF SEGMENTS

CAVR-1

61

SUMMARY OF
SEGMENTS

The following table lists the segments that are available in the AVR IAR
Compiler. Notice that located denotes absolute location using the @
operator or the #pragma location directive.

Segment Description

ABSOLUTE Used for located variables.

CODE Holds program code declared __nearfunc.

CSTACK Holds the internal data stack.

DIFUNCT Holds pointers to constructor blocks that should be
executed by CSTARTUP before main is called.

EEPROM_AN Holds initialized located EEPROM variables.

EEPROM_I Holds EEPROM variables that are initialized when
downloaded to the chip.

EEPROM_N Holds initialized EEPROM variables.

FAR_C Used for storing __far constant data, including literal
strings.

FAR_F Holds static and global __farflash variables.

FAR_I Holds static and global __far variables that have been
declared with non-zero initial values.

FAR_ID Holds initial values for the variables located in the FAR_I
segment.

FAR_N Holds static and global __far variables to be placed in
non-volatile memory.

FAR_Z Holds static and global __far variables that have been
declared without initial value or with zero initial values.

FARCODE Holds program code declared __farfunc.

HEAP Holds the heap data used by malloc, calloc, and free.

HUGE_C Used for storing __huge constant data, including literal
strings.

HUGE_F Holds static and global __hugeflash variables.

HUGE_I Holds static and global __huge variables that have been
declared with non-zero initial values.

SUMMARY OF SEGMENTS SEGMENTS

CAVR-1

62

HUGE_ID Holds initial values for the variables located in the HUGE_I
segment.

HUGE_N Holds static and global __huge variables to be placed in
non-volatile memory.

HUGE_Z Holds static and global __huge variables that have been
declared without initial value or with zero initial values.

INITTAB Contains compiler-generated table entries that describe the
segment initialization that will be performed at system start
up.

INTVEC Contains the reset and interrupt vectors.

NEAR_C Used for storing __tiny and __near constant data,
including literal strings.

NEAR_F Holds static and global __flash variables.

NEAR_I Holds static and global __near variables that have been
declared with non-zero initial values.

NEAR_ID Holds initial values for the variables located in the NEAR_I
segment.

NEAR_N Holds static and global __near to be placed in non-volatile
memory.

NEAR_Z Holds static and global __near variables that have been
declared without initial value or with zero initial values.

RSTACK Holds the internal return stack.

SWITCH Holds switch tables for all functions.

TINY_F Holds static and global __tinyflash variables.

TINY_I Holds static and global __tiny variables that have been
declared with non-zero initial values.

TINY_ID Holds initial values for the variables located in the TINY_I
segment.

TINY_N Holds static and global __tiny variables to be placed in
non-volatile memory.

Segment Description

SEGMENTS ABSOLUTE

CAVR-1

63

The following sections describe each segment.

The type read-only or read/write indicates whether the segment should
be placed in ROM or RAM memory areas.

ABSOLUTE Holds located variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Used for located variables, i.e. variables that have been assigned an
absolute location by use of the @ operator or #pragma location.

CODE Holds user program code.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x01FFFE.

DESCRIPTION
Holds user program code that has been declared __nearfunc and various
library routines.

Notice that any assembly language routines called from C or Embedded
C++ must meet the calling convention in use. For more information, see
C calling convention, page 37, and Embedded C++, page 47.

TINY_Z Holds static and global __tiny variables that have been
declared without initial value or with zero initial values.

Segment Description

CSTACK SEGMENTS

CAVR-1

64

CSTACK Holds the data stack.

TYPE
Read/write.

MEMORY AREA
Data. The address range depends on the memory model:

DESCRIPTION
Holds the internal data stack. This segment and its length is normally
defined in the linker command file with the following command:

-Z(DATA)CSTACK+nn=start

or

-Z(DATA)CSTACK=start-end

where nn is the length, start is the first memory location, and end is the
last memory location.

DIFUNCT Holds pointers to constructor blocks in EC++ code.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFFFF.

DESCRIPTION
When using EC++ and global objects, it is necessary to call the
constructor methods of these global objects before main is called.

Memory model Address range Comment

Tiny 0x0–0xFF

Small 0x0–0xFFFF

Large 0x0–0xFFFFFF Maximum 64K stack.

Generic 0x0–0xFFFFFF Maximum 64K stack.

SEGMENTS EEPROM_AN

CAVR-1

65

EEPROM_AN Used for programming the inbuilt EEPROM.

TYPE
Read/write.

MEMORY AREA
EEPROM.

DESCRIPTION
This segment is not copied to EEPROM during system start up. Instead it is
used for programming the EEPROM during the download of the code.

Use the command line option --eeprom_size to set the address range for
this segment; see --eeprom_size, page 90, for additional information.

EEPROM_I Used for programming the inbuilt EEPROM.

TYPE
Read/write.

MEMORY AREA
EEPROM.

DESCRIPTION
This segment is not copied to EEPROM during system start up. Instead it is
used for programming the EEPROM during the download of the code.

Use the command line option --eeprom_size to set the address range for
this segment; see --eeprom_size, page 90, for additional information.

EEPROM_N Used for programming the inbuilt EEPROM.

TYPE
Read/write.

MEMORY AREA
EEPROM.

FARCODE SEGMENTS

CAVR-1

66

DESCRIPTION
This segment is used for programming the EEPROM during the download
of the code.

Use the command line option --eeprom_size to set the address range for
this segment; see --eeprom_size, page 90, for additional information.

FARCODE Holds __farfunc program code.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x7FFFFE.

DESCRIPTION
Holds user program code that has been declared __farfunc.

FAR_C Holds __far constant data, including string literals.

TYPE
Read-only.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds __far constant data, including string literals.

Note: This segment is located in external ROM. Systems without external
ROM may not use this segment.

When the -y compiler option is used, __far constant data is located in
the FAR_I segment.

SEGMENTS FAR_F

CAVR-1

67

FAR_F Holds static and global __farflash variables.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x7FFFFF.

DESCRIPTION
Holds static and global __farflash variables and aggregate initializers.

FAR_I Holds __far variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __far variables that have been declared with
non-zero initial values.

When the -y compiler option is used, __far constant data is located in
this segment.

FAR_ID Holds variable initializers.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x7FFFFF.

FAR_N SEGMENTS

CAVR-1

68

DESCRIPTION
Holds initial values for the variables located in the FAR_I segment. These
values are copied from FAR_ID to FAR_I during system initialization.

FAR_N Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __far variables that will not be initialized at
system startup, for example variables that are to be placed in non-volatile
memory. These variables have been declared __no_init, created
__no_init by use of the #pragma memory directive, or allocated by the
compiler.

FAR_Z Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __far variables that have been declared without
initial value or with zero initial values.

SEGMENTS HEAP

CAVR-1

69

HEAP Used for the heap.

TYPE
Read/write.

MEMORY AREA
Data. The address range depends on the memory model:

DESCRIPTION
Holds the heap data used by malloc, calloc, and free.

This segment and its length is normally defined in the linker command
file by the command:

-Z(DATA)HEAP+nn=start

where nn is the length and start is the location.

HUGE_C Holds __huge constant data, including string literals.

TYPE
Read-only.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds __huge constant data, including string literals.

Note: This segment is located in external ROM. Systems without external
ROM may not use this segment.

Memory model Address range

Tiny 0x0–0xFF

Small 0x0–0xFFFF

Large 0x0–0xFFFFFF

Generic 0x0–0xFFFFFF

HUGE_F SEGMENTS

CAVR-1

70

HUGE_F Holds static and global __hugeflash variables.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __hugeflash variables and aggregate initializers.

HUGE_I Holds __huge variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __huge variables that have been declared with
non-zero initial values.

When the -y compiler option is used, __huge constant data is located in
this segment.

HUGE_ID Holds variable initializers.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x7FFFFF.

SEGMENTS HUGE_N

CAVR-1

71

DESCRIPTION
Holds initial values for the variables located in the HUGE_I segment.
These values are copied from HUGE_ID to HUGE_I during system
initialization.

HUGE_N Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __huge variables that will not be initialized at
system startup, for example variables that are to be placed in non-volatile
memory. These variables have been declared __no_init, created
__no_init by use of the #pragma memory directive, or allocated by the
compiler.

HUGE_Z Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFFFF.

DESCRIPTION
Holds static and global __huge variables that have been declared without
initial value or with zero initial values.

INITTAB SEGMENTS

CAVR-1

72

INITTAB Segment initialization descriptions.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFFFF.

DESCRIPTION
Contains compiler-generated table entries that describe the segment
initialization which will be performed at system startup.

INTVEC Interrupt vector table.

TYPE
Read-only.

MEMORY AREA
Code. The address range is approximately 0–64.

DESCRIPTION
Holds the interrupt vector table generated by the use of the __interrupt
extended keyword.

Note: This segment must be placed at address 0 and forwards.

NEAR_C Holds __tiny and __near constant data, including string literals.

TYPE
Read-only.

MEMORY AREA
Data. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds __tiny and __near constant data, including string literals.

SEGMENTS NEAR_F

CAVR-1

73

Note: This segment is located in external ROM. Systems without external
ROM may not use this segment.

NEAR_F Holds static and global __flash variables.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds static and global __flash variables and aggregate initializers.

NEAR_I Holds __near variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds static and global __near variables that have been declared with
non-zero initial values.

When the -y compiler option is used, NEAR_C data (__near or __tiny)
is located in this segment.

NEAR_ID Holds variable initializers.

TYPE
Read-only.

NEAR_N SEGMENTS

CAVR-1

74

MEMORY AREA
Code. The address range is 0x0–0x7FFFFF.

DESCRIPTION
Holds initial values for the variables located in the NEAR_I segment.
These values are copied from NEAR_ID to NEAR_I during system
initialization.

NEAR_N Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds static and global __near variables that will not be initialized at
system startup, for example variables that are to be placed in non-volatile
memory. These variables have been declared __no_init, created
__no_init by use of the #pragma memory directive, or allocated by the
compiler.

NEAR_Z Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds static and global __near variables that have been declared without
initial value or with zero initial values.

SEGMENTS RSTACK

CAVR-1

75

RSTACK Internal return stack.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFFFF.

DESCRIPTION
Holds the internal return stack.

SWITCH Code memory.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFFFF.

DESCRIPTION
The SWITCH segment is for compiler internal use only and should always
be defined. The segment allocates, if necessary, jump tables for C switch
statements.

TINY_F Holds static and global __tinyflash variables.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0xFF.

DESCRIPTION
Holds static and global __tinyflash variables and aggregate initializers.

TINY_I SEGMENTS

CAVR-1

76

TINY_I Holds __tiny variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFF.

DESCRIPTION
Holds static and global __tiny variables that have been declared with
non-zero initial values.

When the -y compiler option is used, FAR_C data is located in this
segment.

TINY_ID Holds variable initializers.

TYPE
Read-only.

MEMORY AREA
Code. The address range is 0x0–0x7FFFFF.

DESCRIPTION
Holds initial values for the variables located in the TINY_I segment.
These values are copied from TINY_ID to TINY_I during system
initialization.

TINY_N Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFF.

SEGMENTS TINY_Z

CAVR-1

77

DESCRIPTION
Holds static and global __tiny variables that will not be initialized at
system startup, for example variables that are to be placed in non-volatile
memory. These variables have been declared __no_init, created
__no_init by use of the #pragma memory directive, or allocated by the
compiler.

TINY_Z Holds static and global variables.

TYPE
Read/write.

MEMORY AREA
Data. The address range is 0x0–0xFF.

DESCRIPTION
Holds static and global __tiny variables that have been declared without
initial value or with zero initial values.

TINY_Z SEGMENTS

CAVR-1

78

CAVR-1

79

COMPILER OPTIONS
This chapter explains how to set the compiler options from the command
line, and gives detailed reference information about each option.

Refer to the AVR IAR Embedded Workbench™ User Guide for information
about the compiler options available in the IAR Embedded Workbench
and how to set them.

SETTING COMPILER
OPTIONS

To set compiler options from the command line, include them on the
command line after the iccavr command, either before or after the
source filename. For example, when compiling the source prog.c, use the
following command to generate an object file with debug information:

iccavr prog --debug

Some options accept a filename, included after the option letter with a
separating space. For example, to generate a listing to the file list.lst:

iccavr prog -l list.lst

Some other options accept a string that is not a filename. The string is
included after the option letter, but without a space. For example, to
define a symbol:

iccavr prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each
other and to the source filename, is not significant. There is, however, one
exception: when you use the -I option, the directories are searched in the
same order as they are specified on the command line.

Notice that a command line option has a short name and/or a long name:

◆ A short option name consists of one character, with or without
parameters. You specify it with a single dash, for example -e.

◆ A long name consists of one or several words joined by underscores,
and it may have parameters. You specify it with double dashes, for
example --char_is_signed.

SETTING COMPILER OPTIONS COMPILER OPTIONS

CAVR-1

80

Specifying parameters
When a parameter is needed for an option with a short name, it can be
specified either immediately following the option or as the next command
line argument. For instance, an include file path of \usr\include can be
specified either as:

-I\usr\include

or as

-I \usr\include

Note: / can be used instead of \ as directory delimiter.

Additionally, output file options can take a parameter that is a directory
name. The output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be
specified either immediately after the equal sign (=) or as the next
command line argument, for example:

--diag_suppress=Pe0001

or

--diag_suppress Pe0001

The option --preprocess is, however, an exception as the filename must
be preceded by space. In the following example comments are included in
the preprocessor output:

--preprocess=c prog

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

iccavr prog -l .

A file specified by ’-’ is standard input or output, whichever is
appropriate.

Note: When an option takes a parameter, the parameter cannot start with
a dash (-) followed by another character. Instead you can prefix the
parameter with two dashes; the following example will create a list file
called -r:

iccavr prog -l ---r

COMPILER OPTIONS ENVIRONMENT VARIABLES

CAVR-1

81

Error return codes
The AVR IAR compiler returns status information to the operating
system which can be tested in a batch file.

The following command line error codes are supported:

ENVIRONMENT
VARIABLES

Compiler options can also be specified in the QCCAVR environment
variable. The compiler automatically appends the value of this variable to
every command line, so it provides a convenient method of specifying
options that are required for every compilation.

The following environment variables can be used with the AVR IAR
Compiler:

See the AVR IAR Assembler, IAR XLINK Linker™, and IAR XLIB
Librarian™ Reference Guide for information about the environment
variables that can be used by the AVR Assembler, IAR XLINK Linker™,
and IAR XLIB Librarian™.

Code Description

0 Compilation successful, but there may have been warnings.

1 There were warnings, provided that the option
--warnings_affect_exit_code was used.

2 There were non-fatal errors.

3 There were fatal errors (compiler aborted).

Environment variable Description

C_INCLUDE Specifies directories to search for include files;
for example:
C_INCLUDE=c:\iar\avr\inc;c:\headers

QCCAVR Specifies command line options; for example:
QCCAVR=-lA asm.lst -z9

OPTIONS SUMMARY COMPILER OPTIONS

CAVR-1

82

OPTIONS SUMMARY The following table summarizes the compiler command line options:

Command line option Description

--char_is_signed ‘char’ is ‘signed char’

--cpu=cpu Processor variant

--cross_call_passes=N Cross-call optimization

-Dsymb[=value] Defines preprocessor
symbols

--debug Generates debug info

--dependencies={i|m} Lists file dependencies

--diag_error=tag,tag,... Treats these as errors

--diag_remark=tag,tag,... Treats these as remarks

--diag_suppress=tag,tag,... Suppresses these diagnostics

--diag_warning=tag,tag,... Treats these as warnings

--disable_direct_mode Disables direct addressing
mode

-e Enables language extensions

--ec++ Enables Embedded C ++
syntax

--eeprom_size=N Specifies EEPROM size

--enhanced_core Enables enhanced
instruction set

-Ipath Includes file path

--initializers_in_flash Places aggregate initializers
in flash memory

-l[c|C|a|A][N] filename Creates list file

--library_module Makes library module

--lock_regs N Lock sregister

-mname Memory model

COMPILER OPTIONS OPTIONS SUMMARY

CAVR-1

83

--memory_model=name Memory model

--module_name=name Sets object module name

--no_code_motion Disables code motion
optimization

--no_cross_call Disables cross-call
optimization

--no_cse Disables common
sub-expression elimination

--no_inline Disables function inlining

--no_rampd Uses RAMPZ instead of RAMPD

--no_ubrof_messages Minimizes object file size

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

-o filename Sets object filename

--only_stdout Uses standard output only

--preprocess=[c][n][l] filename Preprocessor output to file

-r Generates debug
information

--remarks Enables remarks

--root_variables Specifies variables as
__root

-s[0–9] Optimizes for speed

--segment memory_attr=segment_name Changes segment name base

--silent Sets silent operation

--strict_ansi Enables strict ISO/ANSI

-v[0|1|2|3|4|5|6] Processor variant

--version1_calls Uses ICCA90 calling
convention

Command line option Description

--char_is_signed COMPILER OPTIONS

CAVR-1

84

The following sections give full reference information about each
compiler option.

--char_is_signed ‘char’ is ‘signed char’.

SYNTAX
--char_is_signed

DESCRIPTION
By default the compiler interprets the char type as unsigned char. Use
this option to make the compiler interpret the char type as signed char
instead, for example for compatibility with another compiler.

Note: The run-time library is compiled without the --char_is_signed
option. If you use this option, you may get type mismatch warnings from
the linker since the library uses unsigned chars.

Use this option to make the char type equivalent to signed char.

This option corresponds to the ‘char’ is ‘signed char’ option in the
ICCAVR category in the IAR Embedded Workbench.

--cpu Processor variant.

SYNTAX
--cpu=cpu

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Treats all warnings as errors

-y Places constants and literals

-z[0–9] Optimizes for size

--zero_register Specifies register R15 as zero
register

--64bit_doubles Use 64-bit doubles.

Command line option Description

COMPILER OPTIONS --cross_call_passes

CAVR-1

85

DESCRIPTION
Use this option to select the processor for which the code is to be
generated.

For example, use the following command to specify the AT90S4414
derivative:

--cpu=4414

See Processor, page 11, for a summary of the available processor variants.

Notice that to specify the processor, you can use either the --cpu option
or the -v option. The --cpu option is, however, more precise since
implicit assumptions are made about the processor when you use the
-v option. For additional information, see page 13.

This option is related to the Processor configuration option in the
General category in the IAR Embedded Workbench.

--cross_call_passes Cross-call optimization.

SYNTAX
--cross_call_passes=N

DESCRIPTION
Use this option to decrease the RSTACK usage by running the cross-call
optimizer N times, where N can be 1–5. The default is to run it twice.

For additional information, see --no_cross_call, page 97.

Note: Use this option if you have a target processor with a hardware stack
or a small internal return stack segment, RSTACK.

This option is related to the Optimizations options in the ICCAVR
category in the IAR Embedded Workbench.

-D Defines preprocessor symbols.

SYNTAX
-Dsymb[=value]
-D symb[=value]

--debug, -r COMPILER OPTIONS

CAVR-1

86

DESCRIPTION
Defines a symbol with the name symb and the value value. If no value is
specified, 1 is used.

The option -D has the same effect as a #define statement at the top of
the source file.

-Dsymb

is equivalent to:

#define symb

For example, you could arrange your source to produce either the test or
production version of your program depending on whether the symbol
testver was defined. To do this you would use include sections such as:

#ifdef testver
... ; additional code lines for test version only

#endif

Then, you would select the version required on the command line as
follows:

Production version: iccavr prog

Test version: iccavr prog -Dtestver

This option can be used one or more times.

This option is related to the Preprocessor options in the ICCAVR
category in the IAR Embedded Workbench.

--debug, -r Generates debug information.

SYNTAX
 --debug
-r

DESCRIPTION
This option causes the compiler to include additional information
required by C-SPY® and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become
larger than otherwise.

COMPILER OPTIONS --dependencies

CAVR-1

87

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

--dependencies Lists file dependencies.

