8051 IAR Embedded Workbench™
User Guide

for the
8051 Family of Microcontrollers

8051 IAR Embedded Workbench™
User Guide

COPYRIGHT NOTICE
© Copyright 2001 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, AR Systems assumes no responsibility for any
errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or
kind.

TRADEMARKS

IAR and C-SPY are registered trademarks of IAR Systems. IAR Embedded
Workbench, IAR XLINK Linker, and IAR XLIB Librarian are trademarks of AR
Systems. Microsoft is a registered trademark, and Windows is a trademark of
Microsoft Corporation. Pentium and Intel are registered trademarks of Intel
Corporation. Codewright is a registered trademark of Premia Corporation. Adobe and
Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: January 2001

Part number: U8051-1

Contents

Tables

Figures

Preface

Who should read this guide
How to use this guide

What this guide contains

Other documentation

Document conventions

Part |: The IAR development tools

Introduction

Included in this package

System requirements

Running the program

Running the JAR Embedded Workbench

Running the IAR C-SPY Debugger

Upgrading to a new version

Uninstalling the products

Directory structure
The root directory

The bin directory

XXViii
XXX

XXXi

The config directory

The doc directory
The inc directory

The lib directory

The license directory

The src directory

o0 L1 L1 1K1 LT A DA AN DN DA WW WW

The tutor directory

File types
Documentation

User and reference guides

Online help

Recent information

IAR on the web

W P W NN O o

The IAR Embedded Workbench

The framework

Integrated tools

IAR Embedded Workbench

Features

IAR C Compiler

Features

IAR Assembler

Features

IAR XLINK Linker

Features

IAR XLIB Librarian

Features

IAR C-SPY Debugger

Features

Versions

The project model

Developing projects

How projects are organized

Setting options

Building a project

Testing the code

Sample applications

8051 IAR Embedded Workbench™
iv User Guide

I
I
12
12

.13

13
14
14
15
I5
16
16
16
17
18

.19

19
19
20
21
21
22

Contents __o

Part 2: Tutorials 25
IAR Embedded Workbench tutorial 27
Tutorial | 27
Creating a new project 27

The source files 29

Adding files to the project 31

Setting compiler options 33

Compiling the tutor.c and common.c files 34

Viewing the list file 34

Linking the tutor.c program 37

Running the program 40

Watching variables 42

Setting breakpoints 44

Executing up to a breakpoint 45

Continuing execution 45

Exiting from C-SPY 46

Compiler tutorials 47
Tutorial 2 47

The tutor2.c serial program 47

Compiling and linking the tutor2.c serial programceceecescereeence 48

Running the tutor2.c serial program 49

Defining virtual registers 49

Tutorial 3 50

The tutor3.c program 50

The C-SPY tutor3.mac macro file 52

Compiling and linking the tutor3.c program 55

Running the tutor3.c interrupt program 55
Assembler tutorials 59
Tutorial 4 59
Creating a new project 59

The first.s03 program 59

Assembling the program 60

vi

8051 IAR Embedded Workbench™
User Guide

Tutorial 5

Advanced tutorials
Tutorial 6

Tutorial 7

Tutorial 8
Creating a combined compiler and assembler project

ROM-monitor tutorial
Tutorial 9

Viewing the first.Ist list file

Linking the program

Running the program

Using libraries

The main.s03 program

The library routines

Creating a new project

Assembling and linking the source files
Using the IAR XLINK Librarian

Creating project4

Defining complex breakpoints

Executing until a condition is true

Executing up to the cursor

Displaying function calls

Displaying code coverage information

Profiling the application

Monitoring memory

Changing memory

Monitoring registers

Changing assembler values

Getting started

Setting target and compiler options

Compiling the demo.c and demo_two.c files

Setting XLINK options

Linking the project

6l
63
64
65
65
66
66
67
67
68

71

71
71
72
74
74
75
76
77
77
78
80
80
8l
8l
8l

83

83
83
84
85
86
86

Contents __o

Setting C-SPY options 87
Running the program 87
Part 3: The IAR Embedded Workbench ... 89
General options 9l
Setting general options 9l
Target 92
Processor variant 92
Memory model 92
Output directories 93
Compiler options 95
Setting compiler options 95
Code generation 96
Enable language extensions 96

‘Char’ is ‘signed char’ 96
Writable strings 96

/I’ comments 97

Nested comments 97
Disable warnings 97

Make a library module 97

Stack expansion 97
Function 97

Type checking 98
Optimization 99
Register bank 99

Code segment 99
Debug 100
Generate debug information 100
#define 101
Defined symbols 101

List 102
List file 102

vii

viii

8051 IAR Embedded Workbench™
User Guide

Tab spacing

Cross reference

Assembly output file

Preprocessor output file

Explain C declarations

#Hundef

Undefine symbol
Include

Include paths

Assembler options

Setting assembler options

Code generation
Case sensitive user symbols

Disable #ifdef/#endif matching (-d)

Warnings

Make a library module

Macro quote chars

Debug

Generate debug information

#define

#define

List

List file

Include cross-reference

Lines/page

Tab spacing

#Hundef

#undef

Include

Include

103
103
103
104
104
105
105
106
106

107

107
108
108
108
109
109
109
110
110
11
11
112
112
113
113
113
114
114
115
115

Contents °

XLINK options 17
Setting XLINK options 17
Output 118

Output file 118
Format 118
#define 120
Define symbol 120
Diagnostics 121
Always generate output 121
Segment overlap warnings 121
No global type checking 121
Range checks 122
Warnings/errors 122
List 122
Generate linker listing 123
Include 124
Include paths 124
XCL filename 124
Input 125
Module status 125
Library 126
Use multiple DPTRs 126
Use MDU library 127
Reentrant 127
Override default library 127
Processing 128
Fill unused code memory 128

C-SPY options 131
Setting C-SPY options 131
Setup 132

Processor variant 132
Setup file 132
Device description file 132

8051 IAR Embedded Workbench™
x User Guide

ROM monitor

File menu

Edit menu

Make code writable

Driver

Serial Communication

Code

Target consistency check

Intel RISM

IAR Embedded Workbench reference
The IAR Embedded Workbench window

Menu bar

Toolbars

Project window

Editor window

Status bar

Messages window

Binary Editor window

New...

Open...

Close

Save

Save As...

Save all

Print...

Print Setup...

Exit

Undo

Redo

Cut, Copy, Paste

Find...

Replace...

Find in Files...

133
133
133
134
135
135
135

137
137

.138

138
140
142
145
146
147
148
148
150
150
150
150
150
150
150
150
151
151
151
151
151
152
153

Contents °

Match brackets 154
View menu 155
Edit Bar 155
Project Bar 155
Status bar 155
Goto Line... 155
Project menu 156
Files... 156
New Group... 157
Targets... 158
Options... 158
Compile 159
Make 160
Link 160
Build all 160
Stop build 160
Librarian 160
Debugger 160
Tools menu 16l
Configure tools... 161
Binary Editor... 164
Record Macro 164
Stop Record Macro 164
Play Macro 164
Options menu 164
Settings... 164
Window menu 170
New Window 170
Cascade, Tile Horizontal, Tile Vertical 170
Arrange icons 170
Close all 170
Split 170
Message window 171

Xi

Xii

8051 IAR Embedded Workbench™
User Guide

Help menu

Contents

Search for help on...

How to use help

Embedded Workbench Guide

C Compiler Reference Guide
Assembler Guide

XLINK and XLIB guide

C Library Reference Guide

IAR on the Web

About...

Part 4: The C-SPY simulator

Introduction to C-SPY

Debugging projects

Disassembly and source mode debugging

Program execution

C-SPY expressions

Expression syntax

C symbols

Assembler symbols

Format specifiers

C-SPY macros

Using C-SPY macros

Macro variables

Macro functions

Macro statements

C-SPY setup macros
Descriptions of system macros

171
171
171
171
171
171
172
172
172
172
172

173

175

175
175
176

181

181
181
182
182

185

185
186
186
187
189
190

Contents __o

Device description file 207
SFR window setup 207
SFR groups 208
Interrupt system simulation 208
Loading the device description file 208
Interrupt system syntax 209
C-SPY reference 211
The C-SPY window 211
Types of C-SPY windows 212

Menu bar 212
Toolbar and debug bar 213

Source window 214
Register window 215

SFR window 216
Memory window 216

Calls window 217

Status bar 218

Watch window 218

Locals window 219
Terminal I/O window 220

Report window 220

Code coverage window 221
Profiling window 222

File menu 224
Open... 224

Close session 224

Recent files 224

Exit 224

Edit menu 225
Undo, Cut, Copy, Paste 225

Find... 225

View menu 226
Toolbar 226

xiii

8051 IAR Embedded Workbench™

xiv User Guide

Execute menu

Control menu

Debug Bar

Source Bar

Memory Bar

Locals Bar

Profiling bar

SFR Bar

Status Bar

Goto...

Move to PC

Toggle Source/Disassembly

Step

Step into
Autostep...

Multi Step...

Go

Go to cursor

Go out

Reset

Stop

Toggle breakpoint

Edit Breakpoints...

Quick watch...
Memory Map...

Memory Fill...

Assemble...

Interrupt...

Trace
Calls

Realtime

Log to file

Profiling

226
226
226
226
226
227
227
227
227
227
228
228
228
228
228
229
229
229
229
229
229
230
230
233
233
234
235
236
238
238
238
238
239

Contents __o

OPLIONS MENU ... eeeess s sssis s esssss st ssesees 239
Settings... 239

Load Macro... 243

Select 10g fle... ettt esesseset e sseasessenees 244
Window menu 245
CASCAAR ..ottt 245

Tile NOTIZONEAL ...t 245

Tile vertical 245
ATTANZE ICOMS wuvvnevervemerraersersersesseressesesessessesssssessessessesesssssesessessssasssssssces 245

HeEIP ME@NU ..ot esi et ss s sssne 246
Contents 246

Search for help on... .246

How to use help .246
Embedded Workbench Guide 246
ADOUL. ... ceeoreeerceenceimeemeecesseesseesssesssssesssessssesssseessasessasssssssessasessssessssssssseces 246
C-SPY command line options 247
Setting C-SPY options from the command line 247
Using macro files for options 247
Summary of command line options 248
Descriptions of C-SPY command line options ... 248

Part 5: C-SPY for the 8051 ROM-monitor ... 253

Introduction to the ROM-monitor 255
The C-SPY ROM-monitor 255
Differences between the ROM-monitor and simulator
versions of C-SPY 256

The ROM-monitor program 257
Communication 257
Execution of user code 257

Xv

XVi

8051 IAR Embedded Workbench™
User Guide

Controlling user applications

Breakpoints
The Control C feature

Single stepping

Debugging in real time

Debug options

CPU halt

Processor sharing

Debugging interrupts

Resolving problems with the ROM-monitor

Verifying the download

Checking for problems

Possible problems

Advanced topics

Executing transparent commands

How to execute a transparent command

Writing transparent commands
Protected memory

Using address masks

Adapting the ROM-monitor

ROM-monitor memory use

Hardware reset

Serial communication

Writing your own serial port driver

Setting the interrupt vector

Switched memory layout

Building a new ROM-monitor

Testing the modified serial communications

The ROM-monitor boards

EM ROM-monitor

Memory maps in RUN mode

Memory maps in monitor mode

MCB-517 ROM-monitor

259

259
259
260
260
261
261
261
261
262
262
262
262

265

265
265
266
268
268
268
269
269
269
270
270
271
272
277

279

279
279
28I
282

Contents __o

KITCON-504C, 505C and 515C ROM-mONitorcccocevveumcvureunncs 283

Internal CPU memory 284
Diagnostic messages 285
Warning messages 285
Error messages 286

Fatal error messages 286
Index 289

xvii

8051 IAR Embedded Workbench™
xviii User Guide

Tables

1: Typographic conventions used in this gUidecccccoeveerenerinencncncnenenne. XXX1
27 FLE LYPES oottt ettt ettt as
3: Tutorial 1 compiler options

4: Tutorial 1 XLINK OPHONS ...cocveiiiiiiiiiniinienienietceienie ettt e e

5: Defining virtual TEZISIEIScceverieiriiriirieiierenteettet ettt

6: Tutorial 3 compiler options

7: Tutorial 4 assemMDbIEr OPLIONScc.eeeruieiiiiieieieietetet ettt 61
8: Tutorial 4 XLINK options

9: Tutorial 5 XLINK options

10: XLIB FETCH-MODULES parametersccoccocceerenerereeeneneseneeeeeennens 68
11: XLIB LIST-MODULES Parametersccecceeeerueeneniereerieesieneeseesieeseesseenee 69
12: Tutorial 6 OPLIONScoueeruieiieiiniierieeteet ettt ettt eee e e 71
13: Tutorial 8 COMPIIEr OPHIONScoveeueruieiiriirieirieeiete et 82
14: Tutorial 9 cCOMPILEr OPONSeeuveeiiriiiriieiieieiteneeteete ettt 85
15: OptimiZation OPLIONS ..ccc.eeveeuerieenieeienienitenteeit ettt et eibe st ebe et seeesae e e eeesnenee 99
16: Register bank OPtiONScceccueiiriiriinienieiinieie sttt 99
17: Assembler List file OPHONS ooveiviirieriiiieienieeteee e e

18: XLINK range check OPtONScccceeveerieriienienienieniieneeieetesteie et

19: XLINK List file OPtIONScovveiiuiinieieniinieiinienie sttt

20: Libraries supporting multiple DPTRs

21: Non-reentrant and reentrant C library filesccccooeninvininiinicniinienenne. 127
22: XLINK checksum algorithmsccccoecuerereninenenineneneecnenece e 129
23: C-SPY driver OPLIONS ..cc.eevveeierteeniieientenitenieeit ettt sttt st st sbe st eaee e seesnes 133
24: C-SPY serial communication OPONSccccoveruerrerierienreneneneneneeeeneeeeenane 134
25: TAR Embedded Workbench menu barcccoceceviiiiniininiciniiicnceee 138
26: Editor syntax coloring

27: Editor keyboard commands for cursor navigationc..ceceecevverericneeencnnnee 144
28: Editor keyboard commands for SCrollingccccocevevervnininicnininccencnee 144
29: Editor keyboard commands for selecting teXtc.cccvveveriineniniencccnenne 144
30: Option categories in IAR Embedded Workbenchccccoccevenininincnncnnen. 159
31: Argument Variablesc.coceecieviiriiiiiniiniiiice e 162

Xix

8051 IAR Embedded Workbench™
xx User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

Command Shellsccooiiiiiii e 163
EdItOr SETHINES .eveeveeiieieiiieeierite ettt ettt ettt s 165
Make CONLrOl SELHNESveveerereiriieieriitenentent ettt sttt 169
C-SPY C SymboOlS EXPIeSSIONScc.cevueeruerrierieniienienieneesiteeeesiesieesieenieeneesanenne 181
C-SPY assembler symbols Xpressionsc..ceoeeeeereereeneenieenieneeneenieeeeneenne 182
Handling name conflicts between h/w registers and assembler labels 182
C-SPY expressions format SPeCifierscoceveeverrierienieneenenee e 182
Examples of C-SPY macro variablesccccoeceveineniinienienincneenieeeeee 186
C-SPY SELUP MACIOS ouveuieiriienieriiienterteieetente st sie st eie st et eie s ebeeseeeeneenes 189
__cancellnterrupt return Valuescococeeveriireiniieneniineeieeeee e 191
__clearBreak return VAIUESooviiviiiiiiieieiieeeee ettt e e 193

__clearMap return values

__disableInterrupts return valuesccccceceevierieneinienieenienieneeeeee e 194
__enablelnterrupts return ValuESscceceeveeieiieneinenienieieeiese et 195
__openFile return ValUescc..coeviniirieneniniinine e 197
__readFileGuarded return valuesccccoeeoiuvieieiiiie et 199
__SetBreak return VAIUESooeiiiiiiiiiiieieieee e e 203
C-SPY MENUS ..ottt st 212
Examples of using Goto... command to move to a specified source line 227
Modifying existing breakpointsccccceveeveeriiereeneniieeienieneeeeeeereeeneeeaeeen 230
Breakpoint CONAItioNSccuecieriiienenieniinene st 231
Breakpoint tYPES ...ccueeevieieriieiiniierteit ettt sttt et
Memory map types

Memory fill OPETALIONSc..coverueuiriiriiriinieeeriert ettt 235
General WINAOW SEHHNZS ..c..eevvirverierienieeeetenitete ettt st see i eee 240
Summary of C-SPY command line optionscccceeeeerieneenenieenennieeneneenne 248
C-SPY supported driVersccccocoeeiererinienenineneneeeee e 249
Serial port command 1ine OPHONScoeevueriieriieneriinie ettt 250
Available processor type options

ROM-MONILOr VEISIONSeouvintiniiriiientenieteetenieseeetesiesiestesie st eieeieseeeiesieeseeiesanes

Differences between C-SPY ROM-monitor and C-SPY simulator 256
Verification fUNCLIONScc.coviriiriiiiiiieiieree ettt st 268
Required files for ROM-monitor configurationc.cccceeevvevieinnineccnnens 273

Figures

1 DIFECIOTY SIIUCKUIR ...c..euvevieieieienie ettt ettt sttt ettt et st be bt eae e eaeas 5
2: Project WINAOW ...co.ooviiiiiiriiii ittt sttt 20
3: Compile command in the Project menu... .21
4: Basic apPlICATIONevveriirtieteierieetceierte ettt ettt st 22
5: CompleX aPPLICALION ..c.veeuieieriiniieriieie ettt ettt ettt sttt sae e ens 23
6: Creating @ NEW PIOJECT ..ceeueeuririieierieeieeieriteett et ete et e ettesteeste et saeesbeesbessbeeseenaeens 27
7: New Project dialog DOXc.coueriiiiniinieniniiienente ettt 28
8: Project WinAOWcccueriiiiiiiiiiiiiiieee ettt sttt 28
9: Target settings

10: Adding files t0 PIOJECT.....cc.evueeueruieiiirieieitetete ettt et 32
11: Displaying files in the Project Windowccccccoeeiieriienieniinnenncnienceneeeenen 32
12: Setting COMPILET OPLONS ...cveeruieiiiiiniiiniieieeeettertee ettt eaees 33
13: Compilation MESSAZEcoverververueruiriiniieiiniieitetteteiteet ettt st eseesesae e senee 34
14: Tutorial 1 XLINK OPLIONS....ccc.eeviirieriiinienieeieniienieeieeteste sttt 37
15: LinKing MESSAZE ...ceveeueieuienieitieiintenitenteeiieetentt et e et sbe e ettt sbeesbeeneeaees 38
16: Starting C-SPYooviiiiiiiieiceee ettt sttt s 40
17: Stepping N C-SPY ..ot 41
18: Tutorial 1 Multi Step dialog DOX...c..couerieriiniiniinieiieieee e 42
19: Multi step in C-SPY ..cooiiiiiiiiiecece et
20: Watching variables in C-SPY

21: Expanded view of variables in C-SPYcccccooeeiiiniininiiiiicniceceeeeee 43
22: Setting BreakPOints. . ..c..coereuireririeieeereecee ettt 44
23: Executing up to @ breakpOintcoceeviereiririieeiiineenieeieeeesitene et 45
24: Reaching program EXIT in C-SPYcccocueiiiiiiiiiiiiiiiieeneecnee e 46
25: Opening the Terminal I/O WindOWcccoevininiiiinininene e 49
26: Tutorial 2 Register window