SYNTAX
--dependencies={i|m}

DESCRIPTION
Causes the compiler to list file dependencies. The following table shows
the effect of the modifiers:

--diag_error Treats the specified diagnostic messages as errors.

SYNTAX
--diag_error=tag,tag,...

DESCRIPTION
An error indicates a violation of the C or Embedded C++ language rules,
of such severity that object code will not be generated, and the exit code
will not be 0. Use this option to classify diagnostic messages as errors.

The following example classifies warning Pe117 as an error:

--diag_error=Pe117

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

Option and modifier Description

--dependencies=i Include filename only (default)

--dependencies=m Use Make-file style

--diag_remark COMPILER OPTIONS

CAVR-1

88

--diag_remark Treats the specified diagnostic messages as remarks.

SYNTAX
--diag_remark=tag,tag,...

DESCRIPTION
A remark is the least severe type of diagnostic message and indicates a
source code construct that may cause strange behavior in the generated
code. Use this option to classify diagnostic messages as remarks.

The following example classifies the warning Pe177 as a remark:

--diag_remark=Pe177

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

--diag_suppress Suppresses the specified diagnostics messages.

SYNTAX
--diag_suppress=tag,tag,...

DESCRIPTION
Suppresses the output of diagnostics for the specified tags.

Use this option to suppress diagnostic messages. The following example
suppresses the warnings Pe117 and Pe177:

--diag_suppress=Pe117,Pe177

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

--diag_warning Treats the specified diagnostic messages as warnings.

SYNTAX
--diag_warning=tag,tag,...

COMPILER OPTIONS --disable_direct_mode

CAVR-1

89

DESCRIPTION
A warning indicates an error or omission that is of concern, but which
will not cause the compiler to stop before compilation is completed. Use
this option to classify diagnostic messages as warnings.

The following example classifies the remark Pe826 as a warning:

--diag_warning=Pe826

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

--disable_direct_mode Disables direct addressing mode.

SYNTAX
--disable_direct_mode

DESCRIPTION
This option prevents the compiler from generating the direct addressing
mode instructions LDS and STS.

Using this option may in some cases reduce the size of the object code.

-e Enables language extensions.

SYNTAX
-e

DESCRIPTION
Language extensions must be enabled for the AVR IAR Compiler to be
able to accept AVR-specific keywords as extensions to the standard C
language.

In the command line version of the AVR IAR Compiler, language
extensions are disabled by default. Use the command line option -e to
enable language extensions such as keywords and anonymous structs
and unions.

Note: The -e option and the --strict_ansi option cannot be used at the
same time.

--ec++ COMPILER OPTIONS

CAVR-1

90

For additional informatioin, see Language extensions overview, page 8.

This option is related to the Language options in the ICCAVR category
in the IAR Embedded Workbench.

--ec++ Enables the Embedded C++ syntax.

SYNTAX
--ec++

DESCRIPTION
In the command line version of the AVR IAR Compiler, Embedded C++
syntax is disabled by default. If you are using Embedded C++ syntax in
your source code, you must enable it by using this option.

This option is related to the Language options in the ICCAVR category
in the IAR Embedded Workbench.

--eeprom_size Specifies the EEPROM size.

SYNTAX
--eeprom_size=N

DESCRIPTION
Use this option to enable the __eeprom extended keyword by specifying
the size of the inbuilt EEPROM. The value N can be 0–65536.

Note: To use the __eeprom extended keyword, the language extensions
must be enabled. For additional information, see -e, page 89, and
Language, page 131.

This option is related to the Code options in the ICCAVR category in the
IAR Embedded Workbench.

COMPILER OPTIONS --enhanced_core

CAVR-1

91

--enhanced_core Enables the enhanced instruction set.

SYNTAX
--enhanced_core

DESCRIPTION
Use this option to allow the compiler to generate instructions from the
enhanced instruction set that is available in some AVR derivatives, for
example AT90mega161.

This option corresponds to the Enhanced core option in the General
category in the IAR Embedded Workbench.

-I Specifies #include file paths.

SYNTAX
-Ipath

DESCRIPTION
Adds a path to the list of #include file paths, for example:

iccavr prog -I\mylib1

Note: Both \ and / can be used as directory delimiters.

This option may be used more than once on a single command line.

Following is the full description of the compiler’s #include file search
procedure:

◆ If the name of the #include file is an absolute path, that file is
opened.

◆ When the compiler encounters the name of an #include file in
angle brackets such as:

#include <stdio.h>

it searches the following directories for the file to include:

1. The directories specified with the -I option, in the order that they
were specified.

--enhanced_core COMPILER OPTIONS

CAVR-1

92

2. The directories specified using the C_INCLUDE environment
variable, if any.

◆ When the compiler encounters the name of an #include file in
double quotes such as:

#include "vars.h"

it searches the directory of the source file in which the #include
statement occurs, and then performs the same sequence as for
angle-bracketed filenames.

If there are nested #include files, the compiler starts searching in the
directory of the file that was last included, iterating upwards for each
included file, searching the source file directory last. Example:

src.c in directory dir
#include “src.h”
...

src.h in directory dir\h
#include “io.h”
...

When dir\exe is the current directory, use the following command
for compilation:

iccavr ..\src.c -I..\dir\include

Then the following directories are searched for the io.h file, in the
following order:

dir\h Current file.

dir File including current file.

dir\include As specified with the -I option.

This option is related to the Preprocessor options in the ICCAVR
category in the IAR Embedded Workbench.

COMPILER OPTIONS --initializers_in_flash

CAVR-1

93

--initializers_in_flash Places aggregate initializers in flash memory.

SYNTAX
--initializers_in_flash

DESCRIPTION
Use this option to place aggregate initializers in flash memory. These
initializers are otherwise placed either in the external const segment or
in the initialized data segments if the compiler option -y was also
specified.

See -y, page 107, and the chapter Segments for additional information.

This option is related to the Code options in the ICCAVR category in the
IAR Embedded Workbench.

-l Generates a listing to the specified filename.

SYNTAX
-l[c|C|a|A][N] filename

DESCRIPTION
Generates a listing to the named file with the default extension lst.

Normally, the compiler does not generate a listing. To generate a listing to
a named file, you use the -l option. For example, to generate a listing to
the file list.lst, use:

iccavr prog -l list

The following modifiers are available:

Option modifier Description

a Assembler file

A (N is implied) Assembler file with C or Embedded C++ source
as comments

c C or Embedded C++ list file

C (default) C or Embedded C++ list file with assembler
source as comments

--library_module COMPILER OPTIONS

CAVR-1

94

This option is related to the List options in the ICCAVR category in the
IAR Embedded Workbench.

--library_module Makes module a library module.

SYNTAX
--library_module

DESCRIPTION
A program module is always included during linking. Use this option to
make a library module that will only be included if it is referenced in your
program.

Use the --library_module option to make the object file be treated as a
library module rather than as a program module.

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

--lock_regs Locks the specified registers.

SYNTAX
--lock_regs N

DESCRIPTION
Use this option to lock registers that are to be used for global register
variables. The value N can be 0–12 where 0 means that no registers are
locked. When you use this option, the registers R15 and downwards will
be locked.

In order to maintain module consistency, make sure to lock the same
number of registers in all modules.

This option is related to the Code options in the ICCAVR category in the
IAR Embedded Workbench.

N No diagnostics in file

Option modifier Description

COMPILER OPTIONS -m, --memory_model

CAVR-1

95

-m, --memory_model Specifies the data memory model.

SYNTAX
-m[tiny|t|small|s|large|l|generic|g]
--memory_model=[tiny|t|small|s|large|l|generic|g]

DESCRIPTION
Specifies the memory model for which the code is to be generated.

By default the compiler generates code for the tiny memory model for all
processor options except -v4 and -v6 where the small memory model is
the default.

Use the -m or the --memory_model option if you want to generate code
for a different memory model.

For example, to generate code for the large memory model, give the
command:

iccavr filename -ml

or:

iccavr filename --memory_model=large

These options are related to the Memory model option in the General
category in the IAR Embedded Workbench.

--module_name Sets the object module name.

SYNTAX
--module_name=name

DESCRIPTION
Normally, the internal name of the object module is the name of the
source file, without a directory name or extension. Use this option to
specify an object module name.

To set the object module name explicitly, use the option
--module_name=name, for example:

iccavr prog --module_name=main

--no_code_motion COMPILER OPTIONS

CAVR-1

96

This option is particularly useful when several modules have the same
filename, since the resulting duplicate module name would normally
cause a linker error; for example, when the source file is a temporary file
generated by a preprocessor.

The following example—in which %1 is an operating system variable
containing the name of the source file—will give duplicate name errors
from the linker:

preproc %1.c temp.c ; preprocess source,
; generating temp.c

iccavr temp.c ; module name is
; always ’temp’

To avoid this, use --module_name=name to retain the original name:

preproc %1.c temp.c ; preprocess source,
; generating temp.c

iccavr temp.c --module_name=%1 ; use original source
; name as module name

Note: In the above example, preproc is an external utility.

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

--no_code_motion Disables the code motion optimization.

SYNTAX
--no_code_motion

DESCRIPTION
Evaluation of loop-invariant expressions and common sub-expressions
are moved to avoid redundant re-evaluation. This optimization, which is
performed at optimization levels 4–9, normally reduces code size and
execution time. The resulting code may however be difficult to debug.

Use --no_code_motion to disable code motion.

Note: This option has no effect at optimization levels 0–3.

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

COMPILER OPTIONS --no_cross_call

CAVR-1

97

--no_cross_call Disables the cross-call optimization.

SYNTAX
--no_cross_call

DESCRIPTION
Use this option to disable the cross-call optimization. This is highly
recommended if your target processor has a hardware stack or a small
internal return stack segment, RSTACK, since this option reduces the
usage of RSTACK.

This optimization is performed at size optimization, level 7–9. Notice
that, although it can drastically reduce the code size, this option increases
the execution time.

For additional information, see --cross_call_passes, page 85.

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

--no_cse Disables the common sub-expression elimination.

SYNTAX
--no_cse

DESCRIPTION
Use --no_cse to disable common sub-expression elimination.

Redundant re-evaluation of common sub-expressions is by default
eliminated at optimization levels 4–9. This optimization normally
reduces both code size and execution time. The resulting code may
however be difficult to debug.

Note: This option has no effect at optimization levels 0–3.

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

--no_inline COMPILER OPTIONS

CAVR-1

98

--no_inline Disables function inlining.

SYNTAX
--no_inline

DESCRIPTION
Use --no_inline to disable function inlining.

Function inlining means that a simple function, whose definition is
known at compile time, is integrated into the body of its caller to
eliminate the overhead of the call.

This optimization, which is performed at optimization levels 7–9,
normally reduces execution time, but increases code size. The resulting
code may also be difficult to debug. In certain cases, the code size will
decrease when this option is used.

The compiler heuristically decides which functions to inline. Different
heuristics are used when optimizing for speed.

Note: This option has no effect at optimization levels 0–6.

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

--no_rampd Uses the RAMPZ register in direct address mode.

SYNTAX
--no_rampd

DESCRIPTION
Specifying this option makes the compiler use the RAMPZ register instead
of RAMPD. This option corresponds to the instructions LDS and STS.

Notice that this option is only useful on processor variants with more
than 64 Kbyte data (-v4 and -v6).

COMPILER OPTIONS --no_ubrof_messages

CAVR-1

99

--no_ubrof_messages Minimizes object file size.

SYNTAX
--no_ubrof_messages

DESCRIPTION
Use this option to minimize the size of your application object file by
excluding messages from the UBROF files. A file size decrease of up to
60% can be expected. Notice that the XLINK diagnostic messages will,
however, be less useful when you use this option.

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

--no_unroll Disables loop unrolling.

SYNTAX
--no_unroll

DESCRIPTION
The code body of a small loop, whose number of iterations can be
determined at compile time, is duplicated to reduce the loop overhead.

This optimization, which is performed at optimization levels 7–9,
normally reduces execution time, but increases code size. The resulting
code may also be difficult to debug.

The compiler heuristically decides which loops to unroll. Different
heuristics are used when optimizing for speed and size. This option has
no effect at optimization levels 0–6.

Note: Loop unrolling is permanently disabled in the AVR IAR Compiler.
This option is available for compatibility with other IAR compilers.

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

--no_warnings COMPILER OPTIONS

CAVR-1

100

--no_warnings Disables all warnings.

SYNTAX
--no_warnings

DESCRIPTION
Normally, the compiler issues standard warning messages. To disable all
warning messages, use the --no_warnings option.

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

-o Sets object filename.

SYNTAX
-o filename

DESCRIPTION
If no object code filename is specified, the compiler stores the object code
in a file whose name consists of the source filename, excluding the path,
plus the filename extension r90.

Use the -o option to specify a name for the output file. The filename may
include a pathname. For example, to store it in the file obj.r90 in the
mypath directory, you would use:

iccavr prog -o \mypath\obj

Note: Both \ and / can be used as directory delimiters.

This option is related to the Output Directories options in the General
category in the IAR Embedded Workbench.

--only_stdout Uses standard output only.

SYNTAX
--only_stdout

COMPILER OPTIONS --preprocess

CAVR-1

101

DESCRIPTION
Causes the compiler to use stdout also for messages that are normally
directed to stderr.

--preprocess Directs preprocessor output to file.

SYNTAX
--preprocess=[c][n][l] filename

DESCRIPTION
Use this option to generate preprocessor output to the named file,
filename.i.

The filename consists of the filename itself, optionally preceded by a
pathname and optionally followed by an extension. If no extension is
given, the extension i is used. In the syntax description above, note that
space is allowed in front of the filename.

The following table shows the mapping of the available preprocessor
modifiers:

This option is related to the Preprocessor options in the ICCAVR
category in the IAR Embedded Workbench.

Command line option Description

--preprocess=c Preserve comments

--preprocess=n Preprocess only

--preprocess=l Generate #line directives

-r, --debug COMPILER OPTIONS

CAVR-1

102

-r, --debug Generates debug information.

SYNTAX
 --debug
-r

DESCRIPTION
This option causes the compiler to include additional information
required by C-SPY® and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become
larger than otherwise.

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

--remarks Enables remarks.

SYNTAX
--remarks

DESCRIPTION
The least severe diagnostic messages are called remarks (see Severity
levels, page 151). A remark indicates a source code construct that may
cause strange behavior in the generated code.

By default remarks are not generated. Use --remarks to make the
compiler generate remarks.

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

--root_variables Specifies variables as __root.

SYNTAX
--root_variables

COMPILER OPTIONS -s

CAVR-1

103

DESCRIPTION
Use this option to apply the __root extended keyword to all global and
static variables. This will make sure that the variables are not removed by
the IAR XLINK Linker.

Notice that the --root_variables option is always available, even if you
do not specify the compiler option -e, language extensions.

This option is related to the Code options in the ICCAVR category in the
IAR Embedded Workbench.

-s Optimizes for speed.

SYNTAX
-s[0–9]

DESCRIPTION
Causes the compiler to optimize the code for maximum execution speed.

If no optimization option is specified -z3 is used by default. If the -s or
the -z option is used without specifying the optimization level, level 3 is
used by default.

Note: The -s and -z options cannot be used at the same time.

The following table shows how the optimization levels are mapped:

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

Option modifier Description

0 No optimization

1-3 Fully debuggable

4-6 Heavy optimization can make the program flow hard
to follow during debug

7-9 Full optimization

--segment COMPILER OPTIONS

CAVR-1

104

--segment Specifies segment name.

SYNTAX
--segment memory_attribute=segment_name

DESCRIPTION
Use this option to place all variables or functions with the memory
attribute memory_attribute in segments with names that begin with
segment_name.

For example, the following command places the __near int a; variable
in the FOO_Z segment:

--segment __near=FOO

For a description of the memory attributes, see Data storage, page 112.

For a description of the segment name suffixes, see Segment suffix, page
59.

--silent Specifies silent operation.

SYNTAX
--silent

DESCRIPTION
By default the compiler issues introductory messages and a final statistics
report. Use --silent to make the compiler operate without sending
unessential messages to standard output (normally the screen). This does
not affect the display of error and warning messages.

--strict_ansi Specifies strict ISO/ANSI.

SYNTAX
--strict_ansi

-v COMPILER OPTIONS

CAVR-1

105

DESCRIPTION
By default the compiler accepts a superset of ISO/ANSI C (see the chapter
IAR C extensions). Use --strict_ansi to ensure that the program
conforms to the ISO/ANSI C standard.

Note: The -e option and the --strict_ansi option cannot be used at the
same time.

This option is related to the Language options in the ICCAVR category
in the IAR Embedded Workbench.

-v Specifies the processor variant.

SYNTAX
-v[0|1|2|3|4|5|6]

DESCRIPTION
Use this option to select the processor derivative for which the code is to
be generated. The following processor variants are available:

Command line option Processor variant

-v0 AT90S2313
AT90S2323
AT90S2333
AT90S2343
AT90S4433

-v1 AT90S4414
AT90S4434
AT90S8515
AT90S8534
AT90S8535

-v2 Reserved for future derivatives

-v3 AT90mega103
AT90mega161
AT90mega603

-v4 Reserved for future derivatives

-v5 Reserved for future derivatives

--version1_calls COMPILER OPTIONS

CAVR-1

106

See also --cpu, page 84, and Processor, page 11.

This option is related to the Processor configuration option in the
General category in the IAR Embedded Workbench.

--version1_calls Specifies the ICCA90 calling convention.

SYNTAX
--version1_calls

DESCRIPTION
This option is provided for backward compatibility. It makes all functions
and function calls use the calling convention of the A90 IAR Compiler,
ICCA90, which is described in ICCA90 calling convention, page 40.

To change the calling convention of a single function, use the
__version_1 function type attribute. See Version 1 calling convention,
page 121, for detailed information.

This option is related to the Code options in the ICCAVR category in the
IAR Embedded Workbench.

--warnings_affect
_exit_code

Makes warnings affect the exit code.

SYNTAX
--warnings_affect_exit_code

DESCRIPTION
By default the exit code is not affected by warnings, only errors produce
a non-zero exit code. With this option, warnings will generate a non-zero
exit code.

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

-v6 Reserved for future derivatives

Command line option Processor variant

COMPILER OPTIONS --warnings_are_ errors

CAVR-1

107

--warnings_are_
errors

Makes the compiler treat all warnings as errors.

SYNTAX
--warnings_are_errors

DESCRIPTION
Use this option to make the compiler treat all warnings as errors. If the
compiler encounters an error, no object code is generated.

If you want to keep some warnings, you can use this option in
combination with the option --diag_warning. First make all warnings
become treated as errors and then reset the ones that should still be
treated as warnings, for example:

--diag_warning=Pe117

For additional information, see --diag_warning, page 88.

This option is related to the Diagnostics options in the ICCAVR
category in the IAR Embedded Workbench.

-y Places constants and literals in initialized data segments.

SYNTAX
-y

DESCRIPTION
Use this option to override the default placement of constants and literals.

Without this option, constants and literals are placed in an external
const segment, segment_C. With this option, constants and literals will
instead be placed in the initialized segment_I data segments that are
copied from the segment_ID segments by CSTARTUP.

Notice that -y is implicit in the tiny memory model.

This option can be combined with the option
--initializers_in_flash; see page 93 for additional information.

This option is related to the Output options in the ICCAVR category in
the IAR Embedded Workbench.

-z COMPILER OPTIONS

CAVR-1

108

-z Optimizes for size.

SYNTAX
-z[0–9]

DESCRIPTION
Causes the compiler to optimize the code for minimum size. If no
optimization option is specified -z3 is used by default. If the -s or the -z
option is used without specifying the optimization level, level 3 is used by
default.

Note: The -s and -z options cannot be used at the same time.

The following table shows how the optimization levels are mapped:

This option is related to the Optimization options in the ICCAVR
category in the IAR Embedded Workbench.

--zero_register Specifies register R15 as zero register.

SYNTAX
--zero_register

DESCRIPTION
Enabling this option will make the compiler use register R15 as zero
register, i.e. register R15 is assumed to always contain zero.