27: Specifying the setup macro and DDF file..........ccoccoinivininiiincncnincncncene 56
28: C-SPY Source and Report WindOWscceceriieieniniinenc e 57
29: Terminal I/O WINAOWcc.coiiiiiiiiiiiiiiee e 58
30: Tutorial 4 Assembler code generation OPLioNScocceveeerererererenenerenenne 60
31: Messages window after assembling the file............cccoevininiiinnnincninincne 61

xxi

xxii

8051 IAR Embedded Workbench™
User Guide

32: Assembler List fIlec..ooiiiiiiiiii e 62
33: XLINK OULPUL OPLIONS ...vverveeiienieeiiniierieeteeteste ettt sbe et seeesne e eneenaeens 63
34: Messages window after linking the fileccccooviiiiiiiiiiineniiincnceee 64
35: Registers counting when eXecuting Programcceeerveerueruereereeenenueseennens 65
36: XLIB WINAOW ...uvviriiiieiieieiieicieereeit ettt ettt ettt en e st s esen e s nnenen 68
37: Displaying breakpoint information 72
38: Modifying Breakpoints........cccceeveerueriireerienieneeneeteeteteseeeie st 73
39: Executing in C-SPY until a breakpoint condition is true...........cccccceveeverccnennene 74
40: Executing in C-SPY up to the CUISOr........ccccoeviviirinenenienininencceeneeeceveeaene 75
412 Calls WINAOWiiiiiiiiiiiiiieiiiieeee et 75
42: Code COVETage WINAOWc..cevuireiriiiiiiiiiniienieeteeie sttt ettt et s saeas
43: Tutorial 6 Profiling window

44: Debugging in disassembly MOdecoceruirieiieininiienieneee e 78
45: MONItOTING MEMIOTYeeuiiuiiiiiiieiieieieeeee sttt s sae e se e ee e sae e eneeneas 79
46: Displaying memory contents as 16-bit WOrds..........c.ccoceverenenrencninicnencnennens 79
47: Editing MEmMOTY CONLENLSeevveruerreriiinreriieetensierieeiesiteseestesseesseebeesesssesseesneas 80
48: Displaying edited MEmMOTY CONLENLS.....cc.eeuuereerrierierierieriierteereeeieeieereeeeesieesaeas 80
49: Tutorial 7 RegiSter WiNAOW...........ccueviiriiiiinienieiinieie et 81
50: Assembler dialog DOX.......coceeruiiiiiiiiiiiiieietee ettt 81
51: Tutorial 8 Compiler list file OPHONS. ...ccccevvieririirieiieeeiereeeeeseeeee e 82
521 TAIZEt SELUIES c..euvenvirterertieteierieet ettt ettt sttt ettt sa et ettt be e e e aene 84
53: Setting compiler options for the ROM-mONitor.........ccccecueeveenienenienienieneneene 85
54: Tutorial 9 XLINK options

55: Selecting the ROM-mONItOr driVercoeeeviriiecrinininicceecieteieceeeceeee e 87
56: Setting general OPtIONS........cc.cveruirieeeeiieeeeeit e 91
57: TArZEt OPLIONS «..uveuiiieniiriiteieriet et ettt st st en e 92
58: OULPUL ITECLOTIES ...ttt sttt ettt ettt saene b
59: COMPILET OPLIOMS ...ttt

60: Compiler code generation options

61: Compiler debugging OPLionScoceveruireririneeirineeereeeee et

62: Compiler #Aefine OPONS....ccc.vevieerieiiriieiieiert ettt

63: Compiler list file OPtIONS.cceuieieiriiriirieieiere e

64: Compiler #undef OPtiONS.cccecveriiiiiriiieiec e e

65: Compiler Include path OPtionS........cccceveeviieiieniiniieiieeeeeeee e

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures __o

ASSENDIET OPLIOMS ..c.uvieiiiieiiieieitieeteet ettt st et ene 107
Assembler code Zeneration OPLIONSccc.eevverevereerueerienieneeneneeneenieeseeeeenae 108
Selecting macro qUOLE ChAraCersS..........couevirierieienierieniene e 109
Assembler debugging OPLIONS ...c...eeueeuveeiirieniieienienieee et st 110
Assembler #define OPLIONSevveerueriiriiiiereeieete e 111

Assembler list file options

Assembler #undef options
Assembler Include path OptionS...........coceevieririiinieniiinieeee e 115
XLINK OPHONS «..cuiviiieiieieniieieete ettt ettt et s et sre s 117
XLINK output file OPtiONScc.eevveeueeieeriieienieeieeiereesiee et 118
XLINK defined symbols OPtONSc.c.ceeerieeiiriereinienie et e 120
XLINK diagnostics options
XLINK 1St file OPHONS ..cuveeueieiieriieniieiieeieteseeeie ettt st ene
XLINK include files OPtONSccueeverrienierieeiieiesee ettt s
XLINK input files OPtONScc.ceveeiriririniieineniecritee ettt
XLINK IIDrary OPtionS......ccc.eecueruerueeieeniieienieeieeteseesieesteete st s sieseeseenieens
XLINK Processing OPtONScc.eeeueeuereeniienienienieneeniesseeeseesiressessseseeseenseens
C-SPY OPLONS. ..ttt sttt sttt et b et et
C-SPY SELUP OPLIONS ..ottt sttt st et e e eaeenieens

C-SPY serial communication options
C-SPY ROM-MONItOr OPtIONSceevueruieiiriieiieiieieiteiietee ettt et sre e
IAR Embedded Workbench Windowcccccoueriiiiriinniinieniiicnieneeneeene
IAR Embedded Workbench edit bar..
TOO0IbAr SEAICHc.eiiiiiiiiiiiiiciete e

IAR Embedded Workbench project bar..........c.c.coeeveeiinniinienieninenienieene 140

Project WInAOWcocuoiiiiiiiiiiieieeeeeet ettt e 140

Project window POP-UP MENUcc.erueriririirinenieteiteteie ettt neenees 141
Editor WINAOWcoiiiiiiiiiiiiciee et

Splitting the Editor window
Editor window Status Dar.............cceeviiiiiiiniiiniiiiciice e
MESSAZES WINAOW ..couviniiiriiiiiiniieniieieeiieetete sttt ettt et st sbeesaeeaeene
SaVE AS... POP-UP MEIIU ..eutieniirieiniietietesiteeitestteseeeabeeatesstesseesaesseesaseseeenbesaneens

Binary Editor WindOWccccviiiiiiiiiniiiiiiicciciecccee e

FIle MENU....oiiiiiiicce ettt e e et e e eaes

xxiii

8051 IAR Embedded Workbench™
xxiv User Guide

100:

NEW dialOZ DOX ..coveiiiiiiiriieeiieie ettt

101: New Project dialog box

102: Binary Editor WindOWccccevieeiieriinieiieiesceeeeeeteie et

103: Edit MENU ...

104: Find dialog DOX ...cc.eoriiiriiiiieiiieenieeeteeeeet ettt

105: Replace dialog box

106: Find in Files dialog box

107: Messages window displaying found Strings.........cc..ceecerveeeeereeneensieneenennnenne 154
108: Editor window displaying found String...........c.ccocccveverinenerencncncncncnenne 154
109: View menu

110: Goto Line dialog DOX ..c.eecueeruiriirieniiiiinieeieiieneeeete et 155
1112 PrOJECE MENU ...ttt sttt ettt 156
112: Project Files dialog DOX......ccoeriirieniiiiiniinieiienieneeteteee et 156
113: New Group dialog DOXcc.covuiriiriiniiiiiiiiieiiereeeees e 157
114: Targets dialog DOX......coeeeriirireiirinieeeitetetee ettt 158
115: Options dialog DOXcccoeuieiiiiiiiiiieicieececee e 159
116: TOOIS MENU......niiniiiiiieieeeeeeer e 161
117: Configure Tools dialog DOXccccrvieiiiiniiniiniiiienenteee e 161
118: Customized TOOIS MENU.......cccoceiiiiiiiiiiiiiee e 163
119: Options menu (IAR Embedded Workbench)..........cccccocuerieniininiininncenenne 164
120: EItOr SELLINES ..eveeuereeeieeiiriieieeieeieieet ettt ettt et st esae e saesaeaees 165
121: Specifying external command-line editor...........ccouereereirernenieenienenneeiene 166
122: External editor DDE settings

123: Specifying key DIndingscoceeereriiinieiiiiieiiiceecreee et

124: Specifying Editor window colors and fonts.........c...ceccevveeveeneeneniienennennnene 168
125: Make Control SELHIEScc.ceeruieieieieieieieie et 169
126: Window menu

127 HEIP MENU ...ttt st

128: C-SPY WINAOWeveviniinirieiietiieieeteie et steneettseetereate et st seestsresesnesaebeeesenaenens 211
129: C-SPY tOOIDArc.cciiiiiiiiiiiiiiiiiiicitcecee e 213
130: C-SPY debug Darc..cocueriiiiiiiiiieieeeeeteeteeeee ettt 213
131: Source Window POP-UP MENUc.eeeerieriieniiniiieieniienieereetentesie s eaeesieeseee e 214
132: Highlighting in C-SPY Source Windowc.ccceeuereniinenenenencncnenenenes 214
133: ReZIStEr WINAOWoviiiiiiiiiiiiiceitetceteeite ettt ettt sve e e 215

Figures __o

1341 SFR WINAOW....cutitiieiiieirieiieiinieeeree ettt ettt et saesesnenaenennes 216
135: Memory WindOW POP-UP MENU.....cceerierurirrerteeienieenieeieneeneessessseeseenseesseene 217
136: Editing memory in C-SPYccccociiiiiiiiiiiiiiiecctceee et 217
137: Memory edit dialog DOXccoueriirieriieiinieiieniieneeeetesteee et 217
138: Calls WINAOW.......oouiiiiiiiiiiiiciceee e 218
139: C-SPY Watch WINOWc..coeveiiriiniiiniicieieeeeieet ettt 218
140: Add command on C-SPY Watch window pop-up menu...........ceceeeeeveeenueene 218

141: Properties... command on C-SPY Watch window pop-up menu................... 219
142: Symbol Properties dialog box

143: Locals window

144: Terminal I/O WINAOWccoeiiiiiiiiiiiiieee e

145: REPOIt WINAOW ..c.eviiiiiiiiiieiieie ettt ettt et e

146: Code coverage WinAOWcoceevuereerieniienienieeteieenie ettt

147: Code coverage pop-up WINAOW........ccoceevueerieriinieniienienieneenitesesieeeeesieeneee e 222
148: Profiling WindOW.........ccceviruiiiriiiiinieieiietet ettt sttt 222
149: Profiling WindOW POP-UP MENUocuviruerririeniienieniieeeeniteneeeieseesieeseeseesneenae 222
150: Profiling WindOw BULLONS.......cocueriiriiiniiiieiiniienieeeee e 223
151: Profiling window Graph On/Off button..........c.cccueeueveviinenenencncnencnenenes 223
152: File MenU (C-SPY) ..euuiiiieee et ettt 224
153: Edit Menu (C-SPY) .ceiiriiiieiieirieeeetst ettt et 225
154: Find dialog boX (C-SPY) .eouiiiiiiiiiieictetctececeetcee e 225
155: View Menu (C-SPY) ..oeiieece ettt 226
156: Goto dialog box

157: EXECULE TNEMUoeuiiiiiiiiiiiiieiiie ettt ettt ettt et et ene s st sne e

158: Multi Step dialog DOX.....covuieruiriiriieiieieriieetet et

159: Control MENU.......ccoiiiiiiiiiiiieeee e

160: Breakpoints dialog box

161: Watch WINAOW ..o e

162: Memory Map dialog DOX....cccuceeereeiiiiiiniiinieiieeteieseeeetee et 233
163: Illegal access reported in Report Windowc.ccoeveeeeirenieinecnieieneneane. 234
164: Memory Fill dialog DOXcoveeviiiiiiniiniiiieieniieneeeee sttt 234
165: Assembler dialog boX (C-SPY)...cceruiriiiiiiiniiniiiieieeee e 235
166: Interrupt dialog DOX.......coueruiririiiiiiieietetcteete et 236
167: Report window with trace mode Oncoccevueevieriinienieenenreneeseeneereeee e 238

XXV

XXVi

8051 IAR Embedded Workbench™
User Guide

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:

Calls window with calls MOde Onc.cccoeiiiiiiiiiiiiicicceceeeene 238
Options MENU (C-SPY) .cuiiiiiiiiiieete et 239
Window Settings tab in Settings dialog BOXc..ccevevvirencrenencnenencnenne 239
Register Setup tab in Settings dialog BOXc..cccceevviiviniininiiniiniieeee 240
Virtual Register dialog DOXc..coeieiiiriiniiniiiieienieeeeeeeesee e
SFR Setup tab in Settings dialog box....

Key Bindings tab in Settings dialog box

Macro Files dialog DOXccceevieiiiniiniiiiiieneceieeeeesieseetee e
Listing of registered macros in Report windowccccceevevieceinieneiinennens 244
Window menu (C-SPY)

Help Menu (C-SPY) oottt
Session Options dialog DOX......cc.evererirerireninineeereeeeeeie et 247
Quick Watch command in the Control MenU...........ccceeeereerveencieesieerieenneans 265
Quick WatCh WINAOW.......ccuieiiiiieiieecieeie et e e 266
The MYMONS04 PrOJECT ...cverviriiiiriiriieiirie ettt 274
The monS504 outpUL dITECLOTIESeeuverutevierieritieiieieeieeie sttt 275
Output page in XLINK OPtONS....cceeeiirieirinie et 275
Specifying a linker command file for the ROM-monitorcccceceeerennenne 276
The MONS04£Iles ZrOUP ..eveeeuieiiiiieieiieieeet et 276
Predefined symbols for the ROM-moOnitorcc.ccoceeiereenienenieniienienenne 277

Preface

Welcome to the 8051 IAR Embedded Workbench™ User Guide. The
purpose of this guide is to help you fully utilize the features in the 8051 IAR
Embedded Workbench with its integrated Windows development tools for
the 8051 microcontroller. The IAR Embedded Workbench is a very powerful
Integrated Development Environment (IDE) that allows you to develop and
manage a complete embedded application project.

The user guide includes comprehensive information about installation and
product overviews, as well as tutorials that can help you get started.

Who should read this guide

You should read this guide if you want to get the most out of the features and tools
used in the IAR Embedded Workbench. In addition, you should have working
knowledge of the following:

e The C programming language

o The IAR 8051 assembly language

e The architecture and instruction set of the 8051 microcontroller (refer to the chip
manufacturer’s documentation for information about the 8051 architecture and
instruction set)

e Windows 95/98/2000 or Windows NT menus, windows, and dialog boxes.

Refer to the 8051 IAR C Compiler Reference Guide, 8051 IAR Assembler Reference
Guide, and IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide for
more information about the development tools incorporated in the IAR Embedded
Workbench.

How to use this guide

If you are new to using this product, we suggest that you read Part 1: The IAR
development tools to give you a complete overview of the tools and the functions that
the IAR Embedded Workbench can offer.

If you already have had some experience using the IAR Embedded Workbench, but
need refreshing on how to work with the IAR development tools, Part 2: Tutorials is
a good place to begin.

If you are an experienced user and need this guide as more of a reference, see the
reference sections in Part 3: The IAR Embedded Workbench and Part 4: The C-SPY
simulator.

XXVii

What this guide contains

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

8051 IAR Embedded Workbench™
xxviii User Guide

Part 1: The IAR development tools

This section provides a general overview of all the IAR development tools so that you
can become familiar with all the products’ functions and features.

Introduction lists the system requirements, explains how to run the IAR
Embedded Workbench with the IAR C-SPY Debugger, describes the directory
structure and the type of files it contains, and includes an overview of the
documentation supplied with the IAR development tools.

The IAR Embedded Workbench provides a brief summary and lists the features
offered in each of the AR Systems development tools—IAR Embedded
Workbench™, IAR C Compiler, IAR Assembler, IAR XLINK Linker ™, JAR
XLIB Librarian™ and IAR C-SPY® Debugger—for the 8051 microcontroller.
The project model describes how you can organize a project using the IAR
Embedded Workbench by specifying the different target versions of the
application that you want to build, creating groups to a particular target, and
keeping track of source files. The chapter also explains how configuration options
are managed and related to the project.

Part 2: Tutorials

These tutorials allow you to have hands-on training in order to help you get started
with using the tools.

IAR Embedded Workbench tutorial guides you through setting up a new project,
compiling the program, examining the list file, linking the program and debugging
it. The tutorial demonstrates a typical development cycle using the I[AR
Embedded Workbench, the 8051 IAR C Compiler, and the IAR XLINK Linker™.
There is also a brief introduction about the IAR C-SPY Debugger.

Compiler tutorials demonstrates how to utilize the features in the IAR Embedded
Workbench and IAR C-SPY Debugger to develop a series of typical programs for
the 8051 IAR C Compiler. The first tutorial shows how to utilize 8051 peripherals
with IAR C Compiler features. In the second tutorial, the tutorial project is
modified by adding an interrupt handler and then run using the C-SPY interrupt
system in conjunction with complex breakpoints and macros.

Assembler tutorials illustrates how you use the IAR Embedded Workbench and
the IAR C-SPY Debugger to develop machine-code programs by using some of
the most important features of the 8051 IAR Assembler. This chapter also
introduces you to the IAR XLIB Librarian™, which helps to maintain files of
library modules.

Preface __o

e Advanced tutorials is divided into several tutorials that explore some of the more
advanced features of the IAR C-SPY Debugger, such as how to define complex
breakpoints, profile the application, display code coverage, and debug in
disassembly mode. The tutorials also illustrate how you can effectively use both
code written for the 8051 IAR C Compiler and code written for the 8051 IAR
Assembler in the same project.

® ROM-monitor tutorial shows how to set up options in the [AR Embedded
Workbench before running a project in the ROM-monitor.

Part 3: The IAR Embedded Workbench

This section describes how to specify options in the IAR Embedded Workbench. The
options are divided by category:

o General options specifies target processor and memory module options, as well as
set up output directories.

o Compiler options specifies compiler options for language, code, optimizations,
output, list file, preprocessor, and diagnostics.

o Assembler options shows how to set assembler options for code generation,
debugging, preprocessor, and list file generation.

o XLINK options shows how to set XLINK options for output, defining symbols,
diagnostics, list generation, setting up of the include path for linker command
files, input, and processing.

e C-SPY options shows how to choose setup, serial communication, and
ROM-monitor options for all tools or a specified tool.

o IAR Embedded Workbench reference contains a detailed reference for the IAR
Embedded Workbench, such as details about the graphical user interface.

Part 4: The C-SPY simulator

This section goes in depth about the IAR C-SPY® Debugger, which is a powerful
interactive debugger for embedded applications.

e Introduction to C-SPY gives an overview of the functions for debugging projects
provided in this tool.

o C-SPY expressions defines the syntax of the expressions and variables used in
C-SPY macros and gives examples about how to use macros in debugging.

e C-SPY macros lists the built-in system macros supplied with the IAR C-SPY
Debugger.

e Device description file describes the purpose of the device description file.

o C-SPY reference provides detailed reference information about the C-SPY
graphical user interface.

o C-SPY command line options gives information about how you set C-SPY options
from the command line and lists a summary of command line options and setup
macros.

XXix

Other documentation

Part 5: C-SPY for the 8051 ROM-monitor

Introduction to the ROM-monitor describes the additional features of the C-SPY
ROM-monitor version, as well as the differences between the ROM-monitor and
simulator versions of the 8051 C-SPY debugger.

Controlling user applications describes the additional options in the Embedded
Workbench, and the command-line options used by the ROM-monitor version of
C-SPY.

The ROM-monitor boards explains how to avoid conflicts between the
ROM-monitor and your own programs.

The ROM-monitor program gives a brief, target independent, description of how a
ROM-monitor works.

Advanced topics describes more advanced use of the ROM-monitor, including
executing transparent commands and compiling a modified ROM-monitor.
Diagnostic messages lists the error and warning messages that the 8051 C-SPY
ROM-monitor version can produce.

Other documentation

8051 IAR Embedded Workbench™
xxx User Guide

The complete set of IAR Systems development tools for the 8051 microcontroller are
described in a series of guides. For information about:

Configuring and programming for the 8051 IAR C Compiler, refer to the 8051
IAR C Compiler Reference Guide

Programming for the 8051 IAR Assembler, refer to the 8051 IAR Assembler
Reference Guide

Using the IAR XLINK Linker and the IAR XLIB Librarian, refer to the JAR
XLINK Linker™ and IAR XLIB Librarian™ Reference Guide

Using the IAR C Library, refer to the AR C Library Functions Reference Guide.