This option can in some cases reduce the size of the generated code,
especially in the large memory model.

Option modifier Description

0 No optimization

1–3 Fully debuggable

4–6 Heavy optimization can make the program flow
difficult to follow during debug

7–9 Full optimization

COMPILER OPTIONS --64bit_doubles

CAVR-1

109

--64bit_doubles Forces the compiler to use the 64-bit double type.

SYNTAX
--64bit_doubles

DESCRIPTION
Use this option to force the compiler to use 64-bit doubles instead of
32-bit doubles which is the default. For additional information, see
Floating-point types, page 52.

This option is related to the Target options in the General category in
the IAR Embedded Workbench.

--64bit_doubles COMPILER OPTIONS

CAVR-1

110

CAVR-1

111

EXTENDED KEYWORDS
This chapter describes the non-standard keywords that support specific
features of the AVR microcontroller.

Notice that the keywords and the @ operator are only available when
language extensions are enabled in the AVR IAR Compiler.

Use the -e compiler option to enable language extensions. See -e, page 89
for additional information.

In the IAR Embedded Workbench, language extensions are enabled by
default.

SUMMARY OF
EXTENDED
KEYWORDS

The following list summarizes the extended keywords that are available
to the AVR IAR Compiler:

◆ __tiny, __near, __far, and __huge which control the storage of
variables.

◆ __tinyflash, __flash, __farflash, and __hugeflash place
objects in code space.

◆ __regvar permanently places a variable in the specified register.

◆ __io and __eeprom control how objects can be accessed.

◆ __generic represents a generic pointer that can point to objects in
both code and data memory.

◆ __no_init supports non-volatile memory.

◆ __root ensures that a function or variable is included in the object
code even if unused.

◆ __interrupt supports interrupt functions.

◆ __monitor supports atomic execution of a function.

◆ __C_task prevents the function from pushing used registers on the
stack.

◆ __version_1 makes the function use the A90 IAR C Compiler,
ICCA90, calling convention.

◆ __nearfunc and __farfunc which control the storage of functions.

DATA STORAGE EXTENDED KEYWORDS

CAVR-1

112

DATA STORAGE The data storage keywords control the storage of variables and constants,
and determine how objects are accessed.

STORING DATA IN DATA MEMORY
By default the compiler places variables in a memory segment depending
on which memory model is used. See Memory model, page 14, for detailed
information. The default location can be overriden by use of the following
keywords:

Note: When the __far keyword is used, objects cannot cross a 64K
boundary. Arithmetics will only be performed on the two lower bytes,
except comparison which is always performed on the entire 24-bit
address.

STORING DATA IN CODE MEMORY
The following table shows the keywords that can be used for placing data
objects in code memory. Notice that the object must be declared as
constants.

Note: The __farflash and __hugeflash keywords are only available for
derivatives with at least 64 Kbytes of flash memory. When the
__farflash keyword is used, objects cannot cross a 64 Kbyte boundary.
Arithmetics will only be performed on the two lower bytes, except
comparison which is always performed on the entire 24-bit address.

Keyword Max. object size Pointer size Address range

__tiny 127 bytes 1 byte 0x0–0xFF

__near 32 Kbytes 2 bytes 0x0–0xFFFF

__far 32 Kbytes 3 bytes 0x0–0xFFFFFF

__huge 16 Mbytes 3 bytes 0x0–0xFFFFFF

Keyword Max. object size Pointer size Address range

__tinyflash 127 bytes 1 byte 0x0–0xFF

__flash 32 Kbytes 2 bytes 0x0–0xFFFF

__farflash 32 Kbytes 3 bytes 0x0–0x7FFFFF

__hugeflash 8 Mbytes 3 bytes 0x0–0x7FFFFF

EXTENDED KEYWORDS DATA STORAGE

CAVR-1

113

PLACING DATA IN REGISTERS
The __regvar keyword is used for declaring that a global or static
variable should be placed permanently in the specified register or
registers. The registers R4–R15 can be used for this purpose, provided that
they have been locked with the --lock_regs compiler option; see
page 94 for additional information. Also refer to Register usage, page 37.

Note: It is not possible to point to an object that has been declared
__regvar. An object declared __regvar cannot have an initial value.

I/O AND EEPROM
The following keywords support the special I/O instructions and ports of
the AVR microcontroller:

GENERIC POINTER
The __generic keyword declares a generic pointer that can point to
objects in both code and data memory. The size of the generic pointer
depends on which processor option is used:

It is not possible to place objects in a generic memory area, only to point
to it.

When using generic pointers, make sure that objects that have been
declared __far and __huge are located in the range 0x0–0x7FFFFF.
Objects may still be placed in the entire data address space, but a generic
pointer cannot point to objects in the upper half of the data address space.

Keyword Max. object size Comment

__io 4 bytes Implies that objects are __no_init
and volatile.

__eeprom 127 bytes or
32 Kbytes

The size of the inbuilt EEPROM
must be specified by use of the
--eeprom_size=N or the --cpu
option; see page 90 or page 84,
respectively.

Processor option Generic pointer size

-v0, -v1 2 bytes

-v2, -v3, -v4, v5, v6 3 bytes

DATA STORAGE EXTENDED KEYWORDS

CAVR-1

114

Note: The __generic keyword cannot be used with the #pragma
type_attribute directive for a pointer. For more information, see
Pointers, page 127.

SYNTAX
The keywords follow the same syntax as the type qualifiers const and
volatile. The following declarations all place the variable i and j in a
NEAR memory segment:

__near int i, j;
int __near i, j;

Notice that the keyword affects all the identifiers.

A keyword that is followed by an asterisk (*), affects the type of the
pointer being declared. A pointer to HUGE memory is thus declared by:

char __huge * p;

Notice that the location of the pointer variable p is not affected by the
keyword. In the following example, however, the pointer variable p2 is
placed in NEAR memory. Like p, p2 points to a character in __huge
memory.

__near char __huge *p2;

Storage can also be specified using typedefs. The following two
declarations are equivalent:

typedef char __near Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

and

__near char b;
char __near *bp;

#PRAGMA DIRECTIVES
It is possible to avoid the non-standard keywords in declarations by using
#pragma directives. The #pragma type_attribute controls the storage
of variables but does not affect their type.

EXTENDED KEYWORDS DATA STORAGE

CAVR-1

115

The previous example may be rewritten using the #pragma
type_attribute:

#pragma type_attribute=__near
typedef char Byte;
typedef Byte *BytePtr;
...

It is important to notice that the #pragma type_attribute directive
affects only the declaration of the identifier that follows immediately after
the directive. The following two declarations are therefore equivalent:

#pragma type_attribute=__near
short c, d;

and

short __near c;
short d;

That is, only c is affected by the keyword.

It is, for obvious reasons, impossible to place a variable in more than one
memory segment. It is therefore not feasible to specify more than one of
the keywords in a declaration. Multiple keywords result in a diagnostic
message.

Note: Direct use of keywords overrides a keyword that is specified in a
#pragma directive.

See the chapter #pragma directives for a complete description of the
#pragma directives.

Pointers
The #pragma type_attribute can also be used for declaring pointers.
The following example will place the variable in NEAR memory. The
variable will be a pointer to FAR memory:

#pragma type_attribute=__near
int __far *c;

__NO_INIT
The __no_init keyword is used for placing a variable in a non-volatile
memory segment and for suppressing initialization at startup.

DATA STORAGE EXTENDED KEYWORDS

CAVR-1

116

The __no_init keyword is placed in front of the type, for instance to
place settings in non-volatile memory:

__no_init int settings[10];

#pragma object_attribute can also be used. The following declaration
is equivalent with the previous one:

#pragma object_attribute=__no_init
int settings[10];

Note: The __no_init keyword cannot be used in typedefs.

__ROOT
The __root attribute on a function or variable ensures that, if the module
containing the function or variable is included in linked output, the
function or variable is also included, whether or not it is referenced by the
rest of the program.

Normally, only the part of the run-time library calling main and any
interrupt vectors are root. This attribute can be used for making other
functions and/or variables behave the same way.

The __root is placed in front of the type, for example to place settings in
non-volatile memory:

__root int settings[10];

#pragma object_attribute can also be used. The following declaration
is equivalent with the previous one:

#pragma object_attribute=__root
int settings[10];

Note: The __root keyword cannot be used in typedefs.

ABSOLUTE LOCATION
It is possible to specify the location of a variable (its absolute address)
using either of the following two constructs:

◆ The @ operator followed by a constant-expression.

The following declaration locates PIND at address 10h:

__no_init __io char PIND @ 0x10;

EXTENDED KEYWORDS FUNCTION EXECUTION

CAVR-1

117

The following declaration locates i at address 20 with the value 10:

const int i@20=10;

◆ The #pragma location directive followed by a constant-expression.

The following declarations are equivalent to the previous
declarations:

#pragma location=0x10
__no_init __io char PIND;

#pragma location=20
const int i=10;

SEGMENT PLACEMENT
It is possible to specify the location of a variable (its absolute address)
using either of the following two constructs:

◆ The @ operator followed by a string such as “constseg”.

The following example declares the constant K to reside in the
constseg segment:

const int K @ “constseg”=10;

The following declaration places i in the BRAVO segment:

__no_init int i @ “BRAVO”;

◆ The #pragma location directive followed by a string.

The following declaration is equivalent to the previous one:

#pragma location=“BRAVO”
__no_init int i;

FUNCTION
EXECUTION

The following keywords control the execution of a function:

◆ __interrupt, which specifies interrupt functions. The #pragma
vector directive can be used for specifying the interrupt vector.
An interrupt function must be of type void and must not have any
parameters.

◆ __monitor, which specifies a monitor function.

◆ __C_task, which declares a function that does not save registers. It
is normally used for main.

FUNCTION EXECUTION EXTENDED KEYWORDS

CAVR-1

118

◆ __root ensures that a function or variable is included in the object
code even if unused.

The keywords are specified before the return type:

__interrupt void foo(void);

It is possible to avoid the non-standard keywords in declarations by using
#pragma type_attribute directive.

The #pragma type_attribute controls the calling conventions of
functions. See the chapter #pragma directives for a complete description
of the #pragma directives.

The previous declaration of foo may be rewritten using #pragma
type_attribute:

#pragma type_attribute=__interrupt
void foo(void);

INTERRUPT FUNCTIONS
The following example declares an interrupt function with interrupt
vector with offset 0x2 in the INTVEC segment:

#pragma vector=0x2
__interrupt void my_interrupt_handler(void);

An interrupt function must be of type void and it cannot take any
parameters.

An interrupt function cannot be called directly from a C program. It can
only be executed as a response of an interrupt request.

It is possible to define an interrupt function without a vector but you
must then add the interrupt vector to the interrupt vector table, INTVEC.

The range of the interrupt vectors depends on the device used.

The iochip.h header file, which corresponds to the selected derivative,
contains predefined names for the existing interrupt vectors.

MONITOR FUNCTIONS
The __monitor keyword causes interrupts to be disabled during
execution of the function. This allows atomic operations to be performed,
such as operations on semaphores that control access to resources by
multiple processes.

EXTENDED KEYWORDS FUNCTION EXECUTION

CAVR-1

119

Avoid using the __monitor keyword on large functions since the
interrupt will otherwise be turned off for too long. For additional
information, see the intrinsic functions __disable_interrupt, page 141,
__enable_interrupt, page 141, __restore_interrupt, page 143, and
__save_interrupt, page 143.

A function declared with monitor is equivalent to any other function in
all other respects.

In the following example a semaphore is implemented using one static
variable and two monitor functions. A semaphore can be locked by one
process and is used for preventing processes to simultaneously use
resources that can only be used by one process at a time, for example a
printer.

/* When the_lock is non-zero, someone owns the lock. */
static unsigned int the_lock = 0;

/* get_lock -- Try to lock the lock.
 * Return 1 on success and 0 on failure. */

__monitor int get_lock(void)
{
 if (the_lock == 0)
 {
 /* Success, we managed to lock the lock. */
 the_lock = 1;
 return 1;
 }
 else
 {
 /* Failure, someone else has locked the lock. */
 return 0;
 }
}

/* release_lock -- Unlock the lock. */

__monitor void release_lock(void)
{
 the_lock = 0;
}

FUNCTION EXECUTION EXTENDED KEYWORDS

CAVR-1

120

The following is an example of a program fragment that uses the
sempahore.

void my_program(void)
{
 if (get_lock())
 {
 /* ... Do something ... */

 /* When done, release the lock. */
 release_lock();
 }
}

C-TASK FUNCTIONS
The __C_task keyword affects the definition of a function. It is typically
used for main.

By default functions save the contents of used non-scratch registers on
stack upon entry, and restore them at exit. Functions declared as
__C_task do not save any registers, and therefore require less stack
space. Such functions should only be called from assembly language
routines.

The function main may be declared __C_task unless it is called by itself
or by another function. In real-time applications with more than one task,
the root function of each task may be declared __C_task.

The keyword is placed in front of the return type, for instance:

__C_task void my_handler(void);

The #pragma object_attribute can also be used. The following
declaration of my_handler is equivalent with the previous one:

#pragma object_attribute=__C_task
void my_handler(void);

Note: __C_task cannot be used in type definitions (typedefs).

Unlike the keywords that specify the calling convention of a function, it
is not necessary to specify __C_task in declarations. The following
example declares my_handler without a keyword (for instance, in a
header file):

extern void my_handler(void);

EXTENDED KEYWORDS FUNCTION CALLING CONVENTION

CAVR-1

121

The definition of my_handler specifies the __C_task keyword:

__C_task void my_handler(void)
{
...
}

If a keyword is specified in a declaration, it is used in the subsequent
definition of the function, for instance:

extern __c_task void my_handler(void);
...
void my_handler(void)
{
...
}

__ROOT
The __root attribute can be used on either a function or a variable. It
ensures that the function or variable is included in the object code even if
unused.

For a description of this attribute, see __root, page 116.

FUNCTION CALLING
CONVENTION

The following keywords control the calling convention of a function:

◆ __version_1

◆ __intrinsic, which declares a predefined in-line or library
function.

VERSION 1 CALLING CONVENTION
The __version_1 keyword is available for backward compatibility. It
makes a function use the calling convention of the A90 IAR C Compiler
instead of the default calling convention, both which are described in C
calling convention, page 37, and Embedded C++, page 47.

FUNCTION STORAGE EXTENDED KEYWORDS

CAVR-1

122

INTRINSIC
The __intrinsic keyword is used with the IAR Systems library
functions, and allows the compiler to make function-specific
optimizations. In the include files provided with the product, some of the
library functions are declared with the __intrinsic keyword. If the
__intrinsic declaration is removed, the function will be called like a
normal function. Declaring other functions as __intrinsic has no
effect.

FUNCTION STORAGE The following keywords control in which memory range a function is
placed:

Notice that pointers with function memory attributes have restrictions in
implicit and explicit casts when casting between pointers and also when
casting between pointers and integer types.

It is possible to call a __nearfunc function from a __farfunc function
and vice versa. Only the size of the function pointer is affected.

A function can be placed in a specific segment also by the use of either:

◆ The @ operator followed by “segment”

◆ The #pragma location directive followed by “segment”

For example:

void f() @ “segment”;
void g() @ “segment”{}
#pragma location=“segment”
void h();

Keyword Address range Pointer size Description

__nearfunc 0x0–0x1FFFE 2 bytes Can be called from the
entire memory area, but
must reside in the first 128
Kbytes of the code memory.

__farfunc 0x0–0x7FFFFE 3 bytes No restrictions on code
placement.

EXTENDED KEYWORDS EMBEDDED C++

CAVR-1

123

EMBEDDED C++ The usage of extended keywords, which is described above, applies to the
common subset of Embedded C++ and C. In Embedded C++, it is thus
possible to use the keywords in type declarations and declarations of
variables and functions with file scope. There are, however, certain
restrictions in the declaration of Embedded C++ class members.

In C, the location of a struct member is determined by the location of
the entire struct. It is thus not possible to declare the storage location of
a particular member. It is, however, possible to declare in which memory
the entire struct is to reside.

<MAttr1> struct S ss;

This principle extends to member variables in Embedded C++. It is not
possible to declare the storage location of a particular member, but it is
possible to declare in which memory the class object is to reside. It is
however required that the pointer to the object can be converted to the
default pointer type, without loss of precision. This is necessary, since
non-static member functions expect a pointer of that type.

class Y {
public:
 int len;
 <Mattr1> char buf[1000]; // Error!!!
};

<Mattr1> Y myBuf; // This is OK

Static member variables are treated as ordinary—file scope— variables
with respect to extended keywords. The following declaration is legal:

class Z {
 static <Mattr1> int numZ; // OK since numZ is static
};

It is furthermore possible to specify the absolute location of static member
variables using the operator @ or the directive #pragma location.

Controlling the calling convention of non-static member functions is not
possible. The calling convention of static member functions may however
be modified using extended keywords, for instance:

class Device {
 static __interrupt void handler();
};

EMBEDDED C++ EXTENDED KEYWORDS

CAVR-1

124

CAVR-1

125

#PRAGMA DIRECTIVES
This chapter describes the #pragma directives of the AVR IAR Compiler.

The #pragma directives are preprocessed, which means that macros are
substituted in a #pragma directive.

All #pragma directives should be entered like:

#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

Note: The #pragma directives warnings, codeseg, baseaddr, function,
and alignment, which were used in the A90 IAR Compiler, are
recognized and will give a diagnostic message but will not work. It is
important to be aware of this if you need to port existing code that
contains any of those old-style #pragma directives.

TYPE ATTRIBUTE The directive #pragma type_attribute affects the declaration of the
identifier, the next variable or the next function, that follows immediately
after the #pragma. It only affects the variable, not its type. This means
that the __generic keyword cannot be used with #pragma
type_attribute.

In the following example, myBuffer is placed in a NEAR segment, whereas
the variable i is not affected by the #pragma directive.

#pragma type_attribute=__near
char inBuffer[10];
int i;

The following declarations, which use extended keywords, are
equivalent. See the chapter Extended keywords for more details.

__near char inBuffer[10];
int i;

TYPE ATTRIBUTE #PRAGMA DIRECTIVES

CAVR-1

126

In the small memory model, the default pointer is __near. In the
following example, the pointer is located in tiny memory, pointing at
__near:

#pragma type_attribute=__tiny
int * pointer;

VARIABLES
The following keywords can be used with the #pragma type_attribute
for a variable:

◆ One of __tiny, __near, __far, and __huge, which control how
variables are located in memory.

◆ __io, which allows objects to be accessed by use of the special I/O
instructions in the AVR microcontroller.

◆ __eeprom, which places objects in the internal EEPROM and make
them accessible through special I/O ports in the AVR
microcontroller.

◆ The __regvar keyword can be used with the #pragma
type_attribute for a global or static variable. It specifies that the
variable should be permanently located in the specified register or
registers. For additional information, see Register usage, page 37, and
--lock_regs, page 94.

CONSTANTS
The following keywords can be used with the #pragma type_attribute
for a constant-declared object:

◆ One of __tinyflash, __flash, __farflash, and __hugeflash.

FUNCTIONS
The following keywords can be used with #pragma type_attribute for
a function:

◆ __interrupt, which specifies interrupt functions. The #pragma
vector directive can be used for specifying the interrupt vector.

◆ __monitor, which specifies a monitor function.

◆ __C_task, which prevents the function from pushing used registers
on the stack. A function that has been declared __C_task can only
be called from assembly language.

#PRAGMA DIRECTIVES MEMORY

CAVR-1

127

◆ __version_1, which specifies that the calling convention of the
A90 IAR C Compiler, ICCA90, should be used instead of the default
calling convention, both which are described in C calling convention,
page 37.

POINTERS
Access to a __generic pointer is implemented with a function call to an
assembler-written library routine. Since this type of access is slow and
generates a lot of code, __generic pointer should be avoided when
possible. The most significant bit in the pointer indicates if data in code
or data memory is being referenced.