All of these guides are delivered in PDF format on the installation media. Some of
them are also delivered as printed books.

Preface __o

Document conventions

This book uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should type as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within or to another guide.

Identifies instructions specific to the IAR Embedded Workbench versions
of the IAR development tools.

Identifies instructions specific to the command line versions of the IAR
development tools.

Table 1: Typographic conventions used in this guide

XXXi

Document conventions

8051 IAR Embedded Workbench™
xxxii User Guide

!I!I!I!I!IW[!I

Part |I: The IAR
development tools

This part of the 8051 IAR Embedded Workbench™ User Guide includes the
following chapters:

e Introduction
e The IAR Embedded Workbench

e The project model.

Introduction

To help you get started, this chapter lists the system requirements and shows
you how to run the IAR Embedded Workbench. It also describes which
directories are created and what file types are used. At the end of the chapter,
there is a section that describes what information you can find in the various
guides and online documentation.

Refer to the QuickStart Card, which is delivered with the product, for
information about how to install and register the IAR products.

Included in this package

The IAR Systems development tools package for the 8051 microcontroller contains
the following items:

o Installation media

® QuickStart Card

e User documentation in printed or in PDF format. For detailed information about
what guides are included, see Documentation, page 7.

System requirements

The IAR Systems development tools for the 8051 microcontroller run under Windows
95/98/2000, or Windows NT 4 or later.

We recommend a Pentium® processor with at least 64 Mbytes of RAM allowing you
to fully utilize and take advantage of the product features, and 100 Mbytes of free disk
space for the IAR development tools.

To access all the product documentation, you also need a web browser and the Adobe
Acrobat® Reader.

Running the program
RUNNING THE IAR EMBEDDED WORKBENCH

Select the Start button in the taskbar and select Programs. Select IAR Systems in the
menu. Then select IAR Embedded Workbench for 8051 and IAR Embedded
Workbench to run the ew23 . exe program which is located in the installation root
directory.

Part I. The IAR development tools 3

Directory structure

Note: The product version number may become updated in a future release. Refer to
the readme . htm file for the most recent product information.

RUNNING THE IAR C-SPY DEBUGGER

The most common way to start the IAR C-SPY Debugger is from within the IAR
Embedded Workbench, where you select Debugger from the Project menu or click
the Debugger icon in the toolbar.

You can also start C-SPY from the Programs menu. Select IAR Systems in the menu.
Then select IAR Embedded Workbench for 8051 and IAR C-SPY to run the
cw23 . exe program which is located in the installation root directory.

It is also possible to start C-SPY by using the Windows Run... command, specifying
options. See C-SPY command line options, page 247, for additional information about
command line options.

UPGRADING TO A NEW VERSION

When upgrading to a new version of the product, you should first uninstall the
previous version.

First make sure to create back-up copies of all files you may have modified, such as
linker command files (* .xc1). Then use the standard procedure in Windows to
uninstall the previous product version (select Add/Remove Programs in the Control
Panel in Windows). Finally install the new version of the product, using the same path
as before.

UNINSTALLING THE PRODUCTS

To uninstall the IAR toolkit, use the standard procedure by selecting Add/Remove
Programs in the Control Panel in Windows.

Directory structure

8051 IAR Embedded Workbench™
4 User Guide

The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

THE ROOT DIRECTORY

The iar systems\ew23) directory is the root directory created by the default
installation procedure. The executable files for the IAR Embedded Workbench and
the JAR C-SPY Debugger are located here.

Introduction __4

The root directory also contains the 8051 directory, where all product-specific
subdirectories are located.

S 1AR Spstems
=-] 2081
-7 bin
{1 config
-7 doc
-1 ine
-7 lib
B o

7 tutar

Figure 1: Directory structure

If you already have an ew23 . exe file installed, the installation program will suggest
to use its root directory also for the installation of the 8051 IAR development tools.
THE BIN DIRECTORY

The bin subdirectory contains executable files such as exe and d11 files, the C-SPY
driver, and the 8051 help files.

THE CONFIG DIRECTORY

The config subdirectory contains files to be used for configuring the system.
Templates for the linker command file (* . xc1) are located here. The C-SPY device
description files (* . ddf) are also located in this directory.

THE DOC DIRECTORY

The doc subdirectory contains read-me files (* . htmor * . txt) with recent additional
information about the 8051 tools. It is recommended that you read all of these files
before proceeding. The directory also contains online versions (PDF format) of this
user guide, and of the 8051 reference guides.

THE INC DIRECTORY

The inc subdirectory holds include files, such as the header files for the standard C
library, as well as a specific header file defining special function registers (SFRs).

THE LIB DIRECTORY
The 11ib subdirectory holds library modules used by the compiler.

Part |. The IAR development tools 5

File types

The IAR XLINK Linker™ searches for library files in the directory specified by the
XLINK_DFLTDIR environment variable. If you set this environment variable to the
path of the 1ib subdirectory, you can refer to 1ib library modules simply by their
basenames.

THE LICENSE DIRECTORY

The 1icense subdirectory holds the IAR Systems License Manager utility.

THE SRC DIRECTORY
The src\asm contains assembly source files for testing and trying out the assembler.

The src\1ib subdirectory contains source files that are shared between the standard
C library and the IAR C library.

The src\plm subdirectory contains example files for running the compiler together
with PL/M functions.

The src\simple subdirectory contains the reader for the XLINK SIMPLE output
format.

The src\tiny51 subdirectory contains source files for the Tiny51 real-time kernel
for the 8051 microcontroller.

THE TUTOR DIRECTORY

The tutor subdirectory contains the files used for the tutorials in this guide.

File types

8051 IAR Embedded Workbench™
6 User Guide

The 8051 versions of the IAR Systems development tools use the following default
filename extensions to identify the IAR-specific file types:

Ext. Type of file Output from Input to

a03 Target program XLINK EPROM, C-SPY, etc.

c C program source Text editor Compiler

do3 Target program with debug information XLINK C-SPY and other symbolic
debuggers

ddf Device description file Text editor C-SPY

h C header source Text editor Compiler #include

i Preprocessed code Compiler Compiler

Table 2: File types

Introduction __4

Ext. Type of file Output from Input to
inc Assembler header Text editor Assembler #include
file

Ist List Compiler and -
assembler

mac C-SPY macro definition Text editor C-SPY

prj IAR Embedded Workbench project IAR Embedded |AR Embedded
Workbench Workbench

r03 Object module Compiler and XLINK and XLIB
assembler

s03 Assembler program Text editor Assembler

source
xcl Extended command Text editor XLINK
xIb Librarian command Text editor XLIB

Table 2: File types (continued)

You can override the default filename extension by including an explicit extension
when specifying a filename.

Files with the extensions ini and cfg are created dynamically when you install and
run the IAR Embedded Workbench tools. These files contain information about your
configuration and other settings.

Note: If you run the tools from the command line, the XLINK listings (maps) will by
default have the extension 1st, which may overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example projectl.map.

Documentation

This section briefly describes the information that is available in the 8051 user and
reference guides, in the online help, and on the Internet.
USER AND REFERENCE GUIDES

The 8051 user and reference guides are all available in PDF format and can easily be
accessed from the Help menu in the AR Embedded Workbench or from the
readme . htm file. Hypertext links are implemented throughout the documents and
you can easily find what you are looking for via the table of contents or index.

8051 IAR Embedded Workbench™ User Guide
This guide.

Part |. The IAR development tools

Documentation

8051 IAR Embedded Workbench™
8 User Guide

8051 IAR C Compiler Reference Guide

This guide provides reference information about the 8051 IAR C Compiler. You
should refer to this guide for information about:

e How to configure the compiler to suit your target processor and application
requirements

How to write efficient code for your target processor

The available data types

The run-time libraries

The IAR language extensions.

8051 IAR Assembler Reference Guide

This guide provides reference information about the 8051 IAR Assembler. This
includes details of the assembler source format and reference information about the
assembler operators, directives, mnemonics, and diagnostics.

IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide

This guide contains introductory and reference information about the IAR XLINK
Linker and the IAR XLIB Librarian. It describes the linker functions, and provides
details about segment control and the XLINK output formats. This guide is
particularly useful when you assign memory locations.

IAR C Library Functions Reference Guide
This guide describes the functions of the C library that is provided with the product.

ONLINE HELP

From the Help menu in the JAR Embedded Workbench and the IAR C-SPY
Debugger, you can access the 8051 online documentation. Context-sensitive help is
also available via the F1 key in the IAR Embedded Workbench and C-SPY windows
and dialog boxes.

RECENT INFORMATION

We recommend that you read the readme . htm file for recent information that may
not be included in the user guides. This file is available from the Start menu in
Windows, and contains links to readme files for all components in the product
package. The readme files are located in the \8051\Doc directory.

Introduction __4

IAR ON THE WEB

The latest news from IAR Systems is available at the website www.iar.com. You can
access the IAR site directly from the IAR Embedded Workbench Help menu and
receive information about:

Product announcements

Updates and news about current versions

Special offerings

Evaluation copies of the IAR products

Technical Support, including frequently asked questions (FAQs)
Application notes

Links to chip manufacturers and other interesting sites

Distributors; the names and addresses of distributors in each country.

Part I. The IAR development tools 9

http://www.iar.com

Documentation

8051 IAR Embedded Workbench™
10 User Guide

The IAR Embedded
Workbench

The IAR Embedded Workbench™ is a powerful Integrated Development
Environment (IDE) that allows you to develop and manage complete
embedded application projects. It is a true 32-bit Windows environment with
all the features you would expect to find in your daily workplace.

This chapter describes how the IAR Embedded Workbench works and
provides a general overview of all the tools that are integrated in this product.

The framework

The IAR Embedded Workbench is the framework where all necessary tools are
seamlessly integrated. Support for a large number of microprocessors and
microcontrollers can be added into the IAR Embedded Workbench; This allows you
to change processors for the next project yet still work within the same, familiar
environment.

The IAR Embedded Workbench also promotes a useful working methodology,
thereby significantly reducing development time which is achieved using IAR tools.
We refer to this concept as: “Different Architectures. One Solution”. The IAR
Embedded Workbench is available for a large number of microcontrollers and
microprocessors in the 8-, 16-, and 32-bit segments. It provides an easy-to-learn and
highly efficient development environment with maximum code inheritance
capabilities and comprehensive and specific target support.

INTEGRATED TOOLS

The IAR Embedded Workbench integrates a highly optimized C compiler, an
assembler, the versatile JAR XLINK Linker, the [AR XLIB Librarian, a powerful
editor, a project manager with Make utility, and C-SPY®, a state-of-the-art high-level
language debugger.

Although the IAR Embedded Workbench provides all the features required for a
successful project, we also recognize the need to integrate other tools. Therefore the
IAR Embedded Workbench can be easily adapted to work with your editor of choice,
preferred revision control system, etc. Project files can be saved as text files to support
your own Make facility. The IAR XLINK Linker can produce a large number of
output formats, allowing for debugging on most third-party emulators.

Part |. The IAR development tools

IAR Embedded Workbench

The command line version of the compiler is also included in the product package, if
you want to use the compiler and linker as external tools in an already established
project environment.

If you want more information about supported target processors, contact your
software distributor or your IAR representative, or visit the IAR website
www.iar.com for information about recent product releases.

IAR Embedded Workbench

The IAR Embedded Workbench™ is a flexible IDE, allowing you to develop
applications for a variety of different target processors. It provides a convenient
Windows interface for rapid development and debugging.

FEATURES
Below follows a brief overview of the features of the IAR Embedded Workbench.

General features
The IAR Embedded Workbench provides the following general features:

Runs under Windows 95/98/2000, or Windows NT 4 or later.

Intuitive user interface, taking advantage of Windows 95/98/2000 features.
Hierarchical project representation.

Full integration between the IAR Embedded Workbench tools and editor.
Binary File Editor with multi-level undo and redo.

Support of drag-and-drop features.

The IAR Embedded Workbench editor
The IAR Embedded Workbench Editor provides the following features:

Syntax of C programs shown using text styles and colors.

Powerful search and replace commands, including multi-file search.
Direct jump to context from error listing.

Parenthesis matching.

Automatic indentation.

Multi-level undo and redo for each window.

Compiler and assembler projects

The IAR Embedded Workbench provides the following features for the IAR C
Compiler and the IAR Assembler:

e Projects build in the background, allowing simultaneous editing.

8051 IAR Embedded Workbench™
|12 User Guide

The IAR Embedded Workbench __¢

e Options can be set globally, on groups of source files, or on individual source
files.

e The Make utility recompiles, reassembles, and links files only when necessary.

e Generic and 8051-specific optimization techniques produce very efficient
machine code.

Documentation

The 8051 TAR Embedded Workbench is documented in the 8051 IAR Embedded
Workbench™ User Guide (this guide). There is also context-sensitive help and
hypertext versions of the user documentation available online.

IAR C Compiler

The IAR C Compiler for the 8051 microcontroller offers the standard features of the
C language, plus many extensions designed to take advantage of the 8051-specific
facilities.

The 8051 IAR C Compiler is integrated with other IAR Systems software for the 8051
microcontroller. It is supplied with the IAR 8051 Assembler, with which it shares
linker and librarian manager tools.

FEATURES
The following section describes the features of the 8051 IAR C Compiler.

Language facilities

e Conformance to the ISO/ANSI standard for a free-standing environment.
Standard library of functions applicable to embedded systems, with source code
optionally available.

IEEE-compatible floating-point arithmetic.

Object code can be linked with assembly routines.

Interrupt functions can be written in C.

Powerful extensions for 8051-specific features, including efficient I/O.

Long identifiers—up to 255 significant characters.

Up to 32,000 external symbols.

Type checking

e External references are type-checked at link time.

e Fast compilation by memory-based design which avoids temporary files or
overlays.

e Linkage of user code with assembly routines.

Part I. The IAR development tools |3

IAR Assembler

Extensive type checking at compile time.

Extensive module interface type checking at link time.

LINT-like checking of program source.

Link-time inter-module consistency checking of the run-time module.
Maximum compatibility with other IAR Systems compilers.

Code generation

e Selectable optimization for code size or execution speed.

Comprehensive output options, including relocatable object code, assembly
source code, and C list files with optional assembler mnemonics.
Easy-to-understand error and warning messages.

Compatibility with IAR C-SPY (see 8051 IAR C Compiler Reference Guide).
Generation of fully PROMable code without language restrictions.

Support for PL/M.

Target support

o Flexible variable allocation.

e #pragma directives to maintain portability while using processor-specific
extensions.

e Tiny, small, compact, medium, large, and banked memory models.

e Interrupt functions require no assembly language.

e Intrinsic functions.

Documentation

The 8051 IAR C Compiler is documented in the 8051 IAR C Compiler Reference
Guide.

IAR Assembler

8051 IAR Embedded Workbench™
14 User Guide

The 8051 IAR Assembler is a powerful relocating macro assembler with a versatile
set of directives.

FEATURES
The 8051 IAR Assembler provides the following features:

Integration with other IAR Systems software for the 8051 microcontroller.
Built-in C language preprocessor.

Extensive set of assembler directives and expression operators.
Conditional assembly.

Powerful recursive macro facilities supporting the Intel/Motorola style.

The IAR Embedded Workbench __¢

List file with augmented cross-reference output.

Number of symbols and program size limited only by available memory.
Support for complex expressions with external references.

Up to 256 relocatable segments per module.

255 significant characters in symbol names.

32-bit arithmetic.

Documentation

The 8051 IAR Assembler is documented in the 8051 IAR Assembler Reference Guide.

IAR XLINK Linker

The IAR XLINK Linker converts one or more relocatable object files produced by the
IAR Systems assembler or compiler to machine code for a specified target processor.
It supports a wide range of industry-standard loader formats, in addition to the IAR
Systems debug format used by the IAR C-SPY Debugger.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the program you are linking.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be downloaded to the 8051 microcontroller or to a hardware
emulator.

FEATURES
The IAR XLINK Linker offers the following important features:

e Full C-level type checking across all modules.

e Full dependency resolution of all symbols in all input files, independent of input
order.

Simple override of library modules.

Supports 255 character symbol names.

Checks for compatible compiler settings for all modules.

Checks that the correct version and variant of the C run-time library is used.
Flexible segment commands allow detailed control of code and data placement.
Link-time symbol definition enables flexible configuration control.

Support for over 30 output formats.

Can generate checksum of code for run-time checking.

Part |. The IAR development tools |5

IAR XLIB Librarian

Documentation

The IAR XLINK Linker is documented in the JAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide, which is delivered in PDF format on the installation
media.

IAR XLIB Librarian

The IAR XLIB Librarian enables you to manipulate the relocatable object files
produced by the IAR Systems assembler and compiler.

FEATURES
The IAR XLIB Librarian provides the following features:

Support for modular programming.

Modules can be listed, added, inserted, replaced, deleted, or renamed.
Modules can be changed between program and library type.
Segments can be listed and renamed.

Symbols can be listed and renamed.

Interactive or batch mode operation.

A full set of library listing operations.

Documentation

The TAR XLIB Librarian is documented in the JAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide, which is delivered in PDF format on the installation
media.

IAR C-SPY Debugger

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR compilers, assemblers, IAR XLINK
Linker, and IAR XLIB Librarian. The IAR C-SPY Debugger allows you to switch
between source mode and disassembly mode debugging as required, for both C and
assembler code.

Source mode debugging provides the quickest and easiest way of verifying the less
critical parts of your application, without needing to worry about how the compiler has
implemented your C code in assembler. During C level debugging you can execute the
program a C statement at a time, and monitor the values of C variables and data
structures.

8051 IAR Embedded Workbench™
|16 User Guide

The IAR Embedded Workbench __¢

You can choose between disassembled code and original assembler source code.
Disassembly mode debugging lets you focus on the critical sections of your
application, and provides you with precise control over the hardware. You can execute
the program an assembler instruction at a time, and display the registers and memory
or change their contents.

FEATURES

The IAR C-SPY Debugger offers a unique combination of features. These are
described in the following sections.

General
The IAR C-SPY Debugger offers the following general features:

Intuitive user interface, taking advantage of Windows 95/98/2000 features.
Source and disassembly mode debugging.

C and assembly source debugging.

Fast simulator.

Log file option.

Powerful macro language.

Complex code and data breakpoints.

Memory validation.

Interrupt simulation.

UBROF, INTEL-EXTENDED, and Motorola input formats supported.

High-level-language debugging

Expression analyzer.

Extensive type recognition of variables.

Configurable register window and multiple memory windows.
Function trace.

C call stack with parameters.

Watchpoints on expressions.

Code coverage.

Function-level profiling.

Watch, Locals, and QuickWatch windows allow you to expand arrays and
structs.

e Optional terminal I/O emulation.

Assembler-level debugging

e Full support for auto and register variables.
e Built-in assembler/disassembler.

Part |. The IAR development tools |7

IAR C-SPY Debugger

8051 IAR Embedded Workbench™
18 User Guide

Documentation

The IAR C-SPY Debugger is documented in the 8051 IAR Embedded Workbench™
User Guide (this guide). There is also context-sensitive help available online.

VERSIONS

The IAR C-SPY Debugger for the 8051 microcontroller is currently available in
simulator and ROM-monitor versions.

Simulator version

The simulator version simulates the functions of the target processor entirely in
software. With this C-SPY version, the program logic can be debugged long before
any hardware is available. Since no hardware is required, it is also the most
cost-effective solution for many applications.

For additional information about the simulator version of the IAR C-SPY Debugger,
refer to Part 4: The C-SPY simulator in this guide.

ROM-monitor version

The ROM-monitor version of C-SPY provides a low-cost solution to debugging. It is
available for standard evaluation boards and can be modified for customer hardware.
It allows true real-time debugging at a low cost.

If you are using the ROM-monitor version of C-SPY, refer to the Part 5: C-SPY for
the 8051 ROM-monitor for additional information.