Note: The __generic keyword cannot be used with the #pragma
type_attribute directive for a pointer since it determines the location,
not the type of a variable or function. It provides access to data regardless
of whether it is located in code or data memory.

For additional information, see Generic pointer, page 113.

MEMORY The #pragma memory directive directs variables to a specified memory
segment. The following keywords can be used with #pragma memory:

__tiny
__near
__far
__huge
__tinyflash
__flash
__farflash
__hugeflash

For example:

#pragma memory=__huge

The #pragma memory directive is active until it is explicitly turned off
with #pragma memory=default.

#pragma memory overrides both #pragma constseg and #pragma
dataseg.

Note: #pragma memory is available for backward compatibility reasons.
We recommend you to use #pragma type_attribute, the @ operator, or
#pragma location instead.

OBJECT ATTRIBUTE #PRAGMA DIRECTIVES

CAVR-1

128

OBJECT ATTRIBUTE The directive #pragma object_attribute affects the declaration of the
identifier that follows immediately after the directive.

The following keywords can be used with the #pragma
object_attribute for a variable:

◆ __no_init, which places a variable in a non-volatile memory
segment and for suppressing initialization at startup.

◆ __root, which ensures that the variable is included in the object
code even if unused.

The following keywords can be used with the #pragma
object_attribute for a function:

◆ __C_task, which declares a function that does not save registers.

◆ __root, which ensures that the function is included in the object
code even if unused.

In the following example, the variable bar is placed in the non-initialized
segment:

#pragma object_attribute=__no_init
char bar;

Unlike the directive #pragma type_attribute that specifies the storing
and accessing of a variable, it is not necessary to specify an object
attribute in declarations. The following example declares bar without a
#pragma object_attribute:

__no_init char bar;

DATASEG Use the following syntax to place variables in a named segment:

#pragma dataseg=MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

The segment name must not be a predefined segment, see the chapter
Segments for more information. The variable myBuffer will not be
initialized at startup and must thus not have any initializer.

#PRAGMA DIRECTIVES CONSTSEG

CAVR-1

129

The memory in which the segment resides is optionally specified using
the following syntax:

#pragma dataseg=__huge MyOtherSeg

All variables in MyOtherSeg will be accessed using __huge addressing.

CONSTSEG The #pragma constseg directive places constant variables in a named
segment. Use the following syntax:

#pragma constseg=MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

The segment name must not be a predefined segment; see Segments for
more information.

The memory in which the segment resides is optionally specified using
the following syntax:

#pragma constseg=__huge MyOtherSeg

All variables in MyOtherSeg will be accessed using __huge addressing.

LOCATION The #pragma location directive specifices the location—the absolute
address—of the variable whose declaration follows the #pragma
directive. For example:

#pragma location=0x10
char PIND; // PIND is located at address 10h

The directive can also take a string specifying the segment placement for
either a variable or a function, for example:

#pragma location=’foo’

For additional information and examples, see Absolute location, page 116,
Segment placement, page 117, and Function storage, page 122.

VECTOR #PRAGMA DIRECTIVES

CAVR-1

130

VECTOR The #pragma vector directive specifies the interrupt vector of an
interrupt function whose declaration follows the #pragma directive, for
example:

#pragma vector=0x02
__interrupt void my_handler(void);

DIAGNOSTICS The following #pragma directives are available for reclassifying,
restoring, and suppressing diagnostics:

DIAG_REMARK

Syntax: #pragma diag_remark=tag,tag,...

Changes the severity level to remark for the specified diagnostics. For
example:

#pragma diag_remark=Pe177

DIAG_WARNING

Syntax: #pragma diag_warning=tag,tag,...

Changes the severity level to warning for the specified diagnostics. For
example:

#pragma diag_warning=Pe826

DIAG_ERROR

Syntax: #pragma diag_error=tag,tag,...

Changes the severity level to error for the specified diagnostics. For
example:

#pragma diag_error=Pe117

DIAG_DEFAULT

Syntax: #pragma diag_default=tag,tag,...

Changes the severity level back to default or as defined on the command
line for the diagnostic messages with the specified tags. For example:

#pragma diag_default=Pe117

#PRAGMA DIRECTIVES LANGUAGE

CAVR-1

131

DIAG_SUPPRESS

Syntax: #pragma diag_suppress=tag,tag,...

Suppresses the diagnostic messages with the specified tags. For example:

#pragma diag_suppress=Pe117,Pe177

See the chapter Diagnostics for more information about diagnostic
messages.

LANGUAGE The #pragma language directive is used for turning on the IAR language
extensions or for using the language settings specified on the command
line.

Syntax: #pragma language=[extended|default]

OPTIMIZE The #pragma optimize directive is used for decreasing the optimization
level or for turning off some specific optimizations.

Syntax: #pragma optimize=token token token

where token is one or more of the following:

This #pragma directive only affects the function that follows immediately
after the directive.

extended Turns on the IAR extensions and turns off the
--strict_ansi command line compiler option.

default Uses the settings specified on the command line.

s Optimize for speed

z Optimize for size

0–9 Specifies level of optimization

no_cse Turns off common sub-expression elimination

no_inline Turns off function inlining

no_unroll Turns off loop unrolling

no_code_motion Turns off code motion.

PACK #PRAGMA DIRECTIVES

CAVR-1

132

Notice that it is not possible to optimize for speed and size at the same
time. Only one of the s and z tokens can be used.

Note: If you use the #pragma optimize directive to specify an
optimization level that is higher than the optimization level you specify
using a compiler option, this #pragma directive is ignored.

PACK The #pragma pack directive is used for specifying the alignment of
structures and union members.

Syntax: #pragma pack([[{push|pop},][name,]][n])

pack(n) sets the structure alignment to n. The pack(n) only effects
declarations of structures following the #pragma and to the next #pragma
pack or end of file. A #pragma pack within a function will only be active
to the end of the function.

pack() resets the structure alignment to default.

pack(push [,name] [,n]) pushes the current alignment with the label
name and sets alignment to n. Notice that both name and n are optional.

pack(pop [,name] [,n]) pops to the label name and sets alignment to n.
Notice that both name and n are optional.

If name is omitted, only top alignment is removed. If n is omitted,
alignment is set to the value popped from the stack.

Note: In the AVR IAR Compiler, alignment is always 1 and this #pragma
directive has no effect. It is available in order to maintain compatibility
with other IAR Systems compilers.

n Packing alignment, one of:
1, 2, 4, 8 or 16

name Pushed or popped alignment label.

#PRAGMA DIRECTIVES BITFIELDS

CAVR-1

133

BITFIELDS The #pragma bitfields directive controls the order of bitfield members.

Syntax: #pragma bitfields=[reversed|default]

By default the AVR IAR Compiler places bitfield members from the least
significant to the most significant bit in the container type. By using the
#pragma bitfields=reversed the bitfield members are placed from the
most significant to the least significant bit.

BITFIELDS #PRAGMA DIRECTIVES

CAVR-1

134

CAVR-1

135

PREDEFINED SYMBOLS
This chapter gives reference information about the predefined
preprocessor symbols that are supported in the AVR IAR Compiler.

__CPU__ Processor identifier.

SYNTAX
__CPU__

DESCRIPTION
Expands to a number which corresponds to the processor option --cpu
or -vn in use.

__DATE__ Current date.

SYNTAX
__DATE__

DESCRIPTION
Expands to the date of compilation is returned in the form Mmm dd yyyy.

__cplusplus C++ identifier.

SYNTAX
__cplusplus

DESCRIPTION
Expands to the number 1 when the compiler runs in Embedded C++
mode. When the compiler runs in ANSI C mode, the symbol is undefined.

This symbol can be used with #ifdef to detect that the compiler accepts
C++ code. It is particularly useful when creating header files that are to
be shared by C and Embedded C++ code.

__embedded_cplusplus PREDEFINED SYMBOLS

CAVR-1

136

__embedded_cplusplus Embedded C++ identifier.

SYNTAX
__embedded_cplusplus

DESCRIPTION
Expands to the number 1 when the compiler runs in Embedded C++
mode. When the compiler runs in ANSI C mode, the symbol is undefined.
This symbol can be used with #ifdef to detect that the compiler accepts
only the Embedded C++ subset of the C++ language.

__FILE__ Current source filename.

SYNTAX
__FILE__

DESCRIPTION
Expands to the name of the file currently being compiled.

__IAR_SYSTEMS_ICC__ IAR Compiler identifier.

SYNTAX
__IAR_SYSTEMS_ICC__

DESCRIPTION
Expands to a number that identifies the IAR Compiler platform. The
current identifier is 4. Notice that the number could be higher in a future
version of the product.

This symbol can be tested with #ifdef to detect that the code was
compiled by an IAR Compiler.

__ICCAVR__ AVR IAR Compiler identifier.

SYNTAX
__ICCAVR__

PREDEFINED SYMBOLS __LINE__

CAVR-1

137

DESCRIPTION
Expands to the number 1 when the code is compiled with the AVR IAR
Compiler.

__LINE__ Current source line number.

SYNTAX
__LINE__

DESCRIPTION
Expands to the current line number of the file currently being compiled.

__MEMORY_MODEL__ AVR IAR Compiler memory model identifier.

SYNTAX
__MEMORY_MODEL__

DESCRIPTION
Expands to a value reflecting the selected memory model according to the
following table:

__STDC__ ISO/ANSI standard C identifier.

SYNTAX
__STDC__

Value Memory model

1 Tiny

2 Small

3 Large

4 Generic

__STDC_VERSION__ PREDEFINED SYMBOLS

CAVR-1

138

DESCRIPTION
Expands to the number 1. This symbol can be tested with #ifdef to
detect that the compiler used adheres to ANSI C.

__STDC_VERSION__ ISO/ANSI Standard C and version identifier.

SYNTAX
__STDC_VERSION__

DESCRIPTION
Expands to the number 1994092.

Note: This predefined symbol does not apply to the EC++ version of the
product.

__TID__ Target identifier for the AVR IAR Compiler.

SYNTAX
__TID__

DESCRIPTION
Expands to the target identifier containing the following parts:

◆ A number unique for each IAR Compiler (i.e. unique for each
target).

◆ The value of the --cpu or -v option. For details, see Processor, page
11.

◆ The value corresponding to the --memory_model option.

For the AVR microcontroller, the target identifier is 0x5A.

The __TID__value is constructed as:

((t << 8) | (c << 4) |m)

You can extract the values as follows:

t = (__TID__ >> 8) & 0x7F; /* target identifier */

c = (__TID__ >> 4) & 0xF; /* cpu option */

PREDEFINED SYMBOLS __TIME__

CAVR-1

139

To find the value of the target identifier for the current compiler, execute:

printf("%ld",(__TID__ >> 8) & 0x7F)

__TIME__ Current time.

SYNTAX
__TIME__

DESCRIPTION
Expands to the time of compilation in the form hh:mm:ss.

__VER__ Compiler version number.

SYNTAX
__VER__

DESCRIPTION
Expands to an integer representing the version number of the compiler.

EXAMPLE
The example below prints a message for version 3.34.

#if __VER__ == 334
#message "Compiler version 3.34"
#endif

m = __TID__ & 0x0F; /* memory model */

__VER__ PREDEFINED SYMBOLS

CAVR-1

140

CAVR-1

141

INTRINSIC FUNCTIONS
This chapter gives reference information about the intrinsic functions.

To use intrinsic functions in an application, include the header file
inavr.h.

Notice that the intrinsic function names start with double underscores,
for example:

__enable_interrupt

__delay_cycles SYNTAX
__delay_cycles(unsigned long int);

DESCRIPTION
Use this intrinsic to make the compiler generate code that takes the given
amount of cycles to perform, i.e. it inserts a time delay that lasts the
specified number of cycles.

Note: The specified value must be a constant integer expression and not
an expression that is evaluated at run time.

__disable_interrupt SYNTAX
void __disable_interrupt(void);

DESCRIPTION
Inserts a disable interrupt instruction, DI.

__enable_interrupt SYNTAX
void __enable_interrupt(void);

DESCRIPTION
Inserts an enable interrupt instruction, EI.

__extended_load_program_memory INTRINSIC FUNCTIONS

CAVR-1

142

__extended_load_program_
memory

SYNTAX
unsigned char __extended_load_program_memory(unsigned
char __farflash *)

DESCRIPTION
Returns one byte from code memory.

Use this intrinsic function to access constant data in code memory.

__insert_opcode SYNTAX
void __insert_opcode(unsigned short);

DESCRIPTION
Inserts a DW unsigned directive.

__load_program_memory SYNTAX
unsigned char __load_program_memory(unsigned char __flash
*);

DESCRIPTION
Returns one byte from code memory. The constants must be placed
within the first 64 Kbytes of memory.

__no_operation SYNTAX
void __no_operation(void);

DESCRIPTION
Inserts a NOP instruction.

__require SYNTAX
__require(void *);

DESCRIPTION
Emits a REQUIRE statement on the given symbol.

INTRINSIC FUNCTIONS __restore_interrupt

CAVR-1

143

__restore_interrupt SYNTAX
void __restore_interrupt(unsigned char oldState)

DESCRIPTION
This intrinsic will restore the interrupt flag to the state it had when
__save_interrupt was called.

Note: The value of oldState must be the result of a call to the
__save_interrupt intrinsic function.

__save_interrupt SYNTAX
unsigned char __save_interrupt(void)

DESCRIPTION
This intrinsic will save the state of the interrupt flag in the byte returned.
This value can then be used for restoring the state of the interrupt flag
with the __restore_interrupt intrinsic.

EXAMPLE
unsigned char oldState;

oldState = __save_interrupt();
__disable_interrupt();

/* Critical section goes here */

__restore_interrupt(oldState);

__segment_begin SYNTAX
__segment_begin(const char *);

DESCRIPTION
Returns the address of the first byte of the named segment. The argument
be a constant string literal.

__segment_end INTRINSIC FUNCTIONS

CAVR-1

144

__segment_end SYNTAX
__segment_end(const char *);

DESCRIPTION
Returns the address of the first byte after the named segment. The
argument must be a constant string literal.

__sleep SYNTAX
void __sleep(void);

DESCRIPTION
Inserts a sleep instruction, SLEEP. To use this intrinsic function, make
sure that the instruction has been enabled in the MCUCR register.

__watchdog_reset SYNTAX
void __watchdog_reset(void);

DESCRIPTION
Inserts a watchdog reset instruction.

CAVR-1

145

LIBRARY FUNCTIONS
This chapter gives an introduction to the C or Embedded C++ library
functions. It also lists the header files used for accessing library
definitions.

INTRODUCTION The AVR IAR Compiler package provides most of the important C or
Embedded C++ library definitions that apply to PROM-based embedded
systems. These are of the following types:

◆ Adherence to a free-standing implementation of the ISO standard for
the programming language C. For additional information, see the
chapter Implementation-defined behavior.

◆ Standard C library definitions, for user programs.

◆ Embedded C++ library definitions, for user programs.

◆ CSTARTUP, the single program module containing the start-up code. It
is described in Initialization, page 26.

◆ Run-time support libraries; for example, low-level floating-point
routines.

LIBRARY OBJECT FILES
You must select the appropriate library object file for your chosen
memory model. See Run-time library, page 24, for more information. The
linker will include only those routines that are required—directly or
indirectly—by your application.

Most of the library definitions can be used without modification, that is,
directly from the supplied library object files. There are some
I/O-oriented routines (such as __writechar and __readchar) that you
may need to customize for your application. For a description of how to
modify the library definitions, see Customizing a primitive I/O function on
the command line, page 30.

HEADER FILES
The user program gains access to library definitions through header files,
which it incorporates using the #include directive. The definitions are
divided into a number of different header files each covering a particular
functional area, letting you include just those that are required.

LIBRARY DEFINITIONS SUMMARY LIBRARY FUNCTIONS

CAVR-1

146

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail
during execution, or generate error or warning messages at compile time
or link time.

VIEWING THE C OR EMBEDDED C++ LIBRARY
DOCUMENTATION
The library documentation is located in the avr\doc directory and can be
accessed from the Help menu in the IAR Embedded Workbench.

◆ To view the C library documentation, you need access to Acrobat®
Reader. Notice that the pdf file format must be associated with the
Acrobat® Reader.

◆ To view the Embedded C++library documentation, you need access
to an Internet browser. Notice that the html file format must be
associated with your Internet browser.

LIBRARY
DEFINITIONS
SUMMARY

This section lists the header files. Header files may additionally contain
target-specific definitions; these are documented in the chapter IAR C
extensions.

EMBEDDED C++
The following table shows the Embedded C++ library headers:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception
handling

fstream Defining several I/O streams classes that manipulate
external files

iomanip Declaring several I/O streams manipulators that take
an argument

ios Defining the class that serves as the base for many
I/O streams classes

iosfwd Declaring several I/O streams classes before they are
necessarily defined

LIBRARY FUNCTIONS LIBRARY DEFINITIONS SUMMARY

CAVR-1

147

USING STANDARD C LIBRARIES IN EC++
The Embedded C++ library works in conjunction with 15 of the headers
from the standard C library, sometimes with small alterations. The
headers come in two forms, new and traditional.

The following table shows the new headers:

iostream Declaring the I/O streams objects that manipulate
the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free
storage

ostream Defining the class that performs insertions

sstream Defining several I/O streams classes that manipulate
string containers

stdexcept Defining several classes useful for reporting
exceptions

streambuf Defining classes that buffer I/O streams operations

string Defining a class that implements a string container

strstream Defining several I/O streams classes that manipulate
in-memory character sequences

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

Header file Usage

LIBRARY DEFINITIONS SUMMARY LIBRARY FUNCTIONS

CAVR-1

148

STANDARD C
The following table shows the traditional standard C library headers:

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstddef Defining several useful types and macros

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stddef.h Defining several useful types and macros

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

Header file Usage

LIBRARY FUNCTIONS LIBRARY DEFINITIONS SUMMARY

CAVR-1

149

COMPATIBILITY WITH STANDARD C++
In this implementation, the Embedded C++ library also includes several
headers for compatibility with traditional C++ libraries:

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

fstream.h Defining several I/O streams template classes that
manipulate exteral files

iomanip.h Declaring several I/O streams manipulators that take
an argument

iostream.h Declaring the I/O streams objects that manipulate
the standard streams

new.h Declaring several functions that allocate and free
storage

Header file Usage

LIBRARY DEFINITIONS SUMMARY LIBRARY FUNCTIONS

CAVR-1

150

CAVR-1

151

DIAGNOSTICS
A normal diagnostic from the compiler is produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was
encountered; linenumber is the line number at which the compiler
detected the error; level is the level of seriousness of the diagnostic; tag
is a unique tag that identifies the diagnostic; message is a self-explanatory
message, possibly several lines long.

SEVERITY LEVELS The diagnostics are divided into different levels of severity:

Remark
A diagnostic that is produced when the compiler finds a source code
construct that can possibly lead to erroneous behavior in the generated
code. Remarks are by default not issued but can be enabled, see Enables
remarks., page 102.

Warning
A diagnostic that is produced when the compiler finds a programming
error or omission which is of concern but not so severe as to prevent the
completion of compilation. Warnings can be disabled by use of the
command-line option --no_warnings, see page 100.

Error
A diagnostic that is produced when the compiler has found a construct
which clearly violates the C or Embedded C++ language rules, such that
code cannot be produced. An error will produce a non-zero exit code.

Fatal error
A diagnostic that is produced when the compiler has found a condition
that not only prevents code generation, but which makes further
processing of the source code pointless. After the diagnostic has been
issued, compilation terminates. A fatal error will produce a non-zero exit
code.

MESSAGES DIAGNOSTICS

CAVR-1

152

SETTING THE SEVERITY LEVEL
The diagnostic can be suppressed or the severity level can be changed for
all diagnostics except for fatal errors and some of the regular errors.

See Options summary, page 82, for a description of the compiler options
that are available for setting severity levels.

See Diagnostics, page 130, for a description of the #pragma directives that
are available for setting severity levels.