The project model

This chapter briefly discusses the project model used by the IAR Embedded
Workbench. It covers how projects are organized and how you specify targets,
groups, source files, and options so that you can better handle different
versions of your applications.

The concepts discussed in this chapter are also illustrated in Part 2: Tutorials in
this guide. You may find it helpful to return to this chapter while running the
tutorials.

Developing projects

The IAR Embedded Workbench provides a powerful environment for developing
projects with a range of different target processors, and a selection of tools for each
target processor.

HOW PROJECTS ARE ORGANIZED

The IAR Embedded Workbench has been specially designed to fit in with the way that
software development projects are typically organized. For example, you may need to
develop related versions of an application for different versions of the target hardware,
and you may also want to include debugging routines into the early versions, but not
in the final code.

Versions of your applications for different target hardware will often have source files
in common, and you want to be able to maintain a unique copy of these files, so that
improvements are automatically carried through to each version of the application.
There can also be source files that differ between different versions of the application,
such as those dealing with hardware-dependent aspects of the application. These files
can be maintained separately for each target version.

The IAR Embedded Workbench addresses these requirements, and provides a
powerful environment for maintaining the source files used for building all versions
of an application. It allows you to organize projects in a hierarchical tree structure
showing the dependency between files at a glance.

Targets

At the highest level of the structure you specify the different target versions of your
application that you want to build. For a simple application you might need just two
targets, called Debug and Release. A more complex project might include additional
targets for each of the different processor variants that the application is to run on.

Part |. The IAR development tools

19

Developing projects

8051 IAR Embedded Workbench™
20 User Guide

Groups

Each target in turn contains one or more groups, which collect together related sets of
source files. A group can be unique to a particular target, or it can be present in two or
more targets. For example, you might create a group called Debugging routines
which would be present only in the Debug target, and another group called Common
sources which would be present in all targets.

Source files

Each group is used for grouping together one or more related source files. For
maximum flexibility each group can be included in one or more targets.

When you are working with a project you always have a current target selected, and
only the groups that are members of that target, along with their enclosed files, are
visible in the Project window. Only these files will actually be built and linked into the
output code.

<] #

Targets: I Debug

=3 Common sources
B comman.s

Figure 2: Project window

SETTING OPTIONS

For each target, you set global assembler and compiler options at the target level in
order to specify how that target should be built. At this level, you typically define
which memory model to use and the processor variant.

You can also set local compiler and assembler options on individual groups and source
files. These local options are specific to the context of a target and override any
corresponding global options set at the target level, and are specific to that target. A
group can be included in two different targets and have different options set for it in
each target. For example, you might set optimization high for a group containing
source files that you have already debugged, but remove optimization from another
group containing source files that you are still developing.

The project model __4

For an example where different options are set on file level, see Tutorial 8, page 81.
For information about how to set options, see the chapters Compiler options and
Assembler options in Part 3: The IAR Embedded Workbench in this guide.

BUILDING A PROJECT

The Compile command on the IAR Embedded Workbench Project menu allows you
to compile or assemble the files of a project individually. The IAR Embedded
Workbench automatically determines whether a source file should be compiled or
assembled depending on the filename extension.

Files...
Mew Group...
Targets...

Optiong...

@E LCompile CTRL+FS
me Make F3

Link
Build Al

BRJE| Stop Build| CTRLAERESR

Librariarn

@ Debugger

Figure 3: Compile command in the Project menu

Alternatively, you can build the entire project using the Make command. This
command identifies the modified files, and only recompiles or assembles those files
that have changed before it relinks the project.

A Build All option is also provided, which unconditionally regenerates all files.

The Compile, Make, Link, and Build commands all run in the background so that
you can continue editing or working with the IAR Embedded Workbench while your
project is being built.

TESTING THE CODE

The compiler and assembler are fully integrated with the development environment,
so that if there are errors in your source code you can jump directly from the error
listing to the correct position in the appropriate source file, to allow you to locate and
correct the error.

Part I. The IAR development tools 2|

Developing projects

8051 IAR Embedded Workbench™
22 User Guide

After you have resolved any problems reported during the build process, you can
switch directly to C-SPY to test the resulting code at source level. The C-SPY
debugger runs in a separate window, so that you can make changes to the original
source files to correct problems as you identify them in C-SPY.

SAMPLE APPLICATIONS

The following examples describe two sample applications to illustrate how you would
use the IJAR Embedded Workbench in typical development projects.

A basic application

The following diagram shows a simple application, developed for one target processor
only. Here you would manage with the two default targets, Release and Debug:

30D

Debug Release
[‘ 1T ‘ 1

Groups } }

1/O stubs Common I/O routines

[\‘ 1
Source | R U - T L T
files
lodebug.c Main.c Process.c Compute.c o.c

Figure 4: Basic application

Both targets share a common group containing the project’s core source files. Each
target also contains a group containing the source files specific to that target: I/O
routines, contains the source files for the input/output routines to be used in the final
release code, and I/O stubs which contains input/output stubs to allow the I/O to be
debugged with a debugger such as C-SPY.

The release and debug targets would typically have different compiler options set for
them; for example, you could compile the Debug version with trace, assertions, etc,
and the Release version without it.

The project model __4

A more complex project

In the following more complex project an application is being developed for several
different pieces of target hardware, containing different variants of a processor,
different I/O ports and memory configurations. The project therefore includes a debug
target, and a release target for each of the different sets of target hardware.

The source files that are common to all the targets are collected together, for
convenience, into groups which are included in each of the targets. The names of these

groups reflect the areas in the application that the source code deals with; for example
math routines.

Areas of the application that depend on the target hardware, such as the memory
management, are included in a number of separate groups, one per target. Finally, as
before, debugging routines are provided for the Debug target.

Targets ji j

Debug Release
[I 1
wn — 110330
1/O stubs Memory General Math routines 1/O routines
‘ management routines
files
lodebug.c Kbmem.c Main.c Calc.c Fp.c lo.c

Figure 5: Complex application

When you are working on a large project such as this, the AR Embedded Workbench
minimizes your development time by helping you to keep track of the structure of your
project, and by optimizing the development cycle by assembling and compiling the
minimum set of source files necessary to keep the object code completely up to date
after changes.

Part I. The IAR development tools 23

Developing projects

8051 IAR Embedded Workbench™
24 User Guide

!I!I!I!I!IW[!I

Part 2: Tutorials

This part of the 8051 IAR Embedded Workbench™ User Guide contains
the following chapters:

e |IAR Embedded Workbench tutorial

e Compiler tutorials

e Assembler tutorials

e Advanced tutorials

e ROM-monitor tutorial.

You should install the IAR development tools before running these tutorials.

The installation procedure is described in the chapter Introduction.

Notice that it may be helpful to return to the chapter The project model while
running the tutorials. Moreover, remember that the first tutorial, the IAR
Embedded Workbench tutorial, contains descriptions of many basic
procedures. Even if you are only using the IAR Assembler, you should read
through the IAR Embedded Workbench tutorial first.

25

26

IAR Embedded
Workbench tutorial

This tutorial introduces you to the IAR Embedded Workbench™ and the IAR
C-SPY® Debugger. It shows you how to create and debug a small program for
the IAR C Compiler.

The following steps demonstrate a typical development cycle:

o Creating a project, adding source files to it, and specifying target options
o Compiling the program, examining the list file, and linking the program
e Running the program in the IAR C-SPY Debugger.

Alternatively, you can follow this tutorial by examining the list files created.
They show which areas of memory to monitor.

Tutorial |

We recommend that you create a specific directory where you can store all your
project files, for example the 8051\projects directory.

CREATING A NEW PROJECT

The first step is to create a new project for the tutorial programs. Start the JAR
Embedded Workbench, and select New... from the File menu to display the following
dialog box:

New B

=

SourcesT ext

Cancel
Binary File —I
Help |

Figure 6: Creating a new project

The Help button provides access to information about the IAR Embedded
Workbench.

Select Project and click OK to display the New Project dialog box.

Part 2. Tutorials

27

Tutorial |

8051 IAR Embedded Workbench™
28 User Guide

Enter Project1 in the File name box, and set the Target CPU Family to 8051.
Specify where you want to place your project files, for example in a projects
directory:

Mew Project HE

Target CPLI Farnily:
I 8051 A l

Save jn: Ia prajects j gl

File name: IProiect‘I Create I
Save as ype: IProiect Filez [*.prj) j Cancel |

Figure 7: New Project dialog box

Then click Create to create the new project.

The Project window will be displayed. If necessary, select Debug from the Targets
drop-down list to display the Debug target:

&1 Project1_prj [_1O]]

Targets: I Debug

Figure 8: Project window

Now set up the target options to suit the processor configuration in this tutorial.

Select the Debug folder icon in the Project window and choose Options... from the
Project menu. The Target options page in the General category is displayed.

IAR Embedded Workbench tutorial __¢

In this tutorial we use the default settings. Make sure that the Processor variant is set
to 8XC51 and that the Memory model is set to Tiny:

Options For Target “Debug” [%]

Cateqgory:

ICC2051 Target | Output Directaries I

AB051

HLINE .
CSPY i~ Processor variant

I a5 < l

— bemory model

ITin_l,l 'l

Cancel |

Figure 9: Target settings

Then click OK to save the target options.

THE SOURCE FILES

This tutorial uses the source files tutor.c and common. c, and the include files
tutor.h and common. h, which are all supplied with the product.

The program initializes an array with the ten first Fibonacci numbers and prints the
result in the Terminal I/O window.
The tutor.c program

The tutor.c program is a simple program using only standard C facilities. It
repeatedly calls a function that prints a number series to the Terminal I/O window in
C-SPY. A copy of the program is provided with the product.

#include "tutor.h"

int call count;

/*

Increase the ’‘call count’ variable.

Part 2. Tutorials 29

Tutorial |

Get and print the associated Fibonacci number.
*/
void do_foreground process (void)

{

unsigned int fib;

++call count;

fib = get fibonacci(call count);
put_value(fib);

/*
Main program for tutorl.
Prints the Fibonacci numbers.
*/
void main (void)

{

call count=0;
init_fibonacci() ;

while (call count < MAX FIBONACCI)
do_foreground_process () ;
}

The common.c program

The common . ¢ program, which is also provided with the product, contains utility
routines for the Fibonacci calculations:

#include <stdio.h>
#include "common.h"

static unsigned int fibonacci [MAX FIBONACCI] ;

/*
Initialize the array above with the first Fibonacci
numbers.
*/
void init_ fibonacci(void)
{
char i;
fibonacci[0] = 1;
fibonacci[1l] = 1;

for (i=2 ; i<MAX FIBONACCI ; ++1)

8051 IAR Embedded Workbench™
30 User Guide

IAR Embedded Workbench tutorial __¢

fibonacci[i] = fibonacci[i-1] + fibonaccil[i-2];

}
/*

Get the n:th Fibonacci number, or 0 if the
index is greater than MAX FIBONACCI

*/

unsigned int get_ fibonacci(char index)

{

if (index >= MAX FIBONACCI)
return (0);

return fibonacci [index];

}
/*

Print the given number to the standard output
*/
void put value(unsigned int value)

{

char buf (8], *p, ch;

p = buf;
*p++ = 0;

do

{
*p++ = ‘0’ + value % 10;
value /= 10;

}while (value != 0);

*p++ = ‘\n’;

while ((ch = *--p) != 0)
putchar (ch);

}
ADDING FILES TO THE PROJECT

We will now add the tutor . c and common . ¢ source files to the Project1 project.

Choose Files... from the Project menu to display the Project Files dialog box. Locate
the file tutor. c in the file selection list in the upper half of the dialog box, and click
Add to add it to the Files in Group box.

Part 2. Tutorials 31

Tutorial |

Look jr: Iatutor j gl
@Eommon.c

Tutorz.c

@ Tutor3.c

File name: ITutor.c

Filez of type: IEI.-"EI++ Source Files [*.c.%.cpp®.cc) j

Add to Group:

IEommon FOUICES 'l

Filez in Group:

Add
_]

Add All

Bemove

Fiemove Al

Done | Cancel |

Figure 10: Adding files to project
Then locate the file common . ¢ and add it to the group.
Finally click Done to close the Project Files dialog box.

Click on the plus sign icon to display the file in the Project window tree display:

&1 Project1_prj M= 3

Targets: I Debug

ER=T!
|43 Common sources
[B common.c

------ m tutor.c

Figure 11: Displaying files in the Project window

The Common Sources group was created by the IAR Embedded Workbench when
you created the project. More information about groups is available in the chapter The
project model in Part 1: The IAR development tools in this guide.

8051 IAR Embedded Workbench™
32 User Guide

IAR Embedded Workbench tutorial __¢

SETTING COMPILER OPTIONS

Now you should set up the compiler options for the project.

Select the Debug folder icon in the Project window, choose Options... from the
Project menu, and select ICC8051 in the Category list to display the IAR C Compiler

options pages:

Options For Target “Debug” [%]
Cateqgory: Factary Settings |
5 | .
e Code Generation | Debugl ﬂdefinel Ligt I ﬂundefl Includel
A3051 .
HLINK, [+ Enable language extensions Tuvpe checking
EsPY ™ 'char'is 'signed char' V' Global stict type checking
™ whitable strings ¥ Flag old-style functions
I~ " comments ™ Mo type info in object code

o]

™ Mested comments

I Disable warnings Optimization: ISpeed, Law 'l

[~ Make a LIBRARY module

I Stack expansion Fiegister bank Ilndependent vl
Function INoreentrant 'l Code segment: ICDDE

Cancel |

Figure 12: Setting compiler options

Make sure that the following options are selected on the appropriate pages of the
Options dialog box:

Page

Options

Code Generation

Debug

List

Enable language extensions
Global strict type checking
Flag old-style functions
Optimizations, Size: Low

Generate debug information
File references
Debuggable register handling

List file
Insert mnemonics

Table 3: Tutorial 1 compiler options

When you have made these selections, click OK to set the options you have specified.

Part 2. Tutorials 33

Tutorial |

8051 IAR Embedded Workbench™
34 User Guide

COMPILING THE TUTOR.C AND COMMON.C FILES

To compile the tutor. c file, select it in the Project window and choose Compile
from the Project menu.

Alternatively, click the Compile button in the toolbar or select the Compile command
from the pop-up menu that is available in the Project window. It appears when you
click the right mouse button.

The progress will be displayed in the Messages window:

i Meszages _|Oo
Buid | Find in Files | Tool Output |

Compiling file TUTOR.C...
TUTOR.C

¥ [[x

Total number of erars: 0
Total number of warnings: 0

4] | i

Figure 13: Compilation message

You can specify the amount of information to be displayed in the Messages window.
In the Options menu, select Settings... and then select the Make Control page.

Compile the file common . ¢ in the same manner.

The IAR Embedded Workbench has now created new directories in your project
directory. Since you have chosen the Debug target, a Debug directory has been
created containing the new directories List, Obj, and Exe:

e Inthe 1ist directory, your list files from the Debug target will be placed. The list
files have the extension 1st and will be located here.

o In the obj directory, the object files from the compiler and the assembler will be
placed. These files have the extension r03 and will be used as input to the linker.

e In the exe directory, you will find the executable files. These files have the
extension d03 and will be used as input to the IAR C-SPY Debugger. Notice that
this directory will be empty until you have linked the object files.

VIEWING THE LIST FILE

Open the list file tutor. 1st by selecting Open... from the File menu, and selecting
tutor.lst from the debug\1list directory to examine the list file.

IAR Embedded Workbench tutorial __¢

The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used:

FHH#
IAR 8051 C-Compiler VN.nnX/WIN

Compile time = dd/Mmm/yyyy hh:mm:ss

Target option = 8051

Memory model = tiny

Source file = c:\iar\ew23\8051\tutor\tutor.c

List file c:\iar\ew23\8051\projects\debug\list\tutor.lst
Object file c:\iar\ew23\8051\projects\debug\obj\tutor.r03
Command line = -vO0 -mt -OC:\IAR\EW23\8051\Projects\Debug\Obj\ -e
-gA -z3 -RCODE
-LC:\IAR\EW23\8051\Projects\Debug\List\ -gq -t8
-IC:\IAR\EW23\8051\inc\ -rOr
C:\IAR\EW23\8051\tutor\Tutor.c
Copyright 1999 IAR Systems. All rights reserved.
T

The body of the list file shows the assembler code and binary code generated for each
C statement. It also shows how the variables are assigned to different segments:

\ 0000 NAME tutor (16)
\ 0000 RSEG CODE (0)
\ 0000 RSEG D_UDATA(0)
\ 0000 PUBLIC call count
\ 0000 PUBLIC do_foreground process
\ 0000 $DEFFN
do_foreground_process(2,0,0,0,32768,0,0,0) ,get_fibonacci,put_value
\ 0000 EXTERN get_fibonacci
\ 0000 $DEFFN get fibonacci (32769,0,0,0)
\ 0000 EXTERN init_fibonacci
\ 0000 SDEFFN init fibonacci(32768,0,0,0
\ 0000 PUBLIC main
\ 0000 $DEFFN
main(0,0,0,0,32768,0,0,0),init fibonacci,do foreground process
\ 0000 EXTERN put_value
\ 0000 $DEFFN put_value(32770,0,0,0)
\ 0000 EXTERN ?CL8051T 5 50 L17
\ 0000 RSEG CODE
\ 0000 do_foreground_process:
1 #include "tutor.h"
2
3 int call_count;
4
5 /*
[3 Increase the ’‘call_count’ variable.
7 Get and print the associated Fibonacci number.

Part 2. Tutorials 35

Tutorial |

8 */
9 void do_foreground_process (void)
10 {
11 unsigned int fib;
12 ++call_count;
\ 0000 0501 INC call count+1
\ 0002 E501 MOV A,call_count+1
\ 0004 7002 JNZ 20003
\ 0006 0500 INC call_count
\ 0008 ?0003:
13 fib = get fibonacci(call count);
\ 0008 ACO1 MOV R4,call_count+1
\ 000A 120000 LCALL SREFFN get_fibonacci
14 put_value(fib);
\ 000D 8COO0 MOV $LOCBD do_foreground_process+1,R4
\ 000F 8DO0O MOV $LOCBD do_foreground process,R5
\ 0011 120000 LCALL SREFFN put_value
15 }
\ 0014 22 RET
\ 0015 main:
16
17
18 /*
19 Main program for tutorl.
20 Prints the Fibonacci numbers.
21 x/
22 void main (void)
23 {
24 call count=0;
\ 0015 E4 CLR A
\ 0016 F501 MOV call_count+1,A
\ 0018 F500 MOV call_count,A
25
26 init_ fibonacci () ;
\ 001A 120000 LCALL SREFFN init_ fibonacci
\ 001D ?0001:
27
28 while (call_count < MAX FIBONACCI)
\ 001D C3 CLR C
\ 001E E501 MOV A,call_count+1
\ 0020 940A SUBB A,#10
\ 0022 E500 MOV A,call_count
\ 0024 6480 XRL A, #128
\ 0026 9480 SUBB A, #128
\ 0028 5005 JNC 20000
\ 002A ?0002:
29 do_foreground process () ;

8051 IAR Embedded Workbench™
36 User Guide

IAR Embedded Workbench tutorial __¢

\ 002A 120000 LCALL SREFFN do_foreground process
30 }

\ 002D 8OEE SJIMP 20001

\ 002F ?0000:

\ 002F 22 RET

\ 0000 RSEG D_UDATA

\ 0000 call count:

\ 0002 DS 2

\ 0002 END

The end of the list file shows the amount of code and data memory required, and
contains information about error and warning messages that may have been generated:

Errors: none

Warnings: none

Code size: 48

Constant size: 0

Static variable size: Data(2) Idata(0) Bit (0) Xdata(0) Pdata(0) Bdata(0)

LINKING THE TUTOR.C PROGRAM

First set up the options for the IAR XLINK Linker™. Select the Debug folder icon in
the Project window and choose Options... from the Project menu. Then select
XLINK in the Category list to display the XLINK options pages:

Options For Target “Debug” [%]
Cateqgory: Factary Settings |

ﬁ;%ngegigl-] Output | ﬂdefinel Diagnosticsl List I Includel Input I Libraryl Prd I L4

A8051
K

— Output file
™ Owvenide default Secondary output file:
Jtest.d03

— Format
" Debug info

&' Debug info with terminal |10
" Other
[tEut farmat: Idebug [ubrof] j

Farmatsarnatt: INone j

()8 I Cancel

Figure 14: Tutorial 1 XLINK options

Part 2. Tutorials 37

Tutorial |

8051 IAR Embedded Workbench™

38 User Guide

Make sure that the following options are selected on the appropriate pages of the
Options dialog box:

Page Options
Output Debug info with terminal /O
List Generate linker listing
Segment map
Module map

Table 4: Tutorial 1 XLINK options

If you want to examine the linker command file, use a suitable text editor, such as the
TIAR Embedded Workbench editor, or print a copy of the file, and verify that the
entries match your requirements.