INTERNAL ERROR
An internal error is a diagnostic message that signals that there has been
a serious and unexpected failure due to a fault in the compiler. It is
produced using the following form:

Internal error: message

where message is an explanatory message. If internal errors occur they
should be reported to your software distributor or IAR Technical
Support. Please include information enough to reproduce the problem.
This would typically include:

◆ The exact internal error message text.

◆ The source file of the program that generated the internal error.

◆ A list of the options that were used when the internal error
occurred.

◆ The version number of the compiler. To display it at sign-on, run
the compiler, iccavr, without parameters.

MESSAGES This section lists the AVR-specific warning and error messages.

AVR-SPECIFIC WARNING MESSAGES

In addition to the general warnings, the AVR IAR Compiler may generate
the following warnings:

[Ta006] Interrupt function has no assigned vector

DIAGNOSTICS MESSAGES

CAVR-1

153

AVR-SPECIFIC ERROR MESSAGES
In addition to the general error messages, the AVR IAR Compiler may
generate the error messages in the following list:

[Ta001] --no_rampd cannot be used with processor option
-voption

[Ta002] The model memory model is not allowed with processor
option -voption

[Ta003] Processor option -voption is not allowed in Base-line
version

[Ta004] Cannot combine __C_task with function-attribute

[Ta005] Interrupt functions cannot return a result

[Ta007] An __io declared variable must be located

[Ta008] Location out of range for an __io declared variable

[Ta009] Argument to __insert_opcode is a non-constant
expression

[Ta010] Argument to __insert_opcode is not in the range
0–65536

[Ta011] Registers must be locked with --lock_regs before
__regvar can be used

[Ta012] A __regvar declared variable must be located

[Ta013] Illegal location for a __regvar declared variable

[Ta014] A __regvar declared variable must have global scope

[Ta015] Cannot write to flash memory

[Ta016] Illegal alignment of __regvar declared variable

[Ta017] Segment name must be a string literal

[Ta018] Expected a literal symbol and not an expression

MESSAGES DIAGNOSTICS

CAVR-1

154

[Ta019] Unknown attribute string

[Ta020] Malformed --segment option: option. Correct format is
memory-attribute=segment-name

[Ta021] The function function generated more code (n bytes)
than is available in the target (n bytes)

[Ta022] Interrupt functions cannot take any parameters

[Ta023]
This message does not exist.

[Ta024] __io declared object partially out of range 0 .. 63

AVR-SPECIFIC FATAL ERROR MESSAGES
In addition to the general error messages, the AVR IAR Compiler may
generate the following fatal error message:

[Ta000] General target error string

CAVR-1

155

PART 3: MIGRATION AND
PORTABILITY
This part of the AVR IAR Compiler Reference Guide contains the
following chapters:

◆ Migrating to the AVR IAR Compiler

◆ Implementation-defined behavior

◆ IAR C extensions.

PART 3: MIGRATION AND PORTABILITY

CAVR-1

156

CAVR-1

157

MIGRATING TO THE AVR
IAR COMPILER
C source code that was originally written for the A90 IAR Compiler can
be used also with the AVR IAR Compiler, although some modifications
may be required.

This chapter contains information that is useful when migrating from the
A90 IAR Compiler (ICCA90) to the AVR IAR Compiler (ICCAVR). It
briefly describes both differences and similarities between the products.

INTRODUCTION The main difference between ICCA90 and ICCAVR is that the latter is
based on new compiler technology, which makes it possible to enhance
your application code in a way that previously was not possible.

The most obvious difference is that with the new compiler technology,
support for Embedded C++ has become available. Other main
advantages include a new global optimizer, which improves the efficiency
of the generated code. The consistency of the compiler is also improved
due to the new technology.

Moreover, the new compiler technology allows you to write source code
that is easily portable since it adheres more strictly to the ISO/ANSI
standard; for example, it is possible to use #pragma directives instead of
extended keywords for defining special function registers (SFRs).

Also the checking of data types adheres more strictly to the ISO/ANSI
standard in ICCAVR than in products using a previous compiler
technology. You have the opportunity to identify and correct problems in
the code, which improves the quality of the object code. Therefore, it is
important to be aware of the fact that code written for the ICCA90 may
generate warnings or errors in ICCAVR.

THE MIGRATION
PROCESS

Use the file comp_a90.h during the migration process. This file, which is
provided with the product, contains translation macros that facilitate the
migration.

EXTENDED KEYWORDS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

158

In short, the process of migrating from ICCA90 to ICCAVR involves the
following steps:

1 Modify the pointers and doubles in the source code. For a description
of the ICCAVR data types, see Data types, page 51.

2 Replace ICCA90 extended keywords in the source code with
ICCAVR keywords.

3 Replace ICCA90 #pragma directives with ICCAVR directives. Notice
that the behavior differs between the two products; see page 161 for
detailed information.

4 Replace ICCA90 intrinsics with ICCAVR intrinsics.

5 Compile the code using appropriate ICCAVR compiler options.

6 Replace ICCA90 segments with ICCAVR segments in the linker
command file. See Linker command file, page 17, for detailed
information.

7 Link the code and run the project in the IAR C-SPY Debugger.

The following sections describe the differences between ICCA90 and
ICCAVR in detail.

EXTENDED
KEYWORDS

The set of language extensions has changed in ICCAVR. Some extensions
have been added, some extensions have been removed, and for some of
them the syntax has changed. There is also a rare case where an extension
has a different interpretation if typedefs are used. This is described in
the following section.

In ICCAVR, all extended keywords except asm start with two
underscores, for example __near.

STORAGE MODIFIERS
Both ICCA90 and ICCAVR allow keywords that specify memory location.
Each of these keywords can be used either as a placement attribute for an
object, or as a pointer type attribute denoting a pointer that can point to
the specified memory.

When the keywords are used directly in the source code, they behave in a
similar way in ICCA90 and ICCAVR. The usage of type definitions and
extended keywords is, however, more strict in ICCAVR than in ICCA90.

MIGRATING TO THE AVR IAR COMPILER EXTENDED KEYWORDS

CAVR-1

159

Products based on the previous compiler front end behave unexpectedly
in some cases:

typedef int near NINT;
NINT a,b;
NINT huge c; /* Illegal */
NINT *p; /* p stored in near memory, points to

default memory attribute */

The first variable declaration works as expected, that is a and b are
located in near memory. The declaration of c is however illegal, except
when near is the default memory, in which case there is no need for an
extended keyword in the typedef.

In the last declaration, the near keyword of the typedef affects the
location of the pointer variable p, not the pointer type. The pointer type
is the default, which is given by the memory model.

The corresponding example for ICCAVR is:

typedef int __near NINT;
NINT a,b;
NINT __huge c; /* c stored in huge memory --

override attribute in typedef */
NINT *p; /* p stored in default memory, points
 to near memory */

The declarations of c and p differ. The __huge keyword in the
declaration of c will always compile. It overrides the keyword of the
typedef. In the last declaration the __near keyword of the typedef
affects the type of the pointer. It is thus a __near pointer to int. The
location of the variable p is however not affected.

__NO_INIT
In ICCA90 the keyword no_init is used for specifying that an object is
not initialized. In ICCAVR __no_init can be used together with a
keyword specifying any memory location, for example:

__near __no_init char buffer [1000];

__INTERRUPT
In ICCA90, a vector can be attached to an interrupt function with the
#pragma directive function or directly in the source code, for example:

interrupt [8] void f(void);

EXTENDED KEYWORDS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

160

In ICCAVR a vector can be attached to an __interrupt function with
the #pragma directive vector, for example:

#pragma vector=8
__interrupt void f(void);

__MONITOR
In some products using the previous generation of compiler technology,
the keyword monitor specifies not only the type attribute setting but also
the memory location. In ICCAVR __monitor is a type attribute only.

SFR
In ICCA90 the keywords sfrb and sfrw denote an object of byte or word
size residing in the Special Function Register (SFR) memory area for the
chip, and having a volatile type. The SFR is always located at an
absolute address. For example:

sfr PORT=0x10;

In ICCAVR the keywords sfrb and sfrw are not available. Instead you
have the ability to:

◆ Place any object into any memory, by using a memory attribute; for
example:

__io int b;

◆ Locate any object at an absolute address by by using the #pragma
directive location or by using the locator operator @; for example:

long PORT @ 100;

◆ Use the volatile attribute on any type, for example:

volatile __io char PORT@100;

See the chapter Extended keywords for complete information about the
extended keywords available in ICCAVR.

MIGRATING TO THE AVR IAR COMPILER #PRAGMA DIRECTIVES

CAVR-1

161

#PRAGMA
DIRECTIVES

ICCA90 and ICCAVR have different sets of #pragma directives for
specifying attributes, and they also behave differently:

◆ In ICCA90 the #pragma directives change the default attribute to use
for declared objects; they do not have an effect on pointer types.
These directives are #pragma memory that specifies the default
location of data objects, and #pragma function that specifies the
default location of functions.

◆ In ICCAVR the #pragma directives type_attribute and
object_attribute change the next declared object or typedef.

The rules for overriding a memory attribute differ between ICCA90 and
ICCAVR. However, both give the highest priority to memory attribute
keywords in the actual declaration, and the lowest priority to the specific
segment placement #pragma directives.

The following ICCA90 #pragma directives have been removed in
ICCAVR:

codeseg
function
warnings

These are recognized and will give a diagnostic message but will not work
in ICCAVR.

Note: Instead of the #pragma codeseg directive, in ICCAVR the #pragma
location directive or the @ operator can be used for specifying an
absolute location.

The following table shows the mapping of #pragma directives:

ICCA90 #pragma directive ICCAVR #pragma directive

#pragma function=interrupt #pragma type_attribute=__interrupt
#pragma vector=long_word offset

#pragma function=C_task #pragma object_attribute=__c_task

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

#pragma memory=dataseg #pragma dataseg, #pragma location

#PRAGMA DIRECTIVES MIGRATING TO THE AVR IAR COMPILER

CAVR-1

162

It is important to notice that the ICCAVR directives #pragma
type_attribute, #pragma object_attribute, and #pragma vector
affect only the first of the declarations that follow after the directive. In
the following example x is affected, but z and y are not affected by the
directive:

#pragma object_attribute==__no_init
int x,z;
int y;

The ICCAVR directives #pragma constseg and #pragma dataseg are
active until they are explicitly turned off with the directive #pragma
constseg=default and #pragma dataseg=default, respectively. For
example:

#pragma constseg=myseg
__no_init f;
#pragma constseg=default

The ICCAVR directive #pragma memory=__xxxx is active until it is
explicitly turned off with the #pragma memory=default directive, for
example:

#pragma memory=__near
int x,y,z;
#pragma memory=default
int myfunc()

The following #pragma directives are identical in ICCA90 and ICCAVR:

#pragma language=extended
#pragma language=default

#pragma memory=far #pragma type_attribute=__far,
#pragma location

#pragma memory=flash #pragma type_attribute=__flash,
#pragma location

#pragma memory=huge #pragma type_attribute=__huge

#pragma memory=near #pragma type_attribute=__near

#pragma memory=no_init #pragma object_attribute=__no_init

#pragma memory=tiny #pragma type_attribute=__tiny

ICCA90 #pragma directive ICCAVR #pragma directive

MIGRATING TO THE AVR IAR COMPILER PREDEFINED SYMBOLS

CAVR-1

163

The following #pragma directives have been added in ICCAVR:

#pragma constseg
#pragma dataseg
#pragma diag_default
#pragma diag_error
#pragma diag_remark
#pragma diag_suppress
#pragma diag_warning
#pragma location
#pragma object_attribute,
#pragma optimize
#pragma pack
#pragma type_attribute,
#pragma vector

Specific segment placement
In ICCA90 the #pragma memory directive supports a syntax enabling
subsequent data objects that match certain criterias to end up in a
specified segment. Each object found after the invocation of a segment
placement directive will be placed in the segment, provided that it does
not have a memory attribute placement and that it has the correct
constant attribute. For constseg it must be a constant, while for dataseg
they must not be declared const.

In ICCAVR, the directive #pragma location and the @ operator are
available for this purpose.

See the chapter #pragma directives for detailed information about the
#pragma directives available in ICCAVR.

PREDEFINED
SYMBOLS

In both ICCA90 and ICCAVR, all predefined symbols start with two
underscores, for example __IAR_SYSTEMS_ICC__. Notice however that
in ICCAVR all predefined symbols also end with two underscores.

See the chapter Predefined symbols for complete information about the
predefined symbols available in ICCAVR.

INTRINSIC FUNCTIONS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

164

INTRINSIC
FUNCTIONS

In ICCAVR, the intrinsic functions start with two underscores, for
example __enable_interrupt.

The ICCA90 intrinsic functions _args$ and _argt$ are not available in
ICCAVR. Other ICCA90 intrinsic functions have equivalents with other
names in ICCAVR.

See the chapter Intrinsic functions for complete information about the
intrinsic functions available in ICCAVR.

COMPILER
OPTIONS

COMMAND LINE SYNTAX
The command line options in ICCAVR follow two different syntax styles:

◆ Long option names containing one or more words prefixed with two
dashes and sometimes followed by an equal sign and a modifier, for
example --strict_ansi and --cpu=2343. This is the preferred
style in ICCAVR.

◆ Short option names consisting of a single letter prefixed with a single
dash and sometimes followed by a modifier, for example -r or -mt.
This style is available in ICCAVR mainly for backward compatibility.

Some options appear in one style only, other options appear in both
styles.

Removed ICCA90 options
The following table shows the ICCA90 command line options that have
been removed in ICCAVR:

ICCA90 option Description

-C Nested comments

-F Form-feed after each function

-ffilename Extend the command line

-G Open standard input as source. Replaced by -
(dash) as source file in ICCAVR.

-g Global strict type check. In ICCAVR, global strict
type checking is always enabled.

-gO No type information in object code

MIGRATING TO THE AVR IAR COMPILER COMPILER OPTIONS

CAVR-1

165

Note: Instead of the command line option -f, the following methods may
be used, depending on your operating system, for extending the command
line:

◆ Use a command file to add the options, for example, a bat file.

◆ Use the environment variables for flags, for example QCCAVR.

◆ Define your own variables to be used on the command line; for
example, in Windows 95/98 or NT:

set F=--frame_pointer -e
ICCAVR %F% -z9 foo.c

Identical options
The following table shows the command line options that are identical in
ICCA90 and ICCAVR:

-K ‘//’ comments. In ICCAVR, ‘//’ comments
are allowed unless the option --strict_ansi is
used.

-Oprefix Set object filename prefix. In ICCAVR, use -o
filename instead.

-P Generate PROMable code. This functionality is
always enabled in ICCAVR.

-pnn Lines/page

-T Active lines only

-t Tab spacing

-Usymb Undefine symbol

-X Explain C declarations

-x[DFT2] Cross-reference

-y Writable strings

Option Comment

-Dsymb=value Define symbols

-e Language extensions

ICCA90 option Description

COMPILER OPTIONS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

166

Renamed or modified ICCA90 options
The following ICCA90 command line options have been renamed and/or
modified:

-I Include paths. (Syntax is more free in ICCAVR.)

-o filename Set object filename

-s[0–9] Optimize for speed

-z[0–9] Optimize for size

Option Comment

ICCA90 option ICCAVR option Description

-A
-a filename

-la .
-la filename

Assembly output. See
Filenames, page 167.

-b --library_module Make object a library module

-c --char_is_signed ‘char’ is ‘signed char’

-gA --strict_ansi Flag old-style functions

-Hname --module_name=name Set object module name

-L[prefix],
-l[c|C|a|A][N] filename

-l[c|C|a|A|][N] filename List file. The modifiers
specify the type of list file to
create.

-Nprefix, -n --preprocess=[c][n][l]
filename

Preprocessor output

-q -lA, -lC Insert mnemonics. List file
syntax has changed.

-R name --segment Set code segment name.

-r[012][i][n] -r
--debug

Generate debug information.
The modifiers have been
removed.

-S --silent Set silent operation

-v[0|1|2|3] --cpu=xxxx
-v[0|1|2|3|4|5|6]

Processor configuration.

-w --no_warnings Disable warnings

MIGRATING TO THE AVR IAR COMPILER COMPILER OPTIONS

CAVR-1

167

Note: A number of new command line options have been added in
ICCAVR. For a complete list of the available command line options, see
Options summary, page 82.

FILENAMES
In ICCA90, file references can be made in either of the following ways:

◆ With a specific filename, and in some cases with a default extension
added, using a command line option such as -a filename
(Assembly output to named file).

◆ With a prefix string added to the default name, using a command
line option such as -A[prefix] (Assembly output to prefixed
filename).

In ICCAVR, a file reference is always regarded as a file path that can be a
directory, which the compiler will check and then add a default filename
to, or a filename.

The following table shows some examples where it is assumed that the
source file is named test.c, myfile is not a directory and mydir is a
directory:

LIST FILES
In ICCA90, only one C list file and one assembler list file can be produced;
in ICCAVR there is no upper limit on the number of list files that can be
generated. The ICCAVR command line option -l[c|C|a|A][N]
filename is used for specifying the behavior of each list file.

ICCA90 command ICCAVR command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir
-l mydir/

mydir/test.lst

COMPILER OPTIONS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

168

OBJECT FILE FORMAT
In some products using the previous generation of compiler technology,
two types of source references can be generated in the object file. When
the command line option -r is used, the source statements are being
referred to, and when the command line option -re is used, the actual
source code is embedded in the object format.

In ICCAVR, when the command line option -r or --debug is used,
source file references are always generated, i.e. embedding of the source
code is not supported.

NESTED COMMENTS
In ICCA90, nested comments were allowed if the option -C was used. In
ICCAVR, nested comments are never allowed. For example, if a comment
were used for removing a statement as in the following example, it would
not have the desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the
inner comment begins, and there will be an error where the outer
comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not
allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to "hide" portions of the source code when
compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

MIGRATING TO THE AVR IAR COMPILER COMPILER OPTIONS

CAVR-1

169

PREPROCESSOR FILE
In ICCA90, a preprocessor file can be generated as a side effect of
compiling a source file.

In ICCAVR a preprocessor file is either generated as a side effect, or as the
whole purpose when parsing of the source code is not required. You may
also choose to include or exclude comments and/or #line directives.

CROSS-REFERENCE INFORMATION
In ICCA90, cross-reference information can be generated. This possibility
is not available in ICCAVR.

SIZEOF IN PREPROCESSOR DIRECTIVES
In ICCA90, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In ICCAVR, sizeof is not allowed in #if directives. The following error
message will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed
in a constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be
defined using the -D option, or a #define in the source code:

#define SIZEOF_INT 2
#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see Data types, page 51.

Complex data types may be computed using one of several methods:

1 Write a small program, and run it in the simulator, with terminal
I/O.

#include <stdio.h>
struct s { char c; int a; };

COMPILER OPTIONS MIGRATING TO THE AVR IAR COMPILER

CAVR-1

170

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

2 Write a small program, compile it with the option -la . to get an
assembler listing in the current directory and look for the definition
of the constant x.

struct s { char c; int a; };
const int x = sizeof(struct s);

Note: The file limits.h contains macro definitions that can be used
instead of #if sizeof.

CAVR-1

171

IMPLEMENTATION-DEFINED
BEHAVIOR
This chapter describes how IAR C handles the implementation-defined
areas of the C language.

ISO 9899:1990, the International Organization for Standardization
standard - Programming Languages - C (revision and redesign of ANSI
X3.159-1989, American National Standard), changed by the ISO
Amendment 1:1994, Technical Corrigendum 1, and Technical
Corrigendum 2, contains an appendix called Portability Issues. The ISO
appendix lists areas of the C language that ISO leaves open to each
particular implementation.

Note: IAR C adheres to a freestanding implementation of the ISO
standard for the C programming language. This means that parts of a
standard library can be excluded in the implementation. IAR has not
implemented the following parts of the standard library: locale, files
(but streams stdin and stdout), time, and signal.

This chapter follows the same order as the ISO appendix. Each item
covered includes references to the ISO chapter and section (in
parenthesis) that explains the implementation-defined behavior.

TRANSLATION DIAGNOSTICS (5.1.1.3)
IAR C produces diagnostics in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was
encountered; linenumber is the line number at which the compiler
detected the error; level is the level of seriousness of the message
(remark, warning, error, or fatal error); tag is a unique tag that identifies
the message; message is an explanatory message, possibly several lines.

ENVIRONMENT IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

172

ENVIRONMENT ARGUMENTS TO MAIN (5.1.2.2.2.1)
In IAR C, the function called at program startup is called main. There is
no prototype declared for main, and the only definition supported for
main is:

int main(void)

To change this behavior, see the CSTARTUP description, page 26.

INTERACTIVE DEVICES (5.1.2.3)
IAR C treats the streams stdin and stdout as interactive devices.

IDENTIFIERS SIGNIFICANT CHARACTERS WITHOUT EXTERNAL
LINKAGE (6.1.2)
The number of significant initial characters in an identifier without
external linkage is 200.

SIGNIFICANT CHARACTERS WITH EXTERNAL
LINKAGE (6.1.2)
The number of significant initial characters in an identifier with external
linkage is 200.

CASE DISTINCTIONS ARE SIGNIFICANT (6.1.2)
IAR C treats identifiers with external linkage as case-sensitive.

CHARACTERS SOURCE AND EXECUTION CHARACTER SETS (5.2.1)
The source character set is the set of legal characters that can appear in
source files. In IAR C, the source character set is the standard ASCII
character set.

The execution character set is the set of legal characters that can appear
in the execution environment. In IAR C, the execution character set is the
standard ASCII character set.

IMPLEMENTATION-DEFINED BEHAVIOR CHARACTERS

CAVR-1

173

BITS PER CHARACTER IN EXECUTION CHARACTER
SET (5.2.4.2.1)
The number of bits in a character is represented by the manifest constant
CHAR_BIT. The standard include file limits.h defines CHAR_BIT as 8.

MAPPING OF CHARACTERS (6.1.3.4)
The mapping of members of the source character set (in character and
string literals) to members of the execution character set is made in a
one-to-one way, i.e. using the same representation value for each member
in the character sets, except for the escape sequences listed in the ISO
standard.

UNREPRESENTED CHARACTER CONSTANTS (6.1.3.4)
The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or in
the extended character set for a wide character constant, generates a
diagnostic and will be truncated to fit the execution character set.

CHARACTER CONSTANT WITH MORE THAN ONE
CHARACTER (6.1.3.4)
An integer character constant that contains more than one character will
be treated as an integer constant. The value will be calculated by treating
the leftmost character as the most significant character, and the rightmost
character as the least significant character, in an integer constant. A
diagnostic will be issued if the value cannot be represented in an integer
constant.

A wide character constant that contains more than one multibyte
character, generates a diagnostic.

CONVERTING MULTIBYTE CHARACTERS (6.1.3.4)
The current and only locale supported in IAR C is the ‘C’ locale.

RANGE OF ’PLAIN’ CHAR (6.2.1.1)
A ‘plain’ char has the same range as an unsigned char.

INTEGERS IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

174

INTEGERS RANGE OF INTEGER VALUES (6.1.2.5)
The representation of integer values are in two’s-complement form. The
most-significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Data types, page 51, for information about the ranges for the different
integer types: char, short, int, and long.

DEMOTION OF INTEGERS (6.2.1.2)
Converting an integer to a shorter signed integer is made by truncation.
If the value cannot be represented when converting an unsigned integer
to a signed integer of equal length the bit-pattern remains the same, i.e. a
large enough value will be converted into a negative value.

SIGNED BITWISE OPERATIONS (6.3)
Bitwise operations on signed integers work the same as bitwise
operations on unsigned integers, i.e. the sign-bit will be treated as any
other bit.

SIGN OF THE REMAINDER ON INTEGER DIVISION
(6.3.5)
The sign of the remainder on integer division is the same as the sign of
the dividend.

NEGATIVE VALUED SIGNED RIGHT SHIFTS (6.3.7)
The result of a right shift of a negative-valued signed integral type,
preserves the sign-bit. For example, shifting 0xFF00 down one step yields
0xFF80.

FLOATING POINT REPRESENTATION OF FLOATING-POINT VALUES
(6.1.2.5)
The representation and sets of the various floating-point numbers
adheres to IEEE 854–1987. A typical floating-point number is built up of
a sign-bit (s), a biased exponent (e), and a mantissa (m).

See Floating-point types, page 52, for information about the ranges and
sizes for the different floating-point types: float, double, and long
double.

IMPLEMENTATION-DEFINED BEHAVIOR ARRAYS AND POINTERS

CAVR-1

175

CONVERTING INTEGER VALUES TO FLOATING-POINT
VALUES (6.2.1.3)
When an integral number is cast to a floating-point value that cannot
exactly represent the value, the value is rounded (up or down) to the
nearest suitable value.

DEMOTING FLOATING-POINT VALUES (6.2.1.4)
When a floating-point value is converted to a floating-point value of
narrower type that cannot exactly represent the value, the value is
rounded(up or down) to the nearest suitable value.

ARRAYS AND
POINTERS

SIZE_T (6.3.3.4, 7.1.1)
See size_t, page 55, for information about size_t in IAR C.

CONVERSION FROM/TO POINTERS (6.3.4)
See Casting, page 55, for information about casting of data pointers and
function pointers.

PTRDIFF_T (6.3.6, 7.1.1)
See ptrdiff_t, page 55, for information about the ptrdiff_t in IAR C.

REGISTERS HONORING THE REGISTER KEYWORD (6.5.1)
IAR C does not honor user requests for register variables. Instead it
makes it own choices when optimizing.

STRUCTURES,
UNIONS,
ENUMERATIONS,
AND BITFIELDS

IMPROPER ACCESS TO A UNION (6.3.2.3)
If a union get its value stored through a member and is then accessed
using a member of a different type, the result is solely dependent on the
internal storage of the first member.

QUALIFIERS IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

176

PADDING AND ALIGNMENT OF STRUCTURE
MEMBERS (6.5.2.1)
See the section Data types, page 51, for information about the alignment
requirement for data objects in IAR C.

SIGN OF ’PLAIN’ BITFIELDS (6.5.2.1)
A ’plain’ int bitfield is treated as a signed int bitfield. All integer types
are allowed as bitfields.

ALLOCATION ORDER OF BITFIELDS WITHIN A UNIT
(6.5.2.1)
Bitfields are allocated within an integer from least-significant to
most-significant bit.

CAN BITFIELDS STRADDLE A STORAGE-UNIT
BOUNDARY (6.5.2.1)
Bitfields cannot straddle a storage-unit boundary for the bitfield integer
type chosen.

INTEGER TYPE CHOSEN TO REPRESENT
ENUMERATION TYPES (6.5.2.2)
The chosen integer type for a specific enumeration type depends on the
enumeration constants defined for the enumeration type. The chosen
integer type is the smallest possible.

QUALIFIERS ACCESS TO VOLATILE OBJECTS (6.5.3)
Any reference to an object with volatile qualified type is an access.

DECLARATORS MAXIMUM NUMBERS OF DECLARATORS (6.5.4)
IAR C does not limit the number of declarators. The number is limited
only by the available memory.

IMPLEMENTATION-DEFINED BEHAVIOR STATEMENTS

CAVR-1

177

STATEMENTS MAXIMUM NUMBER OF CASE STATEMENTS (6.6.4.2)
IAR C does not limit the number of case statements (case values) in a
switch statement. The number is limited only by the available memory.

PREPROCESSING
DIRECTIVES

CHARACTER CONSTANTS AND CONDITIONAL
INCLUSION (6.8.1)
The character set used in the preprocessor directives is the same as the
execution character set. The preprocessor recognizes negative character
values if a ’plain’ character is treated as a signed character.

INCLUDING BRACKETED FILENAMES (6.8.2)
For file specifications enclosed in angle brackets, the preprocessor does
not search directories of the parent files. A "parent" file is the file that has
the #include directive. Instead, it begins by searching for the file in the
directories specified on the compiler command line.

INCLUDING QUOTED FILENAMES (6.8.2)
For file specifications enclosed in quotes, the preprocessor directory
search begins with the directories of the parent file, then proceeds
through the directories of any grandparent files. Thus, searching begins
relative to the directory containing the source file currently being
processed. If there is no grandparent file and the file has not been found,
the search continues as if the filename were enclosed in angle brackets.

CHARACTER SEQUENCES (6.8.2)
Preprocessor directives use the source character set, with the exception of
escape sequences. Thus to specify a path for an include file, use only one
backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

PREPROCESSING DIRECTIVES IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

178

RECOGNIZED #PRAGMA DIRECTIVES (6.8.6)
The following #pragma directives are recognized in IAR C:

alignment
ARGSUSED
baseaddr
bitfields
can_instantiate
codeseg
constseg
dataseg
define_type_info
diag_default
diag_error
diag_remark
diag_suppress
diag_warning
do_not_instantiate
function
hdrstop
instantiate
language
location
memory
message
none
no_pch
NOTREACHED
object_attribute
once
optimize
pack
__printf_args
__scanf_args
type_attribute
VARARGS
vector
warnings

For a description of the #pragma directives, see the chapter #pragma
directives.

DEFAULT __DATE__ AND __TIME__ (6.8.8)
The definitions for __TIME__ and __DATE__ are always available.

IMPLEMENTATION-DEFINED BEHAVIOR C LIBRARY FUNCTIONS

CAVR-1

179

C LIBRARY
FUNCTIONS

NULL MACRO (7.1.6)
The NULL macro is defined to 0.

DIAGNOSTIC PRINTED BY THE ASSERT FUNCTION
(7.2)
The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

DOMAIN ERRORS (7.5.1)
NaN (Not a Number) will be returned by the mathematic functions on
domain errors.

UNDERFLOW OF FLOATING-POINT VALUES SETS
ERRNO TO ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a
macro in errno.h) on underflow range errors.

FMOD() FUNCTIONALITY (7.5.6.4)
If the second argument to fmod() is zero, the function returns NaN;
errno is set to EDOM.

SIGNAL() (7.7.1.1)
IAR C does not support the signal part of the library.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

TERMINATING NEWLINE CHARACTER (7.9.2)
Stdout stream functions recognize either newline or end of file (EOF)
as the terminating character for a line.

BLANK LINES (7.9.2)
Space characters written out to the stdout stream immediately before a
newline character are preserved. There is no way to read in the line
through the stream stdin that was written out through the stream
stdout in IAR C.

C LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

180

NULL CHARACTERS APPENDED TO DATA WRITTEN
TO BINARY STREAMS (7.9.2)
There are no binary streams implemented in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

FILES (7.9.3)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

REMOVE() (7.9.4.1)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

RENAME() (7.9.4.2)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

%P IN PRINTF() (7.9.6.1)
The argument to a %p conversion specifier, print pointer, to printf() is
treated as having the type void *. The value will be printed as a
hexadecimal number, similar to using the %x conversion specifier.

%P IN SCANF() (7.9.6.2)
The %p conversion specifier, scan pointer, to scanf() reads a
hexadecimal number and converts that into a value with the type void *.

READING RANGES IN SCANF() (7.9.6.2)
A - (dash) character is always treated as a range symbol.

IMPLEMENTATION-DEFINED BEHAVIOR C LIBRARY FUNCTIONS

CAVR-1

181

FILE POSITION ERRORS (7.9.9.1, 7.9.9.4)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

MESSAGE GENERATED BY PERROR() (7.9.10.4)
The generated message is:

usersuppliedprefix:errormessage

ALLOCATING ZERO BYTES OF MEMORY (7.10.3)
The calloc(), malloc(), and realloc() functions accept zero as an
argument. Memory will be allocated, a valid pointer to that memory is
returned, and the memory block can be modified later by realloc.

BEHAVIOR OF ABORT() (7.10.4.1)
The abort() function does not flush stream buffers, and it does not
handle files, since this is an unsupported feature in IAR C.

BEHAVIOR OF EXIT() (7.10.4.3)
The exit() function does not return in IAR C.

ENVIRONMENT (7.10.4.4)
An environment is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

SYSTEM() (7.10.4.5)
The system() function is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

C LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CAVR-1

182

MESSAGE RETURNED BY STRERROR() (7.11.6.2)
The messages returned by strerror() depending on the argument is:

THE TIME ZONE (7.12.1)
Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

CLOCK() (7.12.2.1)
Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

CAVR-1

183

IAR C EXTENSIONS
This chapter describes IAR extensions to the ISO standard for the C
programming language.

See the compiler option -e, page 89 for information about enabling and
disabling language extensions from the command line.

AVAILABLE
EXTENSIONS

The following language extensions are available:

◆ Functions and data may be declared with memory, type, and object
attributes. The attributes follow the syntax for qualifiers but not the
semantics.

◆ The operator @ may be used for specifying either the location of an
absolute addressed variable or the segment placement of a function
or variable. The directive #pragma location has the same effect.

◆ A translation unit (input file) is allowed to contain no declarations.

◆ Comment text can appear at the end of preprocessing directives.

◆ __ALIGNOF__ is similar to sizeof, but returns the alignment
requirement value for a type, or 1 if there is no alignment
requirement. It may be followed by a type or expression in
parenthesis, __ALIGNOF__(type), or __ALIGNOF__(expression).
The expression in the second form is not evaluated.

◆ Bitfields may have base types that are enums or integral types besides
int and unsigned int. This matches G.5.8 in the appendix to the
ISO standard, ISO Portability issues.

◆ The last member of a struct may have an incomplete array type. It
may not be the only member of the struct (otherwise, the struct
would have zero size).

◆ A file-scope array may have an incomplete struct, union, or enum
type as its element type. The type must be completed before the
array is subscripted (if it is), and by the end of the compilation if the
array is not external.

◆ Static functions may be declared in function and block scopes. Their
declarations are moved to the file scope.

AVAILABLE EXTENSIONS IAR C EXTENSIONS

CAVR-1

184

◆ enum tags may be incomplete: one may define the tag name and
resolve it (by specifying the brace-enclosed list) later.

◆ The values of enumeration constants may be given by expressions
that evaluate to unsigned quantities that fit in the unsigned int
range but not in the int range. A warning is issued for suspicious
cases.

◆ An extra comma is allowed at the end of an enum list. A remark is
issued.

◆ The final semicolon preceeding the closing } of a struct or union
specifier may be omitted. A warning is issued.

◆ A label definition may be immediately followed by a closing }
(normally a statement must follow a label definition). A warning is
issued.

◆ An empty declaration (a semicolon with nothing before it) is
allowed. A remark is issued.

◆ An initializer expression that is a single value and is used for
initializing an entire static array, struct, or union need not be
enclosed in braces. ISO C requires the braces.

◆ In an initializer, a pointer constant value may be cast to an integral
type if the integral type is large enough to contain it.

◆ The address of a variable with a register storage class may be taken.
A warning is issued.

◆ In an integral constant expression, an integer constant may be cast
to a pointer type and then back to an integral type.

◆ In duplicate size and sign specifiers (for example short short or
unsigned unsigned) the redundancy is ignored. A warning is
issued.

◆ long float is accepted as synonym of double.

◆ Benign redeclarations of typedef names are allowed. That is, a
typedef name may be redeclared in the same scope as the same type.
A warning is issued.

◆ Dollar signs are accepted in identifiers.

IAR C EXTENSIONS AVAILABLE EXTENSIONS

CAVR-1

185

◆ Numbers are scanned according to the syntax for numbers rather
than the pp-number syntax. Thus, 0x123e+1 is scanned as three
tokens instead of one invalid token (if --strict_ansi is specified,
the pp-number syntax is used).

◆ Assignment and pointer difference is allowed between pointers to
types that are interchangeable but not identical, for example,
unsigned char * and char *. This includes pointers to integral
types of the same size (for example, short * and int *). A warning
is issued. Assignment of a string constant to a pointer to any kind of
character is allowed without a warning.

◆ Assignment of pointer types is allowed in cases where the
destination type has added type qualifiers that are not at the top level
(for example int ** to int const **). Comparisons and pointer
difference of such pairs of pointer types are also allowed. A warning
is issued.

◆ In operations on pointers, a pointer to void is always implicitly
converted to another type if necessary, and a null pointer constant
is always implicitly converted to a null pointer of the right type if
necessary. In ISO C, some operators allow such things, while others
do not allow them.

◆ asm statements are accepted, like asm("LD A,#5");. This is disabled
in strict ISO/ANSI C mode.

◆ Anonymous structs and unions (similar to the C++ anonymous
unions) are allowed. An anonymous structure type defines an
unnamed object (and not a type) whose member names are
promoted to the surrounding scope. The member names must be
unique in the surrounding scope. External anonymous structure
types are allowed.

◆ External entities declared in other scopes are visible. A warning is
issued. Example:

void f1(void) { extern void f(); }
void f2() { f(); }

◆ End-of-line comments (//, as in C++) are allowed.

◆ A non-lvalue array expression is converted to a pointer to the first
element of the array when it is subscripted or similarly used.

EXTENSIONS ACCEPTED IN NORMAL EC++ MODE IAR C EXTENSIONS

CAVR-1

186

EXTENSIONS
ACCEPTED IN
NORMAL EC++
MODE

The following extensions are accepted in all modes (except when strict
ANSI violations are diagnosed as errors):

◆ A friend declaration for a class may omit the class keyword:

class B;
class A {
 friend B; // Should be ‘friend class B’
};

◆ Constants of scalar type may be defined within classes (this is an old
form; the modern form uses an initialized static data member):

class A {
 const int size = 10;
 int a[size];
};

◆ In the declaration of a class member, a qualified name may be used:

struct A {
 int A::f(); // Should be int f ();
};

◆ The preprocessing symbol c_plusplus is defined in addition to the
standard _cplusplus.

◆ An extension is supported to allow an anonymous union to be
introduced into a containing class by a typedef name—it does not
have to be declared directly, as with a true anonymous union. For
example:

typedef union {
 int i, j;
} U; // U identifies a reusable anonymous
 // union.
class A {
 U; // Okay -- references to A::i and

// A::j are allowed.
}

In addition, the extension also permits ‘anonymous classes’ and
‘anonymous structures’, as long as they have no EC++ feature (for
example, no static data members or member functions, and no
non-public members) and have no nested types other than other
anonymous classes, structures, or unions.

IAR C EXTENSIONS LANGUAGE FEATURES NOT ACCEPTED IN EC++

CAVR-1

187

For example:

struct A {
 struct {
 int i, j;
 }; // Okay -- references to A::i and
 // A::j are allowed.
};

◆ An assignment operator declared in a derived class with a parameter
type matching one of its base classes is treated as a ‘default’
assignment operator—that is, such a declaration blocks the implicit
generation of a copy assignment operator. For example:

struct A { };
struct B : public A {
 B& operator=(A&);
};

◆ By default, as well as in C front compatibility mode, there will be no
implicit declaration of B::operator=(const B&), whereas in strict
ANSI mode B::operator=(A&) is not a copy assignment operator
and B::operator=(const B&) is implicitly declared.

LANGUAGE
FEATURES NOT
ACCEPTED IN EC++

The following ISO/ANSI C++ features are not accepted in EC++:

◆ reinterpret_cast does not allow casting a pointer to a member of
one class to a pointer to a member of another class if the classes are
unrelated.

◆ In a reference of the form f()->g(), with g being a static member
function, f() is not evaluted.

◆ Class name injection is not implemented.

◆ Friend functions of the argument class types cannot be found by
name lookup on the function name in calls since this feature is not
implemented.

◆ String literals do not have the const type.

◆ Universal character set escape sequences (for example, \uabcd) are
not implemented.