The definitions in the linker command file are not permanent; they can be altered later
on to suit your project if the original choice proves to be incorrect, or less than optimal.
For more information about linker command files, see the Configuration chapter in the
8051 IAR C Compiler Reference Guide.

Click OK to save the XLINK options.

Note: The chapter XLINK options in Part 3: The IAR Embedded Workbench in this
guide contains information about the XLINK options available in the JAR Embedded
Workbench. In the linker command file, XLINK command line options such as - P and
-z are used for segment control. These options are described in the chapters
Introduction to the IAR XLINK Linker and XLINK options in the IAR XLINK Linker™
and IAR XLIB Librarian™ Reference Guide.

Now you should link the object file to generate code that can be debugged. Choose
Link from the Project menu. The progress will be displayed in the Messages window:

i Meszages M=l E3
Buld | Find in Files | Tool Output ==l
Linking...

Total number of erars: 0
Total number of warnings: 0

4] | i

Figure 15: Linking message

The result of the linking is a code file project1.d03 with debug information and a
map file projectl.map.

IAR Embedded Workbench tutorial __¢

Viewing the map file

Examine the projectl.map file to see how the segment definitions and code were
placed into their physical addresses. Following are the main points of interest in a map
file:

e The header includes the options used for linking.

o The CROSS REFERENCE section shows the address of the program entry.

e The MODULE MAP shows the files that are linked. For each file, information about
the modules that were loaded as part of the program, including segments and
global symbols declared within each segment, is displayed.

e The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
the program.

Viewing the build tree

In the Project window, press the right mouse button and select Save as Text... from
the pop-up menu that appears. This creates a text file that allows you to conveniently
examine the options for each level of the project.

Notice that the text file will contain the command line equivalents to the options that
you have specified in the [AR Embedded Workbench. The command line options are
described in the 8051 IAR C Compiler Reference Guide and 8051 IAR Assembler
Reference Guide, respectively.

Part 2. Tutorials 39

Tutorial |

ke

8051 IAR Embedded Workbench™
40 User Guide

RUNNING THE PROGRAM

Now we will run the project1.d03 program using the IAR C-SPY Debugger to
watch variables, set a breakpoint, and print the program output in the Terminal I/O
window.

Choose Debugger from the Project menu in the IAR Embedded Workbench.
Alternatively, click the C-SPY button in the toolbar. The following C-SPY window
will be opened for this file:

% CSPY - Project].d03
Ele Edit Wiew Egecute Control Options Window Help
BN === kA R e ==
1
B9 Source =] E3
Ilulul.c j Imam j ‘
[~
i
Main program for tutorl.
Prints the Fibonacci numbsers.
*
void main(veid)
i
call count=03 ol
init_fibonacei();
while | call count < MAX FIBONACCI |}
do_foreground_process();
¥
-
K1 H.z
¥ Report _|al x|
Unable to find C-Spy processor description file: o
Download completed, 924 bytes loaded
Stop at .tutor.chzd [main) =
| bl

Figure 16: Starting C-SPY

C-SPY starts in source mode, and will stop at the first executable statement in the
main function. The current position in the program, which is the next C statement to
be executed, is shown highlighted in the Source window.

The corresponding assembler instructions are always available. To inspect them,
select Toggle Source/Disassembly from the View menu. Alternatively, click the
Toggle Source/Disassembly button in the toolbar. In disassembly mode stepping is
executed one assembler instruction at a time. Return to source mode by selecting
Toggle Source/Disassembly again.

IAR Embedded Workbench tutorial __¢

Execute one step by choosing Step from the Execute menu. Alternatively, click the
Step button in the toolbar; at source level Step executes one source statement at a
time. The current position should be the call to the init_fibonacci function:

% C5PY - Project1.d03

File Edt Yiew Esxecute Control Options ‘indow Help

B R == R

9 Source M= =
[futorc =] [main o |

e
Main program for tutorld.
Prints the Fibonacci numbers.

=
roid wain(void)
{

call count=0;

while | call count < MAX FIBONACCI |} —I
do_foreground_process () ;

+

KN H

Figure 17: Stepping in C-SPY
Select Step Into from the Execute menu to execute init fibonacci one step at
the time. Alternatively, click the Step Into button in the toolbar.

When Step Into is executed you will notice that the file in the Source file list box (to
the upper left in the Source window) changes to common . ¢ since the function
init_fibonacci islocated in this file. The Function list box (to the right of the
Source file list box) shows the name of the function where the current position is.

Part 2. Tutorials

41

Tutorial |

To step three times at once, choose Multi Step from the Execute menu and enter 3.

Multi Step E
Mr of steps

Figure 18: Tutorial 1 Multi Step dialog box

You will notice that the three individual parts of a for statement are separated, as
C-SPY debugs on statement level, not on line level. The current position should now
be i<MAX FIBONACCTI as displayed in the next figure.

% CSPY - Projectl.d03

=] ES
Elle Edit “iew Egecute Control Options Window Help
== = e R R = = A
1
i Source O]]
Icummun.c j Ilnlt_hbunaccl j |
#include <stdio.h> ﬂ
#include "comwon.h"
static unsigned int fibonacci[MAX FIBONACCI];
ey
Initialize tha array above with the first Fibonacci
numbers.
*/
void init_ fibonacei(veid |
{
char i;
fibonacei[0] = 1;
fibonacci[l] = 1;
foxr [i=2 ; &
fibonaceil[i]
}
e
Get the n:th Fibonacci numbsr, or 00 if the
indsx is greater than MAX FIBONACCT -
[l v o

Figure 19: Multi step in C-SPY

WATCHING VARIABLES

C-SPY allows you to set watchpoints on C variables or expressions, to allow you to
keep track of their values as you execute the program. You can watch variables in a
number of ways; for example, you can watch a variable by pointing at it in the Source
window with the mouse pointer, or by opening the Locals window.

8051 IAR Embedded Workbench™
42 User Guide

IAR Embedded Workbench tutorial __¢

Alternatively, you can open the QuickWatch window from the pop-up menu that
appears when you press the right mouse button in the Source window.

Here we will use the Watch window. Choose Watch from the Window menu to open
the Watch window, or click the Watch Window button in the toolbar. If necessary,
resize and rearrange the windows so that the Watch window is visible.

Setting a watchpoint

Set a watchpoint on the variable i using the following procedure:

Select the dotted rectangle, then click and briefly hold the left mouse button. In the
entry field that appears when you release the button, type i and press the Enter key.

You can also drag and drop a variable in the Watch window. Select the fibonacci
array in the init fibonacci function. When fibonacci is marked, drag and
drop it in the Watch window which will show the current value of i and £ibonacci:

i Watch IH[=] E3
I Expreszion Walue
i 2
fibonacei 0x32

Figure 20: Watching variables in C-SPY

fibonacci is an array and can be watched in more detail. This is indicated in the
Watch window by the plus sign icon to the left of the variable. Click the symbol to
display the current contents of fibonacci:

B Watch =] E3
Expreszion Walue
i
[=lfibonacci

G
coooooo o — — [

Figure 21: Expanded view of variables in C-SPY

Now execute some more steps to see how the values of i and fibonacci change.

Part 2. Tutorials

43

Tutorial |

8051 IAR Embedded Workbench™
44 User Guide

Variables in the Watch window can be specified with module name and function name
to separate variables that appear with the same name in different functions or modules.
If no module or function name is specified, its value in the current context is shown.

SETTING BREAKPOINTS

You can set breakpoints at C function names or line numbers, or at assembler symbols
or addresses. The most convenient way is usually to set breakpoints interactively,
simply by positioning the cursor in a statement and then choosing the Toggle
Breakpoint command. For additional information, see Toggle breakpoint, page 230.

To display information about breakpoint execution, make sure that the Report window
is open by choosing Report from the Window menu. You should now have the
Source, Report, and Watch windows open; position them neatly before proceeding.

Set a breakpoint at the statement ++1 using the following procedure: First click in this
statement in the Source window, to position the cursor. Then choose Toggle
Breakpoint from the Control menu, or click the Toggle Breakpoint button in the
toolbar.

A breakpoint will be set at this statement, and the statement will be highlighted to
show that there is a breakpoint there:

% CSPY - Project].d03
Ele Edit Wiew Egecute Control Options Window Help
BN === kA R e ==
T
B Source =] A | |iea SEER O] x]
[common.c =] [init_fibonacci =1 | Expression Valug
i 3
#include <stdio.h> i| E fibonacsi D432
#include "common.h™ {10}]I
12] 2
[Eil 1}
static unsigned int fibonacci[MAX FIBONACCI]; {g% g
[6] 1}
P [7] 0
Initialize tha array shove with the first Fibonacci [8] i]
numbsars. _,[E,I], ,,,,,,,,,,,,,,, B
| i
void init_ fikonaceil void | 4 _>|
{
char i; 1 Repart (=S
Unable to find C-Spy proce =
f:_banac::?.[D] =L Download completed, 924 by
fibonacei[l] = 1; Stop at .tutor.chzd [m=
foxr [i=:i ; ¥ CL ;
fihonacei[1] = fibonaceil[i-1] + fibonasei[i-21;
}
e
Get the n:th Fibonmacci number, or O if the
index is grester than MAX FIBONACCT - [-
4 Q97| | K1 A

Figure 22: Setting breakpoints

i+
£

i+
£

IAR Embedded Workbench tutorial __¢

EXECUTING UP TO A BREAKPOINT

To execute the program continuously, until you reach a breakpoint, choose Go from
the Execute menu, or click the Go button in the toolbar.

The program will execute up to the breakpoint you set. The Watch window will
display the value of the fibonacci expression and the Report window will contain

information about the breakpoint:

% CSPY - Project].d03

Ele Edit Wiew Egecute Control Options Window Help

BN === kA R e ==

for | il ; i<MAX FIEONACCI ; +EH]
}
/9

Get the n:th Fibonacci number, or 0 if the
index is greatsr than MAX FIEONACCT

T
i Source =] % Watch O] x]
[common.c =] [init_fibonacci =1 | Expression Value
i 3
#include <stdio.h> i| E fibonacsi 0432
#include "common.h™ {10}]I
12] 2
[3] 3
static unsigned int fibonacci[MAX FIBONACCI]; {g% g
[6] 1}
- 7] 0
Initialize tha array shove with the first Fibonacci [8] i]
numbears. I 0
|| bbbt
void init_ fikonaceil void | 4 _>|
{
char i; %1 Report O]]
) Unable to find C-Spy proce
fj'bﬂnﬁcg%m] =1 Download completed, 924 by
fibonacci[l] = 1; Stop at .tutor.chid (ma
Ereak at .cowmon.cll8 (i

fibonacci[i] = fibonacci[i-1] + fibonacecil[i-2];

FETCH access at address

bé‘ LA

Figure 23: Executing up to a breakpoint

Remove the breakpoint by selecting Edit breakpoints... from the Control menu.
Alternatively, click the right mouse button to display a pop-up menu and select Edit
breakpoints.... In the Breakpoints dialog box, select the breakpoint in the
Breakpoints list and click Clear. Then close the Breakpoints dialog box.

CONTINUING EXECUTION

Open the Terminal I/O window, by choosing Terminal I/O from the Window menu,
to display the output from the I /0 operations.

To complete execution of the program, select Go from the Execute menu, or click the

Go button in the toolbar.

Part 2. Tutorials 45

Tutorial |

Since no more breakpoints are encountered, C-SPY reaches the end of the program
and erases the contents of the Source window. A program EXIT reached message
is printed in the Report window:

% C5PY - Project1.d03

File Edit “iew Ewxecute Control Dptions ‘Wwindow Help

|FEelaoea(mane[EltEs sz 2elY]

Ssowee =G| o
I ﬂ I j | Output

5 Repart O]]

Unable to find C-Spy proce

Download completed, 924 by
Stop at .tutor.chid (ma
Ereak at .cowmon.cll8 (i
FETCH access at address
program EXIT reached

e e

Figure 24: Reaching program EXIT in C-SPY

+——| If you want to start again with the existing program, select Reset from the Execute
| menu, or click the Reset button in the toolbar.

EXITING FROM C-SPY

To exit from C-SPY choose Exit from the File menu.

C-SPY also provides many other debugging facilities. Some of these—for example,
defining virtual registers, using C-SPY macros, debugging in disassembly mode,
displaying function calls, profiling the application, and displaying code
coverage—are described in the following tutorial chapters.

For complete information about the features of C-SPY, see the chapter C-SPY
reference in Part 4: The C-SPY simulator in this guide.

8051 IAR Embedded Workbench™
46 User Guide

Compiler tutorials

This chapter introduces you to some of the IAR C Compiler’s 805 | -specific
features:

e Tutorial 2 demonstrates how to utilize 8051 peripherals with the IAR C
Compiler features. The #pragma language directive allows us to use the
805 I -specific language extensions. The program will be extended to
handle polled I/O. Finally, we run the program in C-SPY and create virtual
registers.

e In Tutorial 3, we modify the tutorial project by adding an interrupt handler.
The system is extended to handle the real-time interrupt using the 8051
IAR C Compiler intrinsics and keywords. Finally, we run the program using
the C-SPY interrupt system in conjunction with complex breakpoints and
macros.

Before running these tutorials, you should be familiar with the IAR Embedded
Workbench and the IAR C-SPY Debugger as described in the previous
chapter, IAR Embedded Workbench tutorial.

Tutorial 2

This IAR C Compiler tutorial will demonstrate how to simulate the 8051 Universal
Asynchronous Receiver/Transmitter (UART) using the IAR C Compiler features.

THE TUTOR2.C SERIAL PROGRAM

The following listing shows the tutor2.c program. A copy of the program is
provided with the product.

#include <stdio.h>
#include "tutor2.h"

/***********************************

* Start of code *
***********************************/

int call count;
void do_ foreground process (void)
{

unsigned int fib;

/*

wait for receive data

Part 2. Tutorials

47

Tutorial 2

8051 IAR Embedded Workbench™
48 User Guide

*/
if (!receive ok())
putchar(’.’);
else
{

fib = get fibonacci(call count);
call count++;

put_value(fib);

clear interupt () ;

}
}

void main (void)
/*

Initialize controll SFR's
*/

init _cntr();
init_fibonacci () ;

/*
now loop forever, taking input when ready
*/
while (call count < MAX FIBONACCI)
do_foreground_ process () ;
}

COMPILING AND LINKING THE TUTOR2.C SERIAL PROGRAM
Modify the projectl project by replacing tutor.c with tutor2.c:

Choose Files... from the Project menu. Make sure that the tutor folder is open in
the Look in box. In the dialog box Project Files, mark the file tutor. c in the Files
in Group box. Click on the Remove button to remove the tutor . c file from the
project. In the File Name list box, select the tutor2.c file and click on the Add
button. Now the Files in Group should contain the files common . c and tutor2.c.

Select Options... from the Project menu. Select ICC8051 from the Categories box.
In the Code Generation page, make sure that language extensions are enabled and
that debug information will be generated.

Now you can compile and link the project by choosing Make from the Project menu.

Comppiler tutorials __¢

RUNNING THE TUTOR2.C SERIAL PROGRAM

Start the JAR C-SPY Debugger and run the modified project1 project. Step until
you reach the while (call count < MAX FIBONACCI) loop, where the program

waits for input.

Open the Terminal I/O window by selecting Terminal I/O from the Window menu.

This is where the tutor2 result will be displayed.

% CSPY - [Source] [_[O]x]

[Fle Edit VYiew Ezecute Contol Options Window Help == x|
IR e l==R= 0 = A = s
[tz =1 [main = |

fih = get_fibonacci| call_count }; B

call count++;
put_wvalue(fib };
clear_interupt ();
}
}

void main (void)
{
=
Tritialize contrell SFR's

ay o

init_cntr();
init_ fibonaceil);
i

now leop forever, taking input when ready

2/

hile [call count < MAX FI
do_foreground process();

o o

Figure 25: Opening the Terminal I/O window

DEFINING VIRTUAL REGISTERS

To simulate different values for the serial interface, we will make a new virtual
register called CNTR_REG.

Choose Settings... from the Options menu. On the Register Setup page, click the
New button to add a new register. Now the Virtual Register dialog box will appear.

Part 2. Tutorials

49

Tutorial 3

Enter the following information in the dialog box:

Input field Input Description

Name CNTR_REG Virtual register name
Size 1 One byte

Base 16 Binary values

Address 98 Memory location (in hex)
Segment SFR Segment name

Table 5: Defining virtual registers

Then click OK in the dialog box. Mark the virtual register called CNTR-REG and
click OK. Open the Register window from the Window menu, or select the Register
Window button in the toolbar. USR should now be included in the list of registers. The
current value of each bit in the serial interface register is shown:

Bl Register M=l E3

A B RO R1 R2 R3 R4 RbH Rb6 R7 PC
Bo [oo [45 [z Joo Joo [37 Joo oz o3 [o3ac

SP DPTR CAFRSO-P CYCLES CNTR_REG
[4a7 [o276 | [11oo00000 | [ooooooo7en [50

Figure 26: Tutorial 2 Register window

As you step through the program, you can enter new values into CNTR_REG in the
Register window. When the first bit (0x01) is set, a new Fibonacci number will be
printed, and when the bit is cleared, a period (.) will be printed instead.

When the program has finished, you may exit from C-SPY.

Tutorial 3

8051 IAR Embedded Workbench™
50 User Guide

In this tutorial, we simulate a serial port. We will define an interrupt function that
handles the serial port, and we will use the C-SPY macro system to simulate the timer.

In Embedded Workbench, open the tutor3s. c file.

THE TUTOR3.C PROGRAM

The following is a complete listing of the tutor3 . c program. A copy of the program
is provided with the product.

#include <stdio.h>
#include "tutor3.h"

Compiler tutorials o

/***********************************

* Start of code *
***********************************/

int call count;

void do_ foreground process (void)

{
}

interrupt [TUTOR _ INTERRUPT VECTOR] void tutor_ interrupt (void)

{

putchar (7.’);

unsigned int fib;

fib = get fibonacci(call count);
call count++;

put_value(fib);

clear interupt() ;

}

void main (void)

{

/* Initialize comms channel */
init_cntr();

init fibonacci() ;
/* enable interrupt(); */

/* now loop forever, taking input when ready */

while (call_count < MAX_ FIBONACCI)
do_foreground process|() ;

}

The address for the interrupt handler and the actual interrupt vector
TUTOR_INTERRUPT VECTOR are defined in the header file tutor3.h.

Use the interrupt keyword to define the interrupt handler:
interrupt [TUTOR_INTERRUPT VECTOR] void tutor interrupt (void)
The extended keywords are described in the 8051 IAR C Compiler Reference Guide.

The interrupt handler will fetch the latest Fibonacci value from the get _fibonacci
function. It will then print the value by using the put_value function.

The main program enables interrupts, initializes the timer, and then starts printing
periods (.) in the foreground process while waiting for interrupts.

Part 2. Tutorials 51

Tutorial 3

8051 IAR Embedded Workbench™
52 User Guide

THE C-SPY TUTOR3.MAC MACRO FILE

In the C-SPY macro file called tutor3.mac, we use system and user-defined
macros. Notice that this example is not intended as an exact simulation of the serial
port; the purpose is to illustrate a situation where C-SPY macros can be useful. For
detailed information about macros, see the chapter C-SPY macros in Part 4: The
C-SPY simulator in this guide.