LANGUAGE FEATURES NOT ACCEPTED IN EC++ IAR C EXTENSIONS

CAVR-1

188

INDEX

CAVR-1

189

A
absolute location 116
ABSOLUTE (segment) 63
address spaces, in AVR 4
aggregate initializers, placing in flash memory 93
anonymous structures 56
application development. See coding techniques
application requirements, configuring for 11
applications, developing in EC++ 3
architecture, AVR v
ARGFRAME (compiler function directive) 45
arrays 175
asm (inline assembler) 9
assembler instructions iii
assembler list file 45
assembler modules 5
assembler reference information iii
assembler, inline 5
assembly language interface 37

creating skeleton code 41
assembly routines, calling from C 39
assert.h (library header file) 148
asssembler, inline 9
assumptions (programming experience) v
AT90S IAR C Compiler. See ICCA90
auto variables 6
AVR architecture v

address spaces 4
AVR derivatives

mapping of processor options 12
specifying 84
supported 12

AVR instruction set iii, v
enhanced, specifying 91

B
bit operations 6
bitfields 6

in expressions 52
in implementation-defined behavior 175

bitfields (#pragma directive) 52, 133

C
C data types 51
C library functions 179
call chains 6
calling convention 37

Embedded C++ 47
ICCA90 40

--version1_calls (compiler option) 106
_ _version_1 (extended keyword) 121

calloc (library function) 18, 22
cassert (library header file) 147
casting, of pointers and integers 55
cctype (library header file) 147
cerrno (library header file) 147
cfloat (library header file) 147
char (data type) 51

signed and unsigned 52, 84
characters, in implementation-defined behavior 172
Classic, AVR 3
climits (library header file) 147
clocale (library header file) 147
cmath (library header file) 147
code motion, disabling 96
code placement 59
code reusability 3
code size. See optimization
CODE (segment) 63
CODE, memory type 16

INDEX

INDEX

CAVR-1

190

coding techniques 5
common sub-expression elimination, disabling 97
compiler environment variables 81
compiler error return codes 81
compiler features 3
compiler function directives 45
compiler listing, generating 93
compiler object file

excluding UBROF messages 99
including debug information 86, 102

compiler options
setting 79
specifying parameters 80
summary 82
-D 85
-e 89
-I 91
-l 42, 93
-m 95, 138
-o 100
-r 86, 102
-s 103
-v 105

implicit assumptions 13
in predefined symbols 138
mapping of AVR derivatives 12

-y 107
locating _ _far variables 67
locating _ _tiny variables 76

-z 108
--char_is_signed 84
--cpu 84, 138

mapping of AVR derivatives 12
--cross_call_passes 85
--debug 86, 102
--dependencies 87
--diag_error 87
--diag_remark 88

--diag_suppress 88
--diag_warning 88
--disable_direct_mode 89
--ec++ 90
--eeprom_size 90
--enhanced_core 91
--initializers_in_flash 13, 93
--library_module 94
--lock_reg 94
--memory_model 95
--module_name 95
--no_code_motion 96
--no_cross_call 97
--no_cse 97
--no_inline 98
--no_rampd 98
--no_ubrof_messages 99
--no_unroll 99
--no_warnings 100
--only_stdout 100
--preprocess 101
--remarks 102
--root_variables 102
--segment 104
--silent 104
--strict_ansi 104
--version1_calls 106
--warnings_affect_exit_code 81, 106
--warnings_are_errors 107
--zero_register 108
--64bit_doubles 109

compiler technology 3
compiler tutorials iii
compiler version number 139
compiler, configuring 11
complex (library header file) 146
computer style, typographical convention v
comp_a90.h, migration macros 157

INDEX

CAVR-1

191

configuration 11
consistency, between modules 33
constants, placing in initialized data segments 107
constant-expression 116
constructor blocks, pointers to 64
constseg (#pragma directive) 129
CONST, memory type 16
conventions, typographical v
copyright notice ii
CPU, defining in linker command file 19
cross-call optimizations 85, 97
csetjmp (library header file) 147
csignal (library header file) 148
CSTACK (segment) 64

defining in linker command file 21
See also stack

CSTARTUP 24, 26
cstdarg (library header file) 148
cstddef (library header file) 148
cstdio (library header file) 148
cstdlib (library header file) 148
cstring (library header file) 148
ctime (library header file) 148
ctype.h (library header file) 148
customization 11

of libraries 25
C-SPY

estimating stack size 18
reference information iii

C-task functions 120
C_INCLUDE (environment variable) 81, 92

D
data memory

default keywords 14
specifying 14

data placement 59

extended keywords 112
specifying 14

data pointers 54
default 14

data representation 51
data stack, defining in linker command file 21
data types 51

floating point 52
integers 51
supported in EC++ 3
using efficiently 6

dataseg (#pragma directive) 128
DATA, memory type 16
data-flow analyzer 4
dead-code elimination 4
debug information, including in object file 86, 102
debugger. See C-SPY
declarators, in implementation-defined behavior 176
dependencies, listing 87
derivatives

mapping of processor options 12
supported 12

devices, configuration of 11
DI (instruction) 141
diagnostic messages 151

classifying as errors 87
classifying as remarks 88
classifying as warnings 88
disabling warnings 100
enabling remarks 102
suppressing 88

diagnostics (#pragma directives) 130
diag_default (#pragma directive) 130
diag_error (#pragma directive) 130
diag_remark #pragma directive) 130
diag_suppress (#pragma directive) 131
diag_warning #pragma directive) 130
DIFUNCT (segment) 20, 64

INDEX

CAVR-1

192

directives
compiler function 45
#pragma 125

overview 9
disclaimer ii
double (data type) 52

specifying 64 bits 109
DW (directive) 142

E
EEPROM, inbuilt 4

specifying size of 90
EEPROM, memory type 16
EEPROM_AN (segment) 65
EEPROM_I (segment) 65
EEPROM_N (segment) 65
efficient coding 5
EI (instruction) 141
embedded applications, developing in EC++ 3
Embedded C++ 3

calling convention 47
differences from C++ 7
enabling 90
extended keywords, using 123
language extensions 7, 186
overview 7
specifications 3

Embedded Workbench
reference information iii
setting project options 12

enhanced instruction set, specifying 91
enum (keyword) 52
enumerations, in implementation-defined behavior 175
environment variables 81

C_INCLUDE 81, 92
QCCAVR 81

environment, in implementation-defined behavior 172

errno.h (library header file) 148
error messages 151

AVR-specific 153
error return codes 81
errors, classifying 87
exception (library header file) 146
execution, of functions 117
experience, programming v
extended command line file. See linker command file
extended keywords 111

absolute location 116
C-task functions 120
data storage 112
default, for memory models 14
enabling 89
enum 52
function calling convention 121
function execution 117
in Embedded C++ 123
overriding default behaviors 15
overview 8
syntax 114
_ _C_task 117, 120

using in #pragma directives 126, 128
_ _eeprom 4, 16, 54, 113

using in #pragma directives 126
_ _far 54, 112

using in #pragma directives 126–127
_ _farflash 54, 112, 127

using in #pragma directives 126
_ _farfunc 54, 122
_ _flash 20, 54, 112

using in #pragma directives 126–127
_ _generic 55, 113

using in #pragma directives 127
_ _huge 54, 112, 127

using in #pragma directives 126
_ _hugeflash 54, 112

INDEX

CAVR-1

193

using in #pragma directives 126–127
_ _interrupt 117–118

See also INTVEC (segment)
using in #pragma directives 126, 130

_ _io 33, 113
using in #pragma directives 126

_ _monitor 117–118
using in #pragma directives 126

_ _near 21, 54, 112
using in #pragma directives 126–127

_ _nearfunc 21, 54, 122
_ _no_init 16, 60, 115

using in #pragma directives 128
using with _ _huge variables 71
using with _ _near variables 74
using with _ _tiny variables 77

_ _regvar 113
using in #pragma directives 126

_ _root 103, 116, 121
using in #pragma directives 128

_ _tiny 21, 54, 112
using in #pragma directives 126–127

_ _tinyflash 20, 54, 112
using in #pragma directives 126–127

_ _version_1 121
extensions. See language extensions
external memory 4, 13

defining in linker command file 23

F
FAQ (frequently asked questions) iii
FARCODE (segment) 66
FAR_C (segment) 66
FAR_F (segment) 67
FAR_I (segment) 67
FAR_ID (segment) 67
FAR_N (segment) 68

FAR_Z (segment) 68
fatal error messages 151

AVR-specific 154
features, new 3
file dependencies, listing 87
file paths, specifying for #include files 91
flash memory 4, 13

placing aggregate initializers in 93
float (floating-point type) 52
floating-point format 52

implementation-defined behavior 174
special cases 53
4 bytes 53
8 bytes 53

float.h (library header file) 148
formats

floating-point values 52
standard IEEE (floating point) 52

formatters, specifying in linker command file 23
frequently asked questions iii
fstream (library header file) 146
fstream.h (library header file) 149
FUNCALL (compiler function directive) 45
function calling convention 121
function directives, compiler 45
function execution 117
function inlining, disabling 98
function memory attribute 13
function parameters, type checking 6
function pointers 21, 54
function storage 122
FUNCTION (compiler function directive) 45
functions

inlining 5
intrinsic 5, 9
I/O 29
recursive 6
static 5

INDEX

CAVR-1

194

G
generic (memory model) 14
global optimizer 4
global register variables 37
global scalar variables 5
global variables 6

H
hardware configuration 11
header files 145

target-specific 33
heap size 18
HEAP (segment) 22, 69

defining 19
hints

migration 157
optimization 5
programming 5

html (file format) 146
HUGE_C (segment) 69
HUGE_F (segment) 70
HUGE_I (segment) 70
HUGE_ID (segment) 70
HUGE_N (segment) 71
HUGE_Z (segment) 71

I
IAR Assembler, IAR XLINK Linker, and
IAR XLIB Librarian Guide iii
IAR C-SPY Debugger. See C-SPY
IAR Embedded Workbench. See Embedded Workbench
IAR, company information iii
ICCA90

calling convention

specifying 106, 121
migrating from 157

identifiers, in implementation-defined behavior 172
IEEE format, floating-point values 52
implementation-defined behavior 171
implicit assumptions 13
inavr.h (header file) 141
inheritance, in Embedded C++ 7
initialization 24

modifying CSTARTUP 26
of segments, descriptions 72
of variables and I/O 28
segments, defining in linker command file 21

initializers, placing in flash memory 93
INITTAB (segment) 20, 72
inline assembler 5, 9

See also assembly language interface
input formatters, defining in linker command file 23
input functions, in standard library 29
installation procedure iii
instruction set

AVR iii, v
specifying enhanced 91

int (data type) 51
integers 51

casting 55
in implementation-defined behavior 174
ptrdiff_t 55
size_t 55

internal error 152
Internet iii

browser 146
interrupt vectors 13, 33

assembler-written 47
defining in linker command file 19
specifying with #pragma directive 130

interrupts 47
INTVEC segment 72

INDEX

CAVR-1

195

templates 47
intrinsic functions 5

overview 9
_ _delay_cycles 141
_ _disable_interrupt 141
_ _enable_interrupt 141
_ _extended_load_program_memory 142
_ _insert_opcode 142
_ _load_program_memory 142
_ _no_operation 142
_ _require 142
_ _restore_interrupt 143
_ _save_interrupt 143
_ _segment_begin 143
_ _segment_end 144
_ _sleep 144
_ _watchdog_reset 144

INTVEC (segment) 72
iomanip (library header file) 146
iomanip.h (library header file) 149
ios (library header file) 146
iosfwd (library header file) 146
iostream (library header file) 147
iostream.h (library header file) 149
ISO/ANSI

C standard, free-standing implementation 3
C++ standard 7
prototypes 6
specifying strict usage 104

iso646.h (library header file) 148
istream (library header file) 147
I/O functions 29

customizing 30, 32
I/O registers 33

initializing 28
I2C bus 4

J
jump optimizations 4

K
key features, compiler 3
keywords. See extended keywords

L
language extensions

Embedded C++ 7
enabling 89
overview 8
reference information 183
using anonymous structures and unions 57

language (#pragma directive) 131
large (memory model) 14
library documentation 146
library functions 145

calloc 18, 22
header files 146
in implementation-defined behavior 179
malloc 18, 22
object files 145
remove 30
rename 30
summary 146
_ _close 29
_ _lseek 30
_ _open 29
_ _read 30
_ _readchar 30
_ _write 30
_ _writechar 30

library maintenance 25

INDEX

CAVR-1

196

library module, creating 94
library, run-time 24
limits.h 170
limits.h (library header file) 148
linker command files 17

contents 19
customizing 18
defining input and output formatters 23
defining target processor 19
ready-made 18
templates 18
using 24

listing, generating 93
literals, placing in initialized data segments 107
lnk1s.xcl (linker command file) 19
local variables 6
locale.h (library header file) 148
localized variables 116
location (#pragma directive) 117, 122, 129

See also absolute location or ABSOLUTE (segment)
location, absolute 116
LOCFRAME (compiler function directive) 45
long (data type) 51
loop optimizations 4
loop unrolling, disabling 99
low-level processor operations 9
low_level_init.c 28–29

M
macros

migration 157
stack size check 18

maintenance, of libraries 25
malloc (library function) 18, 22
math.h (library header file) 148
Mega, AVR 3
member functions 48

calling convention 123
in Embedded C++ 48

member variables 123
memory

external 13
defining in linker command file 23

flash 4, 13
placing aggregate initializers in 93

near, pointers to 6
non-initialized 16
non-volatile 16, 68
RAM, saving 6
tiny, pointers to 6

memory location 15
memory models

characteristics 14
mapping of run-time libraries and
processor options 25
specifying 95

memory (#pragma directive) 127
migration, from ICCA90 157

using macros 157
modification, of libraries 25
module consistency 33
module name, specifying 95
module size, maximum 13
monitor functions 39, 118

N
name, specifying for object file 100
near memory, pointers to 6
NEAR_C (segment) 72
NEAR_F (segment) 73
NEAR_I (segment) 73
NEAR_ID (segment) 73
NEAR_N (segment) 74
NEAR_Z (segment) 74

INDEX

CAVR-1

197

new (library header file) 147
news, product iii
new.h (library header file) 149
non-initialized memory 16
non-scalar parameters 6
non-volatile memory 16, 68
NOP (instruction) 142

O
object code size. See optimization
object filename, specifying 100
object module name, specifying 95
object-oriented programming 3
object_attribute (#pragma directive) 16, 120, 128
OOP. See object-oriented programming
optimization 4, 36

code motion, disabling 96
common sub-expression elimination, disabling 97
cross-call

disabling 97
specifying 85

function inlining, disabling 98
hints 5
loop unrolling, disabling 99
size, specifying 108
speed, specifying 103

optimize (#pragma directive) 131
optimizer, global 4
options summary, compiler 82
option, typographical convention v
ostream (library header file) 147
output formatters, defining in linker command file 23
output functions, in standard library 29
output, preprocessor 101
overview, product iii

P
pack (#pragma directive) 132
parameters

non-scalar 6
passing 38
specifying 80
typographical convention v

pdf (file format) 146
peripheral devices, configuration of 11
placement of code and data 59
pointers 175

casting 55
data 14, 54
declaring with #pragma type_attribute 115
function 54
near memory 6
return address 37
stack, initialization 26
tiny memory 6
to constructor blocks 64
to _ _nearfunc functions 21
using instead of large non-scalar parameters 6

polymorphism 7
porting of code 157
predefined symbols

overview 9
_ _cplusplus 135
_ _CPU_ _ 135
_ _DATE_ _ 135
_ _embedded_cplusplus 136
_ _FILE_ _ 136
_ _IAR_SYSTEMS_ICC_ _ 136
_ _ICCAVR_ _ 136
_ _LINE_ _ 137
_ _MEMORY_MODEL_ _ 137
_ _STDC_ _ 137
_ _STDC_VERSION_ _ 138

INDEX

CAVR-1

198

_ _TID_ _ 138
_ _TIME_ _ 139
_ _VER_ _ 139

preprocessing directives, in implementation-defined
behavior 177
preprocessor

output, directing to file 101
symbols, defining 85

prerequisites (programming experience) v
processor operations, low-level 9
processor options 11

mapping of derivatives 12
mapping of run-time libraries and memory
models 25

processor variant
defining in linker command file 19
specifying on command line 84, 105

product news iii, 3
product overview iii
program initialization module 24
program size, maximum 13
programming experience, required v
programming hints 5
project options 11

setting in Embedded Workbench 12
ptrdiff_t (integer type) 55

Q
QCCAVR (environment variable) 81
qualifiers, in implementation-defined behavior 176

R
RAM memory

non-volatile 16
saving 6
See memory location

RAMP (register) 47, 98
RCALL, in -v0 and -v1 processor option 13
recursive functions 6
reference information, typographical convention v
register (keyword) 38
registered trademarks ii
registers 175

locking 94
placing data in 113
scratch 37
usage 37
using RAMPZ in direct access mode 98

remark (diagnostic message) 151
classifying 88
enabling 102

remove (library function) 30
rename (library function) 30
REQUIRE (statement) 142
requirements, application 11
reset vector, defining in linker command file 19
return address pointer 37
return address stack, defining in linker command file 22
return data stack 37

reducing usage of 85
register usage 37
using cross-call optimizations 97

return values 38
reusability, of code 3
RJMP, in -v0 and -v1 processor option 13
ROM. See memory location
routines, time-critical 9
RSTACK (segment) 75

defining in linker command file 22
See also return data stack

RTMODEL 34
run-time library 24
run-time model attributes 34

_ _cpu 34

INDEX

CAVR-1

199

_ _cpu_name 35
_ _double_size 35
_ _enhanced_core 35
_ _memory_model 35
_ _no_rampd 34
_ _rt_version 34

S
scratch registers 37
search procedure, #include files 91
segment control directives 16
segment name, specifying 104
segments 15, 59

ABSOLUTE 63
absolute location 117
CODE 63
CSTACK 64
defining for stack and heap 19
DIFUNCT 20, 64
EEPROM_AN 65
EEPROM_I 65
EEPROM_N 65
FARCODE 66
FAR_C 66
FAR_F 67
FAR_I 67
FAR_ID 67
FAR_N 68
FAR_Z 68
HEAP 22, 69
HUGE_C 69
HUGE_F 70
HUGE_I 70
HUGE_ID 70
HUGE_N 71
HUGE_Z 71
initialization, defining 21

INITTAB 20, 72
INTVEC 72
naming convention 59
NEAR_C 72
NEAR_F 73
NEAR_I 73
NEAR_ID 73
NEAR_N 74
NEAR_Z 74
placement of 17
placing variables in 117
RSTACK 75

defining in linker command file 22
reducing usage of 85
using cross-call optimizations 97

SWITCH 20, 75
TINY_F 75
TINY_I 76
TINY_ID 76
TINY_N 76
TINY_Z 77

setjmp.h (library header file) 148
severity level, of diagnostic messages 151

specifying 152
SFR. See special function registers
short (data type) 51
signal.h (library header file) 148
signed char (data type) 51–52

specifying 84
signed int (data type) 51
signed long (data type) 51
signed short (data type) 51
silent operation, specifying 104
size of EEPROM, specifying 90
size optimization 4–5

specifying 108
sizeof, in A90 #if directives 169
size_t (integer type) 55

INDEX

CAVR-1

200

skeleton code, creating for assembly language interface 41
SLEEP (instruction) 144
small (memory model) 14
SP (pointer) 37
special function register (SFR) 33, 57
speed optimization 4–5

specifying 103
SREG (register) 47
sstream (library header file) 147
stack

internal data 64
return data 75
saving space 6
size 17

estimating 17
maximum 14

stack frames, in calling convention 39
stack pointers, initialization of 26
stack segment, defining 19
StackChk.mac (C-SPY macro) 18
standard error 100
standard output, specifying 100
statements, in implementation-defined behavior 177
static functions 5
static variables 5
stdarg.h (library header file) 148
stddef.h (library header file) 148
stderr 30, 101
stdexcept (library header file) 147
stdin 30
stdio.h (library header file) 148
stdlib.h (library header file) 148
stdout 30, 101
storage