Initializing the system

The macro execUserSetup () is automatically executed during C-SPY setup.

A message is displayed in the C-SPY Report window so that we know that this macro
has been executed. For additional information, see Report window, page 220.

Next, initialize the control registers SCON at addresses 0x98 to zero. Clear the enable
serial port interrupt bit that is bit 4 at address 0xA8. Continue to set up two data break
points in the SFR and connect them to C-SPY macros that are also defined in the file
tutor3.mac.

execUserSetup ()
{
message "execUserSetup () called\n";
var ie;
//
// Clear SCON
//
__writeMemoryByte (0, 0x98, "SFR");
//
// clear the ES bit from IE;
//
ie = _ readMemoryByte (0xA8, "SFR");
ie = ie & OXEF;

__writeMemoryByte (ie, 0xA8, "SFR");

//

// if SCON or IE is altered, check if we should simulate an
interrupt

//

7isetBreak(”OxA8", "SFrR", 1, 1, ", "TRUE", "W",
" check SCON _IE()");

7isetBreak(”Ox98", "SFrR", 1, 1, ", "TRUE", "W",

" check SCON_IE()");

}

Comppiler tutorials __¢

Generating interrupts

In the C-SPY macro check SCON IEthe orderInterrupt system macro
orders C-SPY to generate interrupts.

_InterruptID = _ orderInterrupt("sio ti", (#CYCLES + 2000),
2000, 0, 100, 100);

The following parameters are used:

sio ti Specifies which interrupt vector to use. Must be the same name as
defined in the device definition file (.ddf files).

#CYCLES Specifies the activation moment for the interrupt. The interrupt is
activated when the cycle counter has passed this value. The
interrupt activation time is calculated as an offset from the current
cycle count #CYCLES.

2000 Specifies the repeat interval for the interrupt, measured in clock
cycles.

0 Time variance

100 Latency

100 Specifies probability. Here it denotes 100%. We want the interrupt

to occur at the given frequency. Another percentage could be used
for simulating a more randomized interrupt behavior.

During execution, C-SPY will wait until the cycle counter has passed the activation
time. Then it will, with 100% certainty, generate an interrupt approximately every
2000 cycles.

Using breakpoints to simulate incoming values

Check the scon and IE registers to see if any new value is set. This is done by setting
a breakpoint at the address of the SCON and IE SFR registers and connecting a
user-defined macro to them. Here we use the __setBreak system macro.

The following parameters are used:
0xA8 Receive buffer address.

SFR The memory segment where this address is found. The segments
IDATA, CODE, SFR, and XDATA are valid for the 8051 product.

1 Length.
1 Count.

Denotes unconditional breakpoint.

Part 2. Tutorials 53

Tutorial 3

8051 IAR Embedded Workbench™
54 User Guide

"TRUE" Condition type.

"W" Execute the macro if a write occurs at the specific address.

"check SCON_IE()" The macro connected to the breakpoint.

During execution, when C-SPY detects a write to any of the two breakpoints set at
addresses IE (0xA8) or SCON (0x98), it will start executing the macro
check_SCON_IE (). Since this macro ends with a resume statement, C-SPY will
then resume the simulation.

Resetting the system

The macro execUserReset () is automatically executed during C-SPY reset. At
reset, we want to cancel all outstanding interrupts and reset the two control registers:

execUserReset ()

var ie;

message "execUserReset ()
interrupts\n";

called, cancelling all

//

// Clear SCON

//
__writeMemoryByte (0, 0x98, "SFR");
//

// clear the ES bit from IE;
//

ie = _ readMemoryByte (0xA8,
ie = ie & OXEF;
__writeMemoryByte (ie,

"SEFR") ;

0xA8, "SFR");

//

// Cancel all pending interrupts
//

__cancelAllInterrupts();

Compiler tutorials o

Exiting the system
The macro execUserExit () is executed automatically during C-SPY exit:

execUserExit ()

{

message "execUserExit called, cancelling all interrupts\n";

//
// Cancel all pending interrupts

//

__cancelAllInterrupts() ;

}

The interrupts are cleared and the input file is closed.

COMPILING AND LINKING THE TUTOR3.C PROGRAM

Modify Projectl by removing tutor2.c from the project and adding tutor3.c
to it.

Select the Debug folder in the project window and then choose Options... from the
Project menu. In the General category, select 8XC51 and the Small memory model.

In the ICC8051 category, make sure that the following options are enabled:

Page Option
Language Enable language extensions
Debug Generate debug information

Table 6: Tutorial 3 compiler options

Compile and link the program by choosing Make from the Project menu.
Alternatively, select the Make button from the toolbar. The Make command compiles
and links those files that have been modified.

RUNNING THE TUTOR3.C INTERRUPT PROGRAM

To run the tutor3 . c program, first specify the macro and device description file to
be used. The device description file defines SFR’s and interrupt vectors. In this tutorial,
use the 1051 .ddf file to set up the SFR window and the standard 8051 interrupt
system. Read more about the device description file on page 132 and in the Device
description file chapter in Part 4: The C-SPY simulator in this guide.

To set the options, select Options from the Project menu.

Select C-SPY in the General category. Select the Setup page and check the Use
Setup file option. Browse for the tutor3 .mac file in your tutor folder.

Part 2. Tutorials 55

Tutorial 3

Check the Use device description file option and browse for the 1051 . ddf file in the
config folder. Click OK in the Options dialog box.

Options For Target “Debug” [%]
Cateqgory: Factary Settings
G]
ot Setup | Serial Communication | ROM manitar | INTEL RISM |
48051
LMK, -~ Processor wariant
C-5FY

: [axcst |
— Setup file
V' Use setup file
IE:\iar\ew23\8051 48057 Mutarstutor3. mac J

— Device Description File

V' Use device description file
|E:\iar\ew23\8051 48051 YzonfighioS 1. ddf

™ Make CODE writable Driver: ISimuIator 'l

()8 I Cancel |

Figure 27: Specifying the setup macro and DDF file

If you use the IAR C-SPY Debugger without using the AR Embedded Workbench,
the macro file can be specified via the command line option - £ and the device
description file with the command line option -p; for additional information, see the
chapter C-SPY command line options, page 247.

Note: Macro files can also be loaded via the Options menu in the I[AR C-SPY
Debugger, see Load Macro..., page 243. Due to its contents, the tutor3 .mac file
cannot, however, be used in this manner because the execUserSetup macro will not
be activated until you load the project1.d03 file.

8051 IAR Embedded Workbench™
56 User Guide

Compiler tutorials o

Start the IAR C-SPY Debugger by selecting Debugger from the Project menu or
click the Debugger icon in the toolbar. The C-SPY Source window will be displayed:

8 CSPY - project].d03 = B3
File Edt View Execute Contiol Options ‘Window Help
i eeB0asaED|?
Zle|lza sz 2|6y
Bl Source [_ O[]
[wtorze =] [rem =
} =
void nainivoeid)
/% Initialize comms channel */
init_fibonaceil) ;
/* enabls interrupi():; */
/% now loop forever, taking input when ready */
while [call count < MAX FIBONACCHI) -
K1 a7
3 Report O] x|
Processing file: ¢:‘\iarhewZ3'805148051\tutor’\tutor?. mac —
CSPY variable _InterruptStarted registered
CSPY varishle _InterruptID registersd
macro _check SCON_IE registered
macro execUserSetup registered
wacro execUserReset registersd
macro execUserExit registered
Download completed, 1015 bybes loaded
execUserSetup () called
execUserReset () called, cancelling all interrupts
Stop at .tutord.c\2B (main)
| el
Ready |Ln 28, Cal 3 (07724700 [1T11:47 2

Figure 28: C-SPY Source and Report windows
The Report window displays the registered macros.

If warning or error messages should also appear in the Report window, make sure that
the breakpoint has been set and that the interrupt has been registered.

If you need to edit the macro file, select Load Macro... from the Options menu to
display the Macro Files dialog box. Open the tutor3 .mac file by double-clicking
on the macro name, and edit it as required. It is normally sufficient to register the
macro again after saving the mac file.

Now you have two breakpoints in SFR memory. To inspect the details of the interrupt,
open the Interrupt dialog box by selecting Interrupt... from the Control menu. At
this point there is no interrupt set.

In the Source window, make sure that tutor3 . c is selected in the Source file box.
Then select the tutor_interrupt function in the Function box.

Part 2. Tutorials 57

Tutorial 3

8051 IAR Embedded Workbench™
58 User Guide

Place the cursor on the get fibonacci () statement in the tutor interrupt
function. Set a breakpoint by selecting Toggle Breakpoint from the Control menu,
or clicking the Toggle Breakpoint button in the toolbar. Alternatively, use the pop-up
menu.

Open the Terminal I/O window by selecting it from the Windows menu.

Run the program by choosing Go from the Execute menu or by clicking the Go
button. The program should stop in the interrupt function. Click Go again in order
to see the next number being printed in the Terminal I/O window.

Since the main program has an upper limit on the Fibonacci value counter, the tutorial
program will soon reach the exit label and stop.

When tutor3 has finished running, the Terminal I/O window will display the
following Fibonacci series:

i Terminal 1/0 =] E3

Output:

Figure 29: Terminal I/0 window

Assembler tutorials

These tutorials illustrate how you can use the IAR Embedded Workbench™
to develop a series of simple machine-code programs for the 8051

microcontroller:

e In Tutorial 4, we assemble and link a basic assembler program and then

run it using the IAR C-SPY® Debugger.

e Tutorial 5 demonstrates how to create library modules and use the IAR

XLIB Librarian™ to maintain files of modules.

Before running these tutorials, you should be familiar with the IAR Embedded
Workbench and the IAR C-SPY Debugger as described in the chapter IAR

Embedded Workbench tutorial.

Tutorial 4

This tutorial illustrates how to assemble, link, and run a basic assembler program.

CREATING A NEW PROJECT

Start the IAR Embedded Workbench and create a new project called Project2.

Set up the target options in the General category to suit the processor and memory
model. In this tutorial we use the default settings. Make sure that the Processor

variant is set to 8XC51 and that the Memory model is set to Tiny.

The procedure is described in Creating a new project, page 27.

THE FIRST.S03 PROGRAM

The first assembler tutorial program is a simple count loop which counts up the
registers RO and R1 in binary-coded decimal. A copy of the program first.s03 is
provided with the product.

main

loop

NAME

ORG
LJIMP

RSEG
MOV
MOV
INC
MOV

first

0
main

CODE
RO, #0
R1,#0
R1

A,R1

Part 2. Tutorials

59

Tutorial 4

8051 IAR Embedded Workbench™
60 User Guide

DA A
MOV R1,A
MOV A,RO
ADDC A, #0
DA A
MOV RO,A
JNC loop
RET

END

The ORG directive locates the program starting address at the program reset vector
address, so that the program is executed upon reset.

Add the program to the Project2 project. Choose Files... from the Project menu to
display the Project Files dialog box. Locate the file first.s03 in the Tutor folder
and click Add to add it to the Common Sources group. You now have a source file
which is ready to assemble.

ASSEMBLING THE PROGRAM

Now you should set up the assembler options for the project. Select the Debug folder
icon in the Project window, choose Options... from the Project menu, and select
A8051 in the Category list to display the assembler options pages.

| Options For Target “Debug” [%]
. Categony Factory Settings |
G] .
|C%ngeag1 Cade generation | Debugl ﬂdefinel List I ﬂundefl Includel
HLINK, ¥ Case sensitive user symbols Macra quate chars: [« > -
C-5PY

" Disable Hifdef/Hendif matching

Warning:
' Enable @& &l wamings

" Dizsable © Just warning: I
© amings from: I o I

[~ Make a LIBRARY module

()8 I Cancel

Figure 30: Tutorial 4 Assembler code generation options

Assembler tutorials __¢

Make sure that the following options are selected on the appropriate pages of the
Options dialog box:

Page Option

Debug Generate debug information
File references

List List file, Include header, Include listing, Macro expansion

Table 7: Tutorial 4 assembler options
Click OK to set the options you have specified.

To assemble the file, select it in the Project window and choose Compile from the
Project menu. The progress will be displayed in the Messages window:

Bl Meszages M=l E3
Buid | Find in Files | Tool Output |

Compiling file first. 503, .
first.503

Total number of erars: 0
Total number of warnings: 0

Figure 31: Messages window after assembling the file

The listing is created in a file first . 1st in the folder specified in the General
options page; by default this is Debug\list. Open the list file by choosing Open...
from the File menu, and selecting £irst.1st from the appropriate folder.

VIEWING THE FIRST.LST LIST FILE
The £irst.1st list file contains the following information:

o The header contains product version information, the date and time when the file
was created, and also specifies the options that were used.

e The body of the list file contains source line number, address field, data field, and
source line.

o The end of the file contains a summary of errors and warnings that were
generated, code size, and CRC.
Note: The CRC number depends on the date of assembly, and may vary.

Part 2. Tutorials 61

Tutorial 4

The format of the listing is as follows:

1 aooooo NAME first
Z aooooo
3 aooooo ORG u}
4 aooooo Fs00 main MOV RO, #0O
5 aooooz Fo00 MOV R1,#0
) aoooo4 09 loop INC Rl
7 Qoooos E9 MOV A,R1
8 Qo0o0e D4 DA A
=1 Qoooo? Fo MOV Rl,2
10 aoooos ES MOV A, RO
11 aoooo9 3400 ADDC A, #0
1z Q00008 D4 DA A
13 aooooe F8 MOV RO, A
14 Qoooop S0FS JHC loop
15 QoooorF 22 RET
16 aoooio
17 aoooio END -
T o
[[
izs:;:rlme Data field Source line
Address field

Figure 32: Assembler list file

If you make any errors when writing a program, these will be displayed on the screen
during the assembly and will be listed in the list file. If this happens, return to the
editor by double-clicking on the error message. Check carefully through the source
code to locate and correct all the mistakes, save the source file, and try assembling it

again.

Assuming that the source assembled successfully, the file £irst.r03, will also be
created, containing the linkable object code.

8051 IAR Embedded Workbench™

62 User Guide

Assembler tutorials __¢

LINKING THE PROGRAM
Before linking the program you need to set up the linker options for the project.

Select the Debug folder in the Project window. Then choose Options... from the
Project menu, and select XLINK in the Category list to display the linker option

pages:

Options For Target “Debug” [%]
Category: Factary Settings |

ﬁ;%ngegigl-] Output | ﬂdefinel Diagnosticsl List I Includel Input I Libraryl Prd I L4

A8051
Jf

— Output file
™ Ovenide default Secondary output file:
[Frojectz da3
— Format
" Debug info
&' Debug info with terminal |10
 Other
[utEut farmat: Idebug [ubrof] j
Farmat wariart: INone j
()3 I Cancel |
Figure 33: XLINK output options
Specify the following XLINK options:
Page Option
Output Debug info with terminal I/O
Include Override default XCL file name select the asm.xcl in the config folder.
Library Override the default library and remove the library name so that it is

left blank. The C library will not be used for the assembler project.

Table 8: Tutorial 4 XLINK options

Click OK to set the options you have specified.

Part 2. Tutorials 63

Tutorial 4

£

L
[%
+

8051 IAR Embedded Workbench™
64 User Guide

To link the file, choose Link from the Project menu. As before, the progress during
linking is shown in the Messages window:

i Meszages M=l E3
Buid | Find in Files | Tool Output | ==
Linking...

Total number of erars: 0
Total number of warnings: 0

4] | i

Figure 34: Messages window after linking the file

The code will be placed in a file project2.d03.

RUNNING THE PROGRAM

To run the example program using the IAR C-SPY Debugger, select Debugger from
the Project menu.

A warning message will be displayed in the Report window.

This message indicates that C-SPY will not know when execution of the assembler
program has been completed. In a C program, this is handled automatically by the
Exit module where the Exit label specifies that the program exit has been
reached. Since there is no corresponding label in an assembler program, you should
set a breakpoint where you want the execution of the assembler program to be
completed.

In this example, set a breakpoint on the ADDC 2, #0 instruction within the loop.

Open the Register window by selecting Register from the Window menu, or click the
Register Window button in the toolbar. Position the windows conveniently.

Then choose Go from the Execute menu, or click the Go button in the debug bar.
When you repeatedly click Go, you can watch the A register count in binary-coded
decimal format.

Assembler tutorials __4

SICSPY - asmocl [_ O[]
File Edit View Execute Control Options Window Help

ORI
Slelzsss3|2 v

[l Source

[frst = = |
NAME first
ORG o
wain MoV RO, #0
MOV R1,#0
laop INC Rl
MOV A,R1

A

SP DPTR CAFRSO-P CYCLES

00000000 0000000001

[Ln 11, Cal 21 07/24/00 [11:41:40

Figure 35: Registers counting when executing program

Tutorial 5

This tutorial demonstrates how to create library modules and use the IAR XLIB
Librarian™ to maintain files of modules.

USING LIBRARIES

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your programs. To avoid having to assemble a
routine each time the routine is needed, you can store such routines as object files, i.e.,
assembled but not linked. A collection of routines in a single object file is referred to
as alibrary. It is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the [AR XLIB Librarian to manipulate libraries. It allows you to:

o Change modules from PROGRAM to LIBRARY type, and vice versa.
o Add or remove modules from a library file.

o Change the names of entries.

e List module names, entry names, etc.

Part 2. Tutorials 65

Tutorial 5

8051 IAR Embedded Workbench™
66 User Guide

THE MAIN.S03 PROGRAM

The following listing shows the main.s03 program. A copy of the program is
provided with the product.

NAME main
EXTERN rightshift
RSEG CODE

main MOV A, start
MOV B, #4
LCALL rightshift
RET
RSEG DATA

start DS 11
END main

This simply uses a routine called rightshift to shift the contents of start to the
right. The first byte of the array start is moved to register A and the rightshift
routine is called to shift it to the right by four places as specified by the contents of
register B.

The EXTERN directive declares rightshift as an external symbol, to be resolved at
link time.

THE LIBRARY ROUTINES

The following two library routines will form a separately assembled library. It consists
of the rightshift routine called by main, and a corresponding leftshift
routine, both of which operate on the contents of the register A by repeatedly shifting
it to the right or left. The number of shifts performed is controlled by decrementing
register B to zero. The file containing these library routines is called shifts.s03,
and a copy is provided with the product.

MODULE rightshift

PUBLIC rightshift

RSEG CODE
rightshift:

RR A

DJINZ B, rightshift

RET

ENDMOD

MODULE leftshift

PUBLIC leftshift

Assembler tutorials __¢

RSEG CODE
leftshift:

RL A

DJINZ B,leftshift

RET

END

The routines are defined as library modules by the MODULE directive, which instructs
the JAR XLINK Linker™ to include the modules only if they are called by another
module.

The PUBLIC directive makes the rightshift and leftshift entry addresses
public to other modules.

For detailed information about the MODULE and PUBLIC directives, see the JAR
XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.
CREATING A NEW PROJECT

Create a new project called Project3. Add the files main.s03 and shifts.s03
to the new project.

Then set up the target options to suit the project. Make sure that the Processor variant
is set to 8XC51 and that the Memory model is set to Tiny.

The procedure is described in Creating a new project, page 27.

ASSEMBLING AND LINKING THE SOURCE FILES

To assemble and link the main.s03 and shifts. s03 source files, you must exclude
the CSTARTUP initialization module in the default run-time library.

Open the Options dialog box by selecting Options... from the Project menu. Select
XLINK in the Category list and set the following option:

Page Option

Include Override the default XCL file name and browse to find the asm. xcl
file in the config folder.

Library Override the default library and remove the library name so that it is
left blank. The C library will not be used for the assembler project.

Table 9: Tutorial 5 XLINK options

To assemble and link the main.s03 and the shifts.s03 files, select Make from
the Project menu. Alternatively, click the Make button in the toolbar.

For more information about the XLINK options, see the JAR XLINK Linker™ and IAR
XLIB Librarian™ Reference Guide.

Part 2. Tutorials 67

Tutorial 5

USING THE IAR XLINK LIBRARIAN

Once you have assembled and debugged modules intended for general use, like the
rightshift and leftshift modules, you can add them to a library using the JAR
XLIB Librarian.

Run the IAR XLIB Librarian by choosing Librarian from the Project menu. The
XLIB window will be displayed:

\iar\ew2348051\xlib.exe

IAR Universal Librarian U3.27E-386
Copyright 1988-1998 IAR Systems. All rights reserved.

Target processor is 8851.

=3

Figure 36: XLIB window

You can now enter XLIB commands at the * prompt.

Giving XLIB options

Extract the modules you want from shifts.r03 into a library called math.r03. To
do this enter the command:

FETCH-MODULES

The IAR XLIB Librarian will prompt you for the following information:

Prompt Response

Source file Type debug\obj\shifts and press Enter.

Destination file Type debug\obj\math and press Enter.

Start module Press Enter to use the default start module, which is the first in the
file.

End module Press Enter to use the default end module, which is the last in the file.

Table 10: XLIB FETCH-MODULES parameters

This creates the file math.r03 which contains the code for the rightshift and
leftshift routines.

8051 IAR Embedded Workbench™
68 User Guide

H W N

Assembler tutorials __¢

You can confirm this by typing:
LIST-MODULES

The IAR XLIB Librarian will prompt you for the following information:

Prompt Response

Object file Type debug\obj\math and press Enter.
List file Press Enter to display the list file on the screen.
Start module Press Enter to start from the first module.

End module Press Enter to end at the last module.

Table 11: XLIB LIST-MODULES parameters

You could use the same procedure to add further modules to the math library at any
time.

Finally, leave the librarian by typing:
EXIT

or

QUIT

Then press Enter.

Try out the new math. ro03 library:

Remove the shift.s03 assembler file from the project by choosing Files... from
the Project menu.

Select the shift.s03 file and click the Remove button.
Click Done to exit from the dialog box.

To include the new math library:

Choose XLINK from the Category list.

Select the Library page.

Type math.r03 in the Override default library field.

This library is not included in the standard library directory, but it is found in another
directory. On the Include page, specify it in the edit box by typing

’$TOOLKIT DIR$\PROJECTS\DEBUG\OBJ\"’ just below the

*$TOOLKIT DIR$\LIB\’ line.

Click OK and build the project.

Part 2. Tutorials

69

Tutorial 5

8051 IAR Embedded Workbench™
70 User Guide

Advanced tutorials

These tutorials explore some of the more advanced features of the IAR C-SPY
Debugger, which are very useful when you work on larger projects.

e In Tutorial 6, we define complex breakpoints, profile the application, and
display code coverage.

e Tutorial 7 shows how to debug in disassembly mode.

e Tutorial 8 demonstrates how to create a project containing both C and
assembly language source files.

Before running these tutorials, you should be familiar with the IAR Embedded
Workbench and the IAR C-SPY Debugger as described in the JAR Embedded
Workbench tutorial chapter.

Tutorial 6

In this tutorial we explore the following features of C-SPY:

e Defining complex breakpoints
e Profiling the application
e Displaying code coverage information.

CREATING PROJECTH4

In the IAR Embedded Workbench, create a new project called Project4 and add the
files tutor.c and common. ¢ to it. Make sure that the following project options are

set:
Category Page Option
General Target Processor variant: 8XC51 (default)
Memory model: Tiny (default)
1CC8051 Code Generation Size optimization: Low
Debug Generate debug information (default)
List List file
XLINK Output Debug info with terminal I/O (default)

Table 12: Tutorial 6 options
Click OK to set the options.

o Select Make from the Project menu, or click the Make button in the toolbar to
E m% compile and link the files. This creates the project4.d03 file.

Part 2. Tutorials 71

Tutorial 6

B

& |05

8051 IAR Embedded Workbench™
72 User Guide

Start C-SPY to run the project4.d03 program.

DEFINING COMPLEX BREAKPOINTS

You can define complex breakpoint conditions in C-SPY, allowing you to detect when
your program has reached a particular state of interest.

The file project4 .do03 should now be open in C-SPY. The current position should
be the call to the call count=0 statement.

Execute a step and then click the Step into button to move to the init fibonacci
function. Set a breakpoint at the statement ++1.

Now we will modify the breakpoint you have set so that C-SPY detects when the value
of i exceeds 8.

Choose Edit Breakpoints... from the Control menu to display the Breakpoints
dialog box.

Select the breakpoint in the Breakpoints list to display information about the
breakpoint you have defined:

Breakpoints E

Cloze |

Location:

I.common.c\‘l 83

Segment: Length: Count:

|cope =l [= | Resat |
Condition: Condition Type:

I IEondition True j

— Type Macro:

™ Read

™ white

¥ Fetch

™ Read Immediate
™ white Immediate

Breakpoints

i+ COMMON. C

Add

Clear
Clear &l
Modify

Disable

Figure 37: Displaying breakpoint information

Currently the breakpoint is triggered when a fetch occurs from the location
corresponding to the C statement.

Advanced tutorials __o

Add a condition to the breakpoint using the following procedure:

Enter i>8 in the Condition box and, if necessary, select Condition True from the

Condition Type drop-down list.

Then choose Modify to modify the breakpoint with the settings you have defined:

Breakpoints

Location:

I.common.c\‘l 83

Segment: Length: Count:
|cooe =l [=
Condition: Condition Type:
|i>8 IEondition True j
~Type—— Maco

™ Read

™ white

¥ Fetch

™ Read Immediate
™ white Immediate

Breakpoints

CODE. "F"

+ . COMMon. C

Clear &l

Disable

Cloze |
Reset |

Add

Clear

Modify

Figure 38: Modifying breakpoints

Finally, click the Close button to close the Breakpoints dialog box.

Open the Watch window and add the variable i. The procedure is described in

Watching variables, page 42.

Position the Source, Watch, and Report windows conveniently.

Part 2. Tutorials 73

Tutorial 6

EXECUTING UNTIL A CONDITION IS TRUE

#+3%| Now execute the program until the breakpoint condition is true by choosing Go from
£ the Execute menu, or clicking the Go button in the toolbar. The program will stop
when it reaches a breakpoint and the value of i exceeds 8:

98/ CSPY - project4.d03

|9 [=] E3
Fie Edt Viw Esecute Contol Options Window Hep
=L
slelzasss25 8]y
il Source [= S || Eteh -10]x]
[eormone =] [t omace = Espression Vaie
|| I :
char 1;
fibonaceil0] = 1;
fibonacei[1] = 1;
for | BFz ; iawx rrsomaccr ; N [|
fibonacci[i] = fibonacei[i-1] + fibonacci[i-2];
i
s+
Got the n:th Fibonacci number, or 0 if the
index is greater tham MAX FIBONACCT
=
unsigned int get_fibonacci(char index }
if [index >= MAX_FIBONACCI }
return | 0 }; Pl Report =1
Stop at .tutor.ch2d (mainy j‘
return fibonacci[index]; B mcts cxmiad
} Stop at .tutor.ehld (mainh
" Break at .common.ch 18 (init_fibonacei)
4 FETCH access at address OxOZES [CODE}
Primt the given number to the standard output |50 s ol
/_ . . Stop at .tutor.chZd (mainy
void put_value(unsigned int value) Break at .common.c\l# (init_fibonseed]
{ FETCH access at address OxOZBS (CODE}
char bui[8], *p, ch; = >
<)| 5 A
Rieady Ln 18, Col 35 0772000 [11:0030

Figure 39: Executing in C-SPY until a breakpoint condition is true

EXECUTING UP TO THE CURSOR

A convenient way of executing up to a particular statement in the program is to use
the Go to Cursor option.

First remove the existing breakpoint. Use the Edit Breakpoints... command from the
Control menu or from the pop-up menu to open the Breakpoints dialog box. Select
the breakpoint and click on the Clear button.

Then remove the variable i from the Watch window. Select the variable in the Watch

window and click the Delete key. Instead add £ibonacci to watch the array during
execution.

8051 IAR Embedded Workbench™
74 User Guide

Advanced tutorials __o

Position the cursor in the Source window in the statement:
return fibonacci [index] ;

S| Select Go to Cursor from the Execute menu, or click the Go to Cursor button in the
£_#| toolbar. The program will then execute up to the statement at the cursor position.
Expand the contents of the fibonacci array to view the result:

8 CSPY - projectd.d03 M= B
Fie Edt View Execute Conbol Opfions Window Help

=L
slelzasss25 8]y

Bl Source [0 T L=
[osmmons =] [aet_fbororei = Expression
7 =l

Initialire tha array above with the first Fibonacci

numbers.
e
void init fibomaccil void | [

char i;

fibonaceil0]

=1;
fihonacei[1] = 1;

for [172 ; 1<MAX FIBONACCI ; ++i}

fibonacei[i] = fibonacei[i-1] + fihonmecili-2];
i
4

Get the m:th Fibonacci number, or 0 if the

index is greater tham MAX FIBONACCI il Report - [O]x]
4 faned 1 fib har ind CPU reset executed =
unsigned int get_fibonacci(char index } Stop at .tutor.ch24 [

program EXIT reached
program EXIT reached
CPU reset executed

if | index >= MAX FIBONACCI }
rzeturn [0 7

s Fib Stop at .tutor.eh2d (maing
eturngild CPU reset executed

Stop at .tutor.ehld (mainh
e Stop at .common.ci3l (get_fibonacei) =
KT 7| K A
FReady Ln31,Cal 3 07/20000 111511 2

Figure 40: Executing in C-SPY up to the cursor

DISPLAYING FUNCTION CALLS

The program is now executing statements inside a function called from main. You can
display the sequence of calls to the current position in the Calls window.

Choose Calls from the Window menu to open the Calls window and display the
function calls. Alternatively, click the Calls Window button in the toolbar.

C \get_fibonacci (1) AI
tutor\do_foreground_process(void]
tutorimain[void]

| 2

Figure 41: Calls window

Part 2. Tutorials 75

Tutorial 6

8051 IAR Embedded Workbench™
76 User Guide

In each case the function name is preceded by the module name.

You can now close both the Calls window and the Watch window.

DISPLAYING CODE COVERAGE INFORMATION

The code coverage tool can be used for identifying statements not executed and
functions not called in your program.

Reset the program by selecting Reset from the Execute menu or by clicking the Reset
button in the toolbar. Display the current code coverage status by selecting Code
Coverage from the Window menu. The information shows that no functions have
been called.

Select the Auto Refresh On/Off button in the toolbar of the Code Coverage window.
The information displayed in the Code Coverage window will automatically be
updated.

Execute a step and click the Step Into button to step into the init fibonacci
function. Execute a few more steps and look at the code coverage status once more.
At this point a few statements are reported as not executed:

ode Coverage

lelc|a

T

=] E3

oo

16.67%

Elginit fibonaceci

$Line: 18
$Line: 19
$Line: 18
$Line: 20
$oet_fibonac

$put_value
E ¢ tutor 27.27%

E ¢wain 50.00
5---§Line: 28
$Line: 29
5---§Line: 3o

Col:
Col:
Col:
Col:

50.00%
15
5
34
1

ci 0%

0%

%
Col:
Col:
Col:

$do_foreground process 0%

2
4
2

Figure 42: Code coverage window

For additional information about the layout of the Code Coverage window, see Code
coverage window, page 221.

Advanced tutorials __o

PROFILING THE APPLICATION
The profiling tool provides you with timing information on your application.

Reset the program by selecting Reset from the Execute menu or by clicking the Reset
button in the toolbar. Open a Profiling window by choosing Profiling from the
Window menu.

Start the profiling tool by selecting Profiling from the Control menu or by clicking
the Profiling On/Off button in the Profiling toolbar.

=N

Clear all breakpoints by selecting Clear All in the Breakpoints dialog box, which is
displayed when you select Edit Breakpoints... from the Control menu. Run the
program by clicking the Go button in the toolbar.

L
[%
+

When the program has reached the exit point, you can study the profiling information
shown in the Profiling window:

[l Piofiling
.5 E |3 5325 ‘

Function I Count I Flat Time [cycles) I Flat Tirne [%] I Accumulated Time [c... I Accumulated Time (%] |
commontinit_fboracei 1 374 755 374 755
commontget_fibonacci 10 144 291 144 291
commonsput_value 10 4034 8263 4034 8263
tutorida_fareground_prac 10 180 364 4418 89.23
tutorsmain 1} 155 313 4947 99.92

Figure 43: Tutorial 6 Profiling window
The Profiling window contains the following information:

e Count is the number of times each function has been called.

e Flat Time is the total time spent in each function in cycles or as a percentage of
the total number of cycles shown in the Profiling toolbar.

e Accumulated Time is time spent in each function including all function calls
made from that function in cycles or as a percentage of the total number of cycles.

From the Profiling toolbar it is possible to display the profiling information
graphically, to save the information to a file, or to start a new measurement. For
additional information, see Profiling window, page 222.

Tutorial 7

Although debugging with C-SPY is usually quicker and more straightforward in
source mode, some demanding applications can only be debugged in assembler mode.
C-SPY lets you switch freely between the two.

Part 2. Tutorials 77

Tutorial 7

&

8051 IAR Embedded Workbench™
78 User Guide

First reset the program by clicking the Reset button in the toolbar. Then change the
mode by choosing Toggle Source/Disassembly from the View menu or clicking the
Toggle Source/Disassembly button in the toolbar.

You will see the assembler code corresponding to the current C statement. Stepping is
now one assembler instruction at a time.

{8/ CSPY - [Source] =]
[Fie Edt Wiew Exscute Contol fptions “indow Help 18] x|

s elEaoEEaBm
slelzzeszz|s|6y]

[Sommons = ||
booo* 0zooo3 LIMP init_C ii
0003+ init_¢:

0003+ 758147 MOV SP, H47TH

0006+ 900001 MOV DPTR, #1

0009+ 858320 MoV PZ, DPH

no0c* 120388 LeALL _ low level init

000F* EC MOV R4

0010¢ 4D ORL 2,85

0011+ 6068 az pH

0013+ 7347 MoV RO, #47H

0015+ 8003 STME 1aH

0017 7600 MoV @RO, #0

o019 18 DEC RO

0014+ BB4TFA CINE RO, #47H, 17H

001D+ 7847 MOV RO, §47H

oo1F+ 8003 SaMp Z4H

0021+ 7600 MOV @RO, #0

0023+ 18 DEC RO

0024* B831Fa CIHE RO, #31H,Z1H

0027+ 781F MoV RO, §1FH

ooz 2003 sIMp ZEH

0028 7600 MoV @RO, #0

oozp 13 DEC RO

002E* BB1FFA CINE RO, 4§1FH,2BH

0031* 900001 MOV, DPTR, #1

0034+ Am83 MoV R6, DEH

0036+ AFB2 MoV R7,DPL

0038+ 900001 MoV DPTR, #1

003B* 120086 LCALL BEH

003E* 6005 Iz 4531 -
Ready Ln1,Cal 1 072000 113221

Figure 44: Debugging in disassembly mode

When you are debugging in disassembly mode, every assembler instruction that has
been executed since the last reset is marked with an * (asterisk).

Note: There may be a delay before this information is displayed, due to the way the
Source window is updated.

MONITORING MEMORY

The Memory window allows you to monitor selected areas of memory. In the
following example we will monitor the memory corresponding to the variable
fibonacci.

Choose Memory from the Window menu to open the Memory window or click the
Memory Window button in the toolbar. Position the Source and Memory windows
conveniently on the screen.

Change back to source mode by choosing Toggle Source/Disassembly or clicking the
Toggle Source/Disassembly button in the toolbar.

Advanced tutorials __o

Reset C-SPY and step into the init fibonacci function. Select fibonacci from
the file common . c. Then drag it from the Source window and drop it into the Memory
window. The Memory window will show the contents of memory corresponding to
fibonacci:

8 CSPY - projectd.d03 o

File Edt Wiew Execute Conbol DOpfions Window Help
=L
slelzasss25 8]y

Bl Source = B

[commons] [rcionecs:)
numbers . =]
=/
id t_fil id
\(rn1 init_fibonacci(veid |} o
char i;
ks anac e [ERICHER

fibonaccil1]

for [i=2 ; i<MAE FIBONACCI ; ++i)
fibonacci[i] = fibonacei[i-1] + fibonacei[i-2];
3
&
K]

Memory

'8 18 32 |[iere ~1|w

000000030 o 0 00 00 00 00 00 0 00 00 00] ;‘
0:x:00000040 00 23 00 78 0% &F 03 4c 03

000000050 76 01 02 00 0O 00 OO OO 00 00 00 OO0 00 00 00 00 _I
000000060 00 00 00 00 0O 00 OO0 00 00 00 00 00 00 00 00 00

000000070 00 00 00 00 0O 00 OO0 00 00 00 00 00 00 00 00 00

000000080 00 00 00 00 0O 00 OO0 00 00 00 00 00 00 00 00 00

0:x:00000020 00 00 00 OO0 00 00 OO 00 00 OO0 00 00 OO0 Q0 00 00

000000040 00 00 00 00 0O 00 OO0 00 00 00 00 00 00 00 00 00

0:x000000E0 00 00 00 OO0 00 00 OO0 00 00 00 00 0O OO0 00 00 00

0:x000000C0 00 00 00 O0 00 00 00 00 00 00 00 OO0 00 00 00 00 . B

I} %
Ready Ln16.Cal 3 07/20/00 114508

Figure 45: Monitoring memory

Since we are displaying 16-bit word data, it is convenient to display the memory
contents as long words. Click the 16 button in the Memory window toolbar:

Memory M=
| 816 32 [[oare 5]\ Ex ‘
0x00000030 0002 0000 0000 0000 0000 0000 0000 0000 ;I
0x00000040 0000 0000 DDOD 0000 6300 7903 ££03 4C03
i0x00000050 7801 0Z00 0000 0000 0000 0000 0000 0000 _I
0x00000060 0000 0000 000D 0000 0000 0000 000 0000
0x00000070 0000 000D 0000 0000 0000 000D 000 000D
i0x00000080 0000 0000 0000 0000 0000 0000 0000 0000
0x00000080 0000 0000 DOOD 0000 0000 0000 DOOD 0000
0x000000&0 0000 0000 0000 0000 0000 0000 0000 0000
0x00000050 0000 0000 000D 0000 0000 0000 000 0000
0x00000060 0000 000D 0000 0000 0000 000D 0000 0000 -
41c] 2z

Figure 46: Displaying memory contents as 16-bit words

Step around a few times in the for loop and watch the fibonacci array in the
Memory Window become initialized.

Part 2. Tutorials

79

Tutorial 7

8051 IAR Embedded Workbench™
80 User Guide

CHANGING MEMORY

You can change the memory contents by editing the values in the Memory window.
Double-click the line in memory which you want to edit. A dialog box is displayed.

You can now edit the corresponding values directly in the memory.

For example, if you want to write the number 0x255 in the first position in number in
the fibonacci array, double-click that position in the Memory window and type 255
in the 16-Bit Edit dialog box:

16-Bit Edit [x]
~0:00000030 ———
IDDD2 IDDDD IDDDD IDDDD
—0«00000038 ———
|255 IDDDD IDDDD IDDDD

()8 I Cancel |

Figure 47: Editing memory contents

Then choose OK to display the new values in the Memory window:

Il Memory [_ O[]
| 8 [16 32 [[ioare]| [0 ‘

000000030 0002 0000 0000 0000 0255 0000 o000 00O
000000040 0000 0000 0000 0000 8300 7803 &FO3 4c03
000000050 7e01 0200 0000 0000 0000 0000 0000 0000
000000060 0000 0000 0000 0000 0000 0000 0000 0000
0=x00000070 0000 0000 0000 0000 0000 0000 0000 0000
0x00000080 0000 0000 DOOD 0000 0O0O00 0000 0000 0000
0x00000020 0000 0000 DOOD 0000 0O0O00 0000 0000 0000
I0x000000A0 0000 0000 0000 0000 0000 0000 0000 0000
000000080 0000 0000 0000 0000 0000 0000 0000 0000
Ej?jDDDDCD 0000 0000 0000 0000 0000 0000 0000 0000
[oW

Figure 48: Displaying edited memory contents

Before proceeding, close the Memory window and switch to disassembly mode.