AVR address spaces 4
of data 112
of functions 122

streambuf (library header file) 147

string (library header file) 147
string.h (library header file) 148
strstream (library header file) 147
structures 56

anonymous 56
in implementation-defined behavior 175

suffix, on segment names 59
support, technical iii
SWITCH (segment) 20, 75
symbols

predefined, overview of 9
preprocessor, defining 85

syntax, extended keywords 114

T
target identifier (predefined symbol) 138
target processor, defining in linker command file 19
technical support iii
technology, IAR compiler 3
time-critical routines 9
time.h (library header file) 148
tiny memory, pointers to 6
tiny (memory model) 14
TINY_F (segment) 75
TINY_I (segment) 76
TINY_ID (segment) 76
TINY_N (segment) 76
TINY_Z (segment) 77
tips, programming 5
trademarks ii
translation, in implementation-defined behavior 171
tutorials iii
tutor3.cpp (compiler tutorial source file) 47
type attribute (#pragma directive) 125
type checking, of function parameters 6
typographical conventions v

INDEX

CAVR-1

201

U
UBROF messages, excluding from object file 99
uninitialized variables 16, 60
unions 56

in implementation-defined behavior 175
unsigned char (data type) 51–52

changing to signed char 84
unsigned int (data type) 51
unsigned long (data type) 51
unsigned short (data type) 51
user guide iii

V
variables

auto 6
global 6
global register 37
global scalar 5
local 6
placing in the inbuilt EEPROM 4
specifying an absolute location 116
specifying as _ _root 102
static 5
uninitialized 16, 60

vector (#pragma directive) 130
vectors, defining in linker command file 19
version, of compiler 139

W
warnings 151

AVR-specific 152
classifying 88
disabling 100
exit code 106

treating as errors 107
watchdog reset instruction 144
wchar.h (library header file) 149
wctype.h (library header file) 149
website, IAR iii
writechar.c 31
www.iar.com iii

X
xcl file. See linker command file
XLIB 25
XLINK options

-c 19
-D 19
-f 24
-Z 19

Symbols
#include file paths, specifying 91
#include files, search procedure 91
#pragma directives 125

bitfields 52, 133
constseg 129
dataseg 128
diagnostics 130
diag_default 130
diag_error 130
diag_remark 130
diag_suppress 131
diag_warning 130
language 131
location 117, 122, 129

See also ABSOLUTE (segment)
memory 127
object_attribute 16, 120, 128

INDEX

CAVR-1

202

optimize 131
overriding default behaviors 15
overview 9
pack 132
type_attribute 114, 125

declaring pointers 115
vector 130
_ _no_init 128

-c (XLINK option) 19
-D (compiler option) 85
-D (XLINK option) 19
-e (compiler option) 89
-f (XLINK option) 24
-I (compiler option) 91
-l (compiler option) 42, 93
-m (compiler option) 95, 138
-o (compiler option) 100
-r (compiler option) 86, 102
-s (compiler option) 103
-v (compiler option) 13, 105, 138

mapping of AVR derivatives 12
-y (compiler option) 67, 76, 107
-z (compiler option) 108
-Z (XLINK option) 19
--char_is_signed (compiler option) 84
--cpu (compiler option) 84

in predefined symbol 138
mapping of AVR derivatives 12

--cross_call_passes (compiler option) 85
--debug (compiler option) 86, 102
--dependencies (compiler option) 87
--diag_error (compiler option) 87
--diag_remark (compiler option) 88
--diag_suppress (compiler option) 88
--diag_warning (compiler option) 88
--disable_direct_mode (compiler option) 89
--ec++ (compiler option) 90
--eeprom_size (compiler option) 90

--enhanced_core (compiler option) 91
--initializers_in_flash (compiler option) 13, 93
--library_module (compiler option) 94
--lock_reg (compiler option) 94
--memory_model (compiler option) 95
--module_name (compiler option) 95
--no_code_motion (compiler option) 96
--no_cross_call (compiler option) 97
--no_cse (compiler option) 97
--no_inline (compiler option) 98
--no_rampd (compiler option) 98
--no_ubrof_messages (compiler option) 99
--no_unroll (compiler option) 99
--no_warnings (compiler option) 100
--only_stdout (compiler option) 100
--preprocess (compiler option) 101
--remarks (compiler option) 102
--root_variables (compiler option) 102
--segment (compiler option) 104
--silent (compiler option) 104
--strict_ansi (compiler option) 104
--version1_calls (compiler option) 106
--warnings_affect_exit_code (compiler option) 81, 106
--warnings_are_ errors (compiler option) 107
--zero_register (compiler option) 108
--64bit_doubles (compiler option) 109
@ (operator) 63, 116, 122
_ _close (library function) 29
_ _cplusplus (predefined symbol) 135
_ _cpu (run-time model attribute) 34
_ _CPU_ _ (predefined symbol) 135
_ _cpu_name (run-time model attribute) 35
_ _C_task (extended keyword) 117, 120

using in #pragma directives 126, 128
_ _DATE_ _ (predefined symbol) 135
_ _delay_cycles (intrinsic function) 141
_ _disable_interrupt (intrinsic function) 141
_ _double_size (run-time model attribute) 35

INDEX

CAVR-1

203

_ _eeprom (extended keyword) 4, 16, 54, 113
using in #pragma directives 126

_ _embedded_cplusplus (predefined symbol) 136
_ _enable_interrupt (intrinsic function) 141
_ _enhanced_core (run-time model attribute) 35
_ _extended_load_program_memory (intrinsic
function) 142
_ _far (extended keyword) 54, 112

using in #pragma directives 126–127
_ _farflash (extended keyword) 54, 112, 127

using in #pragma directives 126
_ _farfunc (extended keyword) 54, 122
_ _FILE_ _ (predefined symbol) 136
_ _flash (extended keyword) 20, 54, 112

using in #pragma directives 126–127
_ _generic (extended keyword) 55, 113

using in #pragma directives 127
_ _huge (extended keyword) 54, 112, 127

using in #pragma directives 126
_ _hugeflash (extended keyword) 54, 112

using in #pragma directives 126–127
_ _IAR_SYSTEMS_ICC_ _ (predefined symbol) 136
_ _ICCAVR_ _ (predefined symbol) 136
_ _insert_opcode (intrinsic function) 142
_ _interrupt (extended keyword) 117–118

using in #pragma directives 126, 130
_ _intrinsic (IAR keyword) 122
_ _io (extended keyword) 33, 113

using in #pragma directives 126
_ _LINE_ _ (predefined symbol) 137
_ _load_program_memory (intrinsic function) 142
_ _low_level_init 24, 28

customizing 28–29
_ _lseek (library function) 30
_ _memory_model (run-time model attribute) 35
_ _MEMORY_MODEL_ _ (predefined symbol) 137
_ _monitor (extended keyword) 117–118

using in #pragma directives 126

_ _near (extended keyword) 21, 54, 112
using in #pragma directives 126–127

_ _nearfunc (extended keyword) 21, 54, 122
_ _no_init (extended keyword) 16, 60, 71, 74, 77, 115

using in #pragma directives 128
_ _no_init (#pragma directive) 128
_ _no_operation (intrinsic function) 142
_ _no_rampd (run-time model attribute) 34
_ _open (library function) 29
_ _read (library function) 30
_ _readchar (library function) 30
_ _regvar (extended keyword) 113

using in #pragma directives 126
_ _require (intrinsic function) 142
_ _restore_interrupt (intrinsic function) 143
_ _root (extended keyword) 103, 116, 121

using in #pragma directives 128
_ _rt_version (run-time model attribute) 34
_ _save_interrupt (intrinsic function) 143
_ _segment_begin (intrinsic function) 143
_ _segment_end (intrinsic function) 144
_ _sleep (intrinsic function) 144
_ _STDC_ _ (predefined symbol) 137
_ _STDC_VERSION_ _ (predefined symbol) 138
_ _TID_ _ (predefined symbol) 138
_ _TIME_ _ (predefined symbol) 139
_ _tiny (extended keyword) 21, 54, 112

using in #pragma directives 126–127
_ _tinyflash (extended keyword) 20, 54, 112

using in #pragma directives 126–127
_ _version_1 (extended keyword) 121
_ _VER_ _ (predefined symbol) 139
_ _watchdog_reset (intrinsic function) 144
_ _write (library function) 30
_ _writechar (library function) 30

INDEX

CAVR-1

204

Numerics
4-byte (floating-point format) 53
64-bit doubles, specifying 109
8-byte (floating-point format) 53

	Copyright notice
	Disclaimer
	Trademarks
	Welcome
	About this guide
	Assumptions and conventions
	Assumptions
	Conventions

	Contents
	Part 1: Using the AVR IAR compiler
	What’s new in this product
	Embedded C++
	Code and data storage
	Inbuilt EEPROM
	Optimization techniques

	Efficient coding techniques
	Programming hints
	Optimizing
	Saving stack space and RAM memory
	Using efficient data types
	Migrating from ICCA90

	Embedded C++ overview
	Language extensions overview
	Extended keywords
	#pragma directives
	Predefined symbols
	Intrinsic functions
	Inline assembler

	Configuration
	Project options
	Processor
	Mapping of processor options and AVR derivatives
	Implicit assumptions when using -v

	Memory model

	Memory location
	Non-initialized memory

	Linker command file
	Stack size
	Estimating the required data stack size

	Heap size
	Customizing the linker command file
	Defining the stack and heap segments
	Defining the CPU
	Defining the reset and interrupt vectors
	Defining objects declared _�_tinyflash
	Defining compiler-generated segments
	Defining objects declared _�_flash
	Defining functions declared _�_nearfunc
	Defining initialization segments
	Defining objects declared _�_tiny
	Defining objects declared _�_near
	Defining the data stack
	Defining the malloc HEAP segment
	Defining the return address stack
	Defining external memory
	Defining the input and output formatters
	Suppressing warnings
	Defining a linker command file

	Run-time library
	Initialization
	CSTARTUP
	Customizing CSTARTUP using the command line
	Customizing CSTARTUP using the IAR Embedded Workbench
	Maintaining library files

	Variable and I/O initialization
	Customizing _�_low_level_init from the command line
	Customizing _�_low_level_init in the IAR Embedded Workbench

	Input and output
	I/O functions
	Customizing a primitive I/O function on the command line
	Customizing a primitive I/O function in the IAR Embedded Workbench
	Maintaining library files

	Accessing the I/O system

	Module consistency
	Project options
	Data types
	Register usage
	Run-time model attributes

	Optimizations
	Stack parameters
	Any parameters that did not go into registers.

	Assembly language interface
	C calling convention
	Register usage
	Parameter passing
	Return values
	Stack frames
	Monitor functions
	Calling assembly routines from C
	ICCA90 calling convention
	Register usage
	Stack frames and parameter passing
	Interrupt functions

	Creating skeleton code
	Viewing the output file

	Compiler function directives
	Syntax
	Parameters
	Description

	Interrupt handling
	Interrupt functions
	Defining interrupt vectors

	Embedded C++

	Part 2: Compiler reference
	Data representation
	Data types
	Integer types
	Enum type
	Char type
	Bitfields

	Floating-point types
	4-byte floating-point format
	8-byte floating-point format
	Special cases

	Pointers
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t

	Structure types
	General layout
	Anonymous structures and unions

	Segments
	Introduction
	Naming convention
	Variable segments
	Segment suffix

	Declaration of objects
	Uninitialized variables
	Static objects
	Auto objects

	Summary of segments
	Absolute
	Type
	Memory area
	Description

	Code
	Type
	Memory area
	Description

	Cstack
	Type
	Memory area
	Description

	Difunct
	Type
	Memory area
	Description

	Eeprom_an
	Type
	Memory area
	Description

	Eeprom_i
	Type
	Memory area
	Description

	Eeprom_n
	Type
	Memory area
	Description

	Farcode
	Type
	Memory area
	Description

	Far_c
	Type
	Memory area
	Description

	Far_f
	Type
	Memory area
	Description

	Far_i
	Type
	Memory area
	Description

	Far_id
	Type
	Memory area
	Description

	Far_n
	Type
	Memory area
	Description

	Far_z
	Type
	Memory area
	Description

	Heap
	Type
	Memory area
	Description

	Huge_c
	Type
	Memory area
	Description

	Huge_f
	Type
	Memory area
	Description

	Huge_i
	Type
	Memory area
	Description

	Huge_id
	Type
	Memory area
	Description

	Huge_n
	Type
	Memory area
	Description

	Huge_z
	Type
	Memory area
	Description

	Inittab
	Type
	Memory area
	Description

	Intvec
	Type
	Memory area
	Description

	Near_c
	Type
	Memory area
	Description

	Near_f
	Type
	Memory area
	Description

	Near_i
	Type
	Memory area
	Description

	Near_id
	Type
	Memory area
	Description

	Near_n
	Type
	Memory area
	Description

	Near_z
	Type
	Memory area
	Description

	Rstack
	Type
	Memory area
	Description

	Switch
	Type
	Memory area
	Description

	Tiny_f
	Type
	Memory area
	Description

	Tiny_i
	Type
	Memory area
	Description

	Tiny_id
	Type
	Memory area
	Description

	Tiny_n
	Type
	Memory area
	Description

	Tiny_z
	Type
	Memory area
	Description

	Compiler options
	Setting compiler options
	Specifying parameters
	Error return codes

	Environment variables
	Options summary
	--char_is_signed
	Syntax
	Description

	--cpu
	Syntax
	Description

	--cross_call_passes
	Syntax
	Description

	-D
	Syntax
	Description

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Description

	--diag_error
	Syntax
	Description

	--diag_remark
	Syntax
	Description

	--diag_suppress
	Syntax
	Description

	--diag_warning
	Syntax
	Description

	--disable_direct_mode
	Syntax
	Description

	-e
	Syntax
	Description

	--ec++
	Syntax
	Description

	--eeprom_size
	Syntax
	Description

	--enhanced_core
	Syntax
	Description

	-I
	Syntax
	Description

	--initializers_in_flash
	Syntax
	Description

	-l
	Syntax
	Description

	--library_module
	Syntax
	Description

	--lock_regs
	Syntax
	Description

	-m, --memory_model
	Syntax
	Description

	--module_name
	Syntax
	Description

	--no_code_motion
	Syntax
	Description

	--no_cross_call
	Syntax
	Description

	--no_cse
	Syntax
	Description

	--no_inline
	Syntax
	Description

	--no_rampd
	Syntax
	Description

	--no_ubrof_messages
	Syntax
	Description

	--no_unroll
	Syntax
	Description

	--no_warnings
	Syntax
	Description

	-o
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--preprocess
	Syntax
	Description

	-r, --debug
	Syntax
	Description

	--remarks
	Syntax
	Description

	--root_variables
	Syntax
	Description

	-s
	Syntax
	Description

	--segment
	Syntax
	Description

	--silent
	Syntax
	Description

	--strict_ansi
	Syntax
	Description

	-v
	Syntax
	Description

	--version1_calls
	Syntax
	Description

	--warnings_affect _exit_code
	Syntax
	Description

	--warnings_are_ errors
	Syntax
	Description

	-y
	Syntax
	Description

	-z
	Syntax
	Description

	--zero_register
	Syntax
	Description

	--64bit_doubles
	Syntax
	Description

	Extended keywords
	Summary of extended keywords
	Data storage
	Storing data in data memory
	Storing data in code memory
	Placing data in registers
	I/O and EEPROM
	Generic pointer
	Syntax
	#pragma directives
	Pointers

	_�_no_init
	_�_root
	Absolute location
	Segment placement

	Function execution
	Interrupt functions
	Monitor functions
	C-task Functions
	_�_root

	Function calling convention
	Version 1 calling convention
	Intrinsic

	Function storage
	Embedded C++

	#pragma directives
	Type attribute
	Variables
	Constants
	Functions
	Pointers

	Memory
	Object attribute
	Dataseg
	Constseg
	Location
	Vector
	Diagnostics
	diag_remark
	diag_warning
	diag_error
	diag_default
	diag_suppress

	Language
	Optimize
	Pack
	Bitfields

	Predefined symbols
	_�_CPU_�_
	Syntax
	Description

	_�_DATE_�_
	Syntax
	Description

	_�_cplusplus
	Syntax
	Description

	_�_embedded_cplusplus
	Syntax
	Description

	_�_FILE_�_
	Syntax
	Description

	_�_IAR_SYSTEMS_ICC_�_
	Syntax
	Description

	_�_ICCAVR_�_
	Syntax
	Description

	_�_LINE_�_
	Syntax
	Description

	_�_MEMORY_MODEL_�_
	Syntax
	Description

	_�_STDC_�_
	Syntax
	Description

	_�_STDC_VERSION_�_
	Syntax
	Description

	_�_TID_�_
	Syntax
	Description

	_�_TIME_�_
	Syntax
	Description

	_�_VER_�_
	Syntax
	Description
	Example

	Intrinsic functions
	_�_delay_cycles
	Syntax
	Description

	_�_disable_interrupt
	Syntax
	Description

	_�_enable_interrupt
	Syntax
	Description

	_�_extended_load_program_ memory
	Syntax
	Description

	_�_insert_opcode
	Syntax
	Description

	_�_load_program_memory
	Syntax
	Description

	_�_no_operation
	Syntax
	Description

	_�_require
	Syntax
	Description

	_�_restore_interrupt
	Syntax
	Description

	_�_save_interrupt
	Syntax
	Description
	Example

	_�_segment_begin
	Syntax
	Description

	_�_segment_end
	Syntax
	Description

	_�_sleep
	Syntax
	Description

	_�_watchdog_reset
	Syntax
	Description

	Library functions
	Introduction
	Library object files
	Header files
	Viewing the C or Embedded C++ library documentation

	Library definitions summary
	Embedded C++
	Using standard C libraries in EC++
	Standard C
	Compatibility with standard C++

	Diagnostics
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Messages
	[Ta006] Interrupt function has no assigned vector
	AVR-specific error messages
	[Ta001] --no_rampd cannot be used with processor option -voption
	[Ta002] The model memory model is not allowed with processor option -voption
	[Ta003] Processor option -voption is not allowed in Base-line version
	[Ta004] Cannot combine _�_C_task with function-attribute
	[Ta005] Interrupt functions cannot return a result
	[Ta007] An _�_io declared variable must be located
	[Ta008] Location out of range for an _�_io declared variable
	[Ta009] Argument to _�_insert_opcode is a non-constant expression
	[Ta010] Argument to _�_insert_opcode is not in the range 0–65536
	[Ta011] Registers must be locked with --lock_regs before _�_regvar can be used
	[Ta012] A _�_regvar declared variable must be located
	[Ta013] Illegal location for a _�_regvar declared variable
	[Ta014] A _�_regvar declared variable must have global scope
	[Ta015] Cannot write to flash memory
	[Ta016] Illegal alignment of _�_regvar declared variable
	[Ta017] Segment name must be a string literal
	[Ta018] Expected a literal symbol and not an expression
	[Ta019] Unknown attribute string
	[Ta020] Malformed --segment option: option. Correct format is memory-attribute=segment-name
	[Ta021] The function function generated more code (n bytes) than is available in the target (n by...
	[Ta022] Interrupt functions cannot take any parameters
	[Ta023]
	[Ta024] _�_io declared object partially out of range 0 .. 63

	AVR-specific fatal error messages
	[Ta000] General target error string

	Part 3: Migration and portability
	Migrating to the AVR IAR Compiler
	Introduction
	The migration process
	Extended keywords
	Storage modifiers
	_�_no_init
	_�_interrupt
	_�_monitor
	SFR

	#pragma directives
	Specific segment placement

	Predefined symbols
	Intrinsic functions
	Compiler options
	Command line syntax
	Removed ICCA90 options
	Identical options
	Renamed or modified ICCA90 options

	Filenames
	List files
	Object file format
	Nested comments
	Preprocessor file
	Cross-reference information
	Sizeof in preprocessor directives
	1 Write a small program, and run it in the simulator, with terminal I/O.
	2 Write a small program, compile it with the option -la . to get an assembler listing in the curr...

	Implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized #pragma directives (6.8.6)
	Default _�_DATE_�_ and _�_TIME_�_ (6.8.8)

	C library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR C extensions
	Available extensions
	Extensions accepted in normal EC++ mode
	Language features not accepted in EC++
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

	Index