MONITORING REGISTERS

The Register window allows you to monitor the contents of the processor registers and
modify their contents.

Open the Register window by choosing Register from the Window menu.
Alternatively, click the Register Window button in the toolbar.

Advanced tutorials __o

Bl Register M=l E3
A B RO R1 R2 R3 R4 RS R6 R7

oo | Joo | oz | [| oo | I3z | oo | o | oz | Is |
PC SP DPTR CAFRSO-P CYCLES

[o276 | [aB] [0276 [oooooooo |oooooo0379

Figure 49: Tutorial 7 Register window

o Select Step from the Execute menu, or click the Step button in the toolbar, to execute
£ the next instructions, and watch how the values change in the Register window.

Then close the Register window.

CHANGING ASSEMBLER VALUES

C-SPY allows you to temporarily change and reassemble individual assembler
statements during debugging.

Select disassembly mode and step towards the end of the program. Position the cursor
on a RET instruction and double-click on it. The Assembler dialog box is displayed:

Aszzembler [%]
Address: Azzembler [nput:

|ooooazsc RET

Cloze |

Figure 50: Assembler dialog box

Change the Assembler Input field from RET to NOP and select Assemble to
temporarily change the value of the statement. Notice how it changes also in the
Source window.

Tutorial 8

In large projects it may be convenient to use source files written in both C and
assembly language. In this tutorial we will demonstrate how they can be combined by
substituting the file common . ¢ with the assembler file common . s03 and compiling
the project.

CREATING A COMBINED COMPILER AND ASSEMBLER
PROJECT

Return to or open Project4 in the IAR Embedded Workbench. The project should
contain the files tutor.c and common. c.

Part 2. Tutorials 81

Tutorial 8

8051 IAR Embedded Workbench™

82 User Guide

Now you should create the assembler file common . s03. In the Project window, select
the file common . c. Then select Options... from the Project menu. You will notice
that only the ICC8051 and XLINK categories are available.

In the ICC8051 category, select Override inherited settings and set the following
options:

Page Option

List list file
Insert mnemonics
Assembler output file

Table 13: Tutorial 8 compiler options

Options For Hode “"Common.c" [X]
Categony: ¥ Overide inkerited settings Ferttag Saligs |

Code Generationl Debugl Hdefine List |ﬂundef| Includel

— List
¥ List file — Cross reference

¥ Imsert mnemarics ™ Include cross reference
™ Add Hinchuds file text IrElude urreferensed:
™ Active lines orly J=| Hilefifes
[~ Form feed after function I} Erurs and typedsfs
™ Lines/page: ISD— = Frstions:
T ab spacing: lg— | i i

™ Explain C declarations

™ Preprocessor output file

()8 I Cancel |

Figure 51: Tutorial 8 Compiler list file options

Then click OK and return to the Project window.

Compile each of the files. To see how the C code is represented in assembly language,
open the file common . s03 that was created from the file common. c. It is located in
the debug\1list directory.

Now modify Project4 by removing the file common . ¢ and adding the file
common . s03 instead. Then select Make from the Project menu to relink Project4.

Start C-SPY to run the project4.d03 program and see that it behaves like in the
previous tutorials.

ROM-monitor tutorial

This chapter describes how to specify the settings needed in the IAR
Embedded Workbench™ to run the ROM-monitor version of the IAR
C-SPY® Debugger.

Tutorial 9

We recommend that you create a specific directory where you can store all your
project files, for example \8051\projects.

GETTING STARTED

Create a new project, Project5, and add the source files demo . ¢ and demo_two. ¢
to it. The procedure is described in detail in Tutorial 1, page 27.

The demo.c program

The demo . ¢ program is a simple program that uses only standard C facilities. It uses
iteration to calculate 2!, and then prints out the fourth character in a char array. A
copy of the program is provided with the product.

#include "stdio.h"
#include "defns.h"
void demo_two (int i) ;

int d,w;

int main(int 1)
{
for (i = 0, d = 1; i < TWO_POWER; i++)
d *= 2;
printf ("2 to the power of %d is %d\n",
TWO_POWER, d);
demo_two (3) ;

}

The demo_two.c program

The demo_two. ¢ program, which is also provided with the product, contains the
definition of the demo_two routine:

#include "stdio.h"

char array[10] = "abcd";

Part 2. Tutorials

83

Tutorial 9

void demo two(int i)

{

char *cp;

cp = &arrayl[il];
printf ("%c\n", *cp);
}
SETTING TARGET AND COMPILER OPTIONS

Select the Debug folder icon in the Project window and choose Options... from the
Project menu. The Target options page in the General category is displayed.

In this tutorial we use the default Target settings—the 8XC51 processor variant and
the tiny memory model:

Options For Target “Debug” [%]

Cateqgory:

General
|1 Target | Output Directaries I
ABOST

HLINE .
CSPY i~ Processor variant

I a5 < l

— bemory model

ITin_l,l 'l

Cancel |

Figure 52: Target settings

Now you should set up the compiler options for the project.

8051 IAR Embedded Workbench™
84 User Guide

[c&

ROM-monitor tutorial __o

Select ICC8051 in the Category list to display the IAR C Compiler options pages.
Keep the default settings; in addition, specify the following compiler options from the
appropriate pages of the Options dialog box:

Page Options

Code Generation Optimizations, Size: Low

Debug Code added to statements: 3 NOP’s
List List file

Insert mnemonics

Table 14: Tutorial 9 compiler options

Options For Target “Debug” [%]
Category: Factary Settings |
[c] |

e Code Generation Debug | ﬂdefinel List I ﬂundefl Includel
48051
HLINK
L-5PY & File references
 Embedded source
I e Hhiretid= e irfarmation
I | Suppress source i ohject code
V¥ Debuggatle register handling
Code added to statements:
|3 MOP'z 'l
()3 | Cancel |

Figure 53: Setting compiler options for the ROM-monitor

When you have made these selections, click OK to set the options you have specified.

COMPILING THE DEMO.C AND DEMO_TWO.C FILES

To compile the demo . c file, select it in the Project window and choose Compile from
the Project menu.

Alternatively, click the Compile button in the toolbar or select the Compile command
from the pop-up menu that is available in the Project window. It appears when you
click the right mouse button.

Compile the file demo_two. c in the same manner.

Part 2. Tutorials

85

Tutorial 9

8051 IAR Embedded Workbench™
86 User Guide

SETTING XLINK OPTIONS

Select the Debug folder icon in the Project window and choose Options... from the
Project menu. Then select XLINK in the Category list to display the XLINK options

pages.

On the List page, select the Generate linker listing, Segment map, and Memory
map options.

Select the Include page. Under XCL filename, select Override default and specify

the appropriate linker command file for your project, for example:

$TOOLKIT DIR$\config\lnk541.xcl

Options For Target “Debug” [%]

Category:

General
ICCE051
43051

C-5PY

o]

Dutputl ﬂdefinel Diagnosticsl List

Include paths: [one per ling)

Factory Settings |
Include | Irput I Libraryl F'rLI_’l

$TOOLKIT_DIR$ALIBS

—#CL file name

|

¥ Overide default

I$TDDLKIT_DIF|$\config\Ink541 il

Cancel |

Figure 54: Tutorial 9 XLINK options

Click OK to save the XLINK options.

LINKING THE PROJECT

Now you should link the object file to generate code that can be debugged. Choose

Link from the Project menu.

The result of the linking is a code file projects5.d03 with debug information and a

map file projects.map.

%

ROM-monitor tutorial __o

Note: The file demo.d03 is included in the product and can be run as directly in the
ROM-monitor. To start the ROM-monitor with the appropriate command line
settings, see the chapter C-SPY command line options in Part 4: The C-SPY simulator

in this guide.

SETTING C-SPY OPTIONS

You must configure the ROM-monitor before running the program. Select the Debug
folder icon in the Project window and choose Options... from the Project menu. Then
select C-SPY in the Category list to display the C-SPY options pages.

In the Setup page, select ROM-monitor from the Driver drop-down list:

Options For Target “Debug” [%]
Category: Factary Settings
G]
v Setup | Serial Communication | ROM menitor | INTEL RISH |
48051
HLINK, — Processor wariant

o]

I a-CH1 Z l

-

— Device Description File

™ Use device description file

-

[~ Make CODE wiitable

Driver: I ROM monitor = l

Cancel |

Figure 55: Selecting the ROM-monitor driver

Select the Serial Communication and ROM monitor pages to view the available
alternatives. The exact settings depend on which evaluation board you are using; for
example, the C541 board uses a baud rate of 19200.

Then click OK to leave the Options dialog box.

RUNNING THE PROGRAM

Choose Debugger from the Project menu in the IAR Embedded Workbench.
Alternatively, click the C-SPY button in the toolbar. Open the Terminal I/O window

in C-SPY.

Part 2. Tutorials

87

Tutorial 9

To run the program at full speed, select Go from the Execute menu, or click the Go
button in the toolbar.

L
[%
+

Click on the Stop button to stop execution.

Iz

For complete information about the features of C-SPY, see the chapter C-SPY
reference in Part 4: The C-SPY simulator in this guide.

8051 IAR Embedded Workbench™
88 User Guide

!I!I!I!I!IW[!I

Part 3: The IAR
Embedded Workbench

This part of the 8051 IAR Embedded Workbench™ User Guide contains
the following chapters:

e General options

e Compiler options

e Assembler options

e XLINK options

e C-SPY options

e IAR Embedded Workbench reference.

89

90

General options

This chapter describes how to set general options in the IAR Embedded
Workbench™. These include how to specify the target processor and
memory model, as well as how to set up output directories.

Setting general options

To set general options in the AR Embedded Workbench choose Options... from the
Project menu. The Target page in the General category is displayed:

Options For Target “Debug” [%]
Cateqgory:
General
|-| Target | Output Directoriesl
48051
HLINK .
C-SPY Processor variant

I a5 < l

— bemory model

ITin_l,l 'l

Cancel |

Figure 56: Setting general options

The general options are grouped into categories, and each category is displayed on an
option page in the IAR Embedded Workbench.

Click the tab corresponding to the category of options that you want to view or change.

Part 3. The IAR Embedded Workbench 91

Target

Target

8051 IAR Embedded Workbench™
92 User Guide

The Target options in the General category specify the target processor and memory
model for the 8051 IAR C Compiler and Assembler.

Target I

— Processor wariant

I a-CH1 Z l

— bemory model

ITin_l,l 'l

Figure 57: Target options

PROCESSOR VARIANT
Use this option to select your target processor and program size.
Select the target processor for your project from the drop-down list.

What you chose as a processor variant determines the availability of memory model
options.

For a description of the available options, see the Configuration chapter in the 8051
IAR C Compiler Reference Guide.

MEMORY MODEL

Use this option to select the memory model for your project.

Select the memory model for your project from the drop-down list.

What you chose as a processor variant determines the availability of memory model
options.

For a description of the available options, see the Configuration chapter in the 8051
IAR C Compiler Reference Guide.

General options __4

Output directories

The Output directories options allow you to specify directories for executable files,
object files, and list files. Notice that incomplete paths are relative to your project
directory.

Output Directories

Exrecutables:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Figure 58: Output directories

Executables

Use this option to override the default directory for executable files.

Enter the name of the directory where you want to save executable files for the project.
Object files

Use this option to override the default directory for object files.

Enter the name of the directory where you want to save object files for the project.
List files

Use this option to override the default directory for list files.

Enter the name of the directory where you want to save list files for the project.

Part 3. The IAR Embedded Workbench 93

Output directories

8051 IAR Embedded Workbench™
94 User Guide

Compiler options

This chapter explains how to set compiler options from the IAR Embedded
Workbench™, and describes each option.

Setting compiler options

To set compiler options in the IAR Embedded Workbench, select Options... from the
Project menu to display the Options dialog box. Select ICC8051 in the Category list

to display the compiler options pages:

Options For Target “Debug” [%]
Cateqgory: Factary Settings |
5 | .
v Code Generation | Debugl ﬂdefinel List I ﬂundefl Includel
A3051 .
HLINK, [+ Enable language extensions Tuvpe checking
C-5PY

™ 'char'is 'signed char'
™ ‘wiritable strings
™ 4 comments

™ Mested comments

V' Global stict type checking
V' Flag old-style functions
™ Mo type info in object code

[" Disable warnhings Dptimization: W
™ Make a LIBRARY madule
B Sk e Reqister bank Ilndependent 'l

Function INoreentrant 'l Code segment: ICDDE

o]

Cancel |

Figure 59: Compiler options

Click the tab corresponding to the type of options that you want to view or change.

Notice that compiler options can be specified on a target level, group level, or file
level. When options are set on the group or file level, you can choose to override

settings inherited from a higher level.

To restore all settings to the default factory settings, click on the button Factory

Settings.

The following sections give full reference information about the compiler options.

Part 3. The IAR Embedded Workbench 95

Code generation

Code generation

8051 IAR Embedded Workbench™
96 User Guide

The Code Generation options determine the interpretation of the source program and
the generation of object code.

Code Generation

[V Enable language extensions Tuvpe checking

™ 'char'is 'signed char' V' Global stict type checking
™ ‘wiritable strings

™ 4 comments

V' Flag old-style functions
™ Mo type info in object code

™ Mested comments

I Disable warnings Optimization: Speed, Medium =
" Make a LIBRARY module
B Sk e Reqister bank Ilndependent 'l

Function INoreentrant 'l Code segment: ICDDE

Figure 60: Compiler code generation options

ENABLE LANGUAGE EXTENSIONS

Use this option to enable target-dependent extensions to the C language. If your source
code contains language extensions, this option must be selected.

‘CHAR’ IS ‘SIGNED CHAR’

Use this option to make the char type equivalent to signed char.

By default the compiler interprets the char type as unsigned char. To make the
compiler interpret the char type as signed char instead, for example for
compatibility with a different compiler, use this option.

WRITABLE STRINGS

Use this option to make the compiler treat string literals and other constants as
initialized variables.

By default string literals and constants are compiled as read-only. If you want to be
able to write to them, use this option which causes them to be compiled as writable
variables.

Note: Arrays initialized with strings (i.e. char c¢[] = string)arealwayscompiled
as initialized variables, and are not affected by the Writable strings option.

Compiler options __4

‘I COMMENTS

Use this option to enable comments in C++ style, i.e. comments introduced by ‘//’
and extending to the end of the line.

For compatibility reasons, the compiler normally does not accept C++ style
comments. If your source includes C++ style comments, you must use this option to
make them accepted.

NESTED COMMENTS

Use this option to enable nested comments.

By default the compiler treats nested comments as a fault and issues a warning when
it encounters one, resulting for example from a failure to close a comment. If you want
to use nested comments, for example to comment out sections of code that include
comments, use this option to disable this warning.

DISABLE WARNINGS

Use this option to disable all warnings issued by the compiler.

By default the compiler issues standard warning messages, and any additional
warning messages enabled with the Global strict type checking option.

MAKE A LIBRARY MODULE

By default the compiler produces a program module ready for linking with the IAR
XLINK Linker.

Use this option if you instead want a library module for inclusion in a library with the
IAR XLIB Librarian.

STACK EXPANSION

Use this option if you want to force the compiler to store function return addresses in
external (XDATA) memory.

FUNCTION

Without this option, simple recursive functions will work correctly. However, mutual
recursion may not function as expected because local variables are stored in fixed
locations rather than on a stack.

Part 3. The IAR Embedded Workbench 97

Code generation

8051 IAR Embedded Workbench™
98 User Guide

TYPE CHECKING

Global strict type checking
Use this option to make the compiler check type information throughout the source.

Sometimes there are conditions in the source code that indicate possible programming
faults but which for compatibility reasons the compiler and linker normally ignore. To
cause the compiler and linker to issue a warning each time they encounter such a
condition, use this option.

Flag old-style functions

By default the Global strict type checking option does not warn of old-style K&R
functions. To enable such warnings, use the Flag old-style functions option.

No type info in object code

By default the Global strict type checking option includes type information in the
object module which allows the linker to issue type check warnings. This information
increases the size of the module and the link time. To exclude this information and
disable the linker type check warnings, use the No type info in object code option.

When linking multiple modules, notice that objects in a module compiled without type
information, i.e. without the Global strict type checking option, are considered
typeless. Hence there will never be any warning of a type mismatch from a declaration
from a module compiled without type information, even if the module with a
corresponding declaration has been compiled with type information.

The conditions checked by the Global strict type checking option are:

Calls to undeclared functions.

Undeclared K&R formal parameters.

Missing return values in non-void functions.
Unreferenced local or formal parameters.
Unreferenced goto labels.

Unreachable code.

Unmatching or varying parameters to K&R functions.
#undef of unknown symbols.

Valid but ambiguous initializers.

Constant array indexing out of range.

Compiler options __o

OPTIMIZATION
By default the compiler optimizes for minimum size at level 3 (see the table below).

Use this option to make the compiler optimize for size or speed at the selected level:

Level Option Description

0 None No optimization.

3 Low Fully debuggable.

6 Medium Some constructs not debuggable.

8 High Heavy optimization can make the program flow hard to

follow during debug.

9 Full Full optimization

Table 15: Optimization options

REGISTER BANK

This option allows the generation of register bank-dependent code. The parameter
specifies the register bank O to 3. The default is 0.

The options are as follows:

Option Command line
Independent

Register Bank 0 -h0

Register Bank | -hl

Register Bank 2 -h2

Register Bank 3 -h3

Table 16: Register bank options

CODE SEGMENT
Use this option to specify the name of the code segment.

By default the compiler places executable code in the segment named CODE which,
also by default, the linker places at a variable address.

If you want to be able to specify an explicit address for the code, you use this option
to specify a special code segment name which you can then assign to a fixed address
in the linker command file.

Part 3. The IAR Embedded Workbench 99

Debug

Debug

8051 IAR Embedded Workbench™
100 User Guide

The Debug options determine the level of debug information included in the object
code.

& File references

 Embedded source
= e e dE e it armation

I | Suppress source i ohjest code

V¥ Debuggatle register handling

Code added to statements:

I Mone [standard] - l

Figure 61: Compiler debugging options

GENERATE DEBUG INFORMATION

Use this option to make the compiler include additional information required by
C-SPY and other symbolic debuggers in the object modules.

Normally the compiler does not include debugging information, for code efficiency.
To make code debuggable with C-SPY, you simply use this option with the File
references option, which is selected by default. This adds source file references,
symbol debug information, and other debug information to the object file.

To make code debuggable with debuggers that read the UBROFS5 object file format
only, it is necessary to use the Embedded source option to include the full source file
into object code. It will then be possible to generate the UBROF 5 object file format
from the linker at a later stage.

The option Add #include file information will insert include files into the copied
source as well, giving the possibility to debug code statements inside include files. A
side effect is that the source line number is the global (=total) line count so far in the
copied source. The option Suppress source in object file will give the same line count
but will not embed the source files into the object file.

Normally, the compiler tries to put locals as register variables. To suppress the use of
register variables, use Debuggable register handling.

Use the Code added to statements option to add a NOP in front of every C statement.
Only use this option if your debugging tools specifically require you to do so.

Compiler options __o

#define

The #define option allows you to define symbols for use by the C compiler.

Hdefine |

Defined symbols: [one per line]

testver ;I

Figure 62: Compiler #define options

DEFINED SYMBOLS

Defines a symbol with the name symb and the value xx. If no value is specified, 1 is
used.

Defined symbols has the same effect as a #def ine statement at the top of the source
file.

The Defined symbols option is useful for conveniently specifying a value or choice
that would otherwise be specified in the source file.

For example, you could arrange your source to produce either the test or production
version of your program depending on whether the symbol testver was defined. To
do this you would use include sections such as:

#ifdef testver
; additional code lines for test version only
#endif

Part 3. The IAR Embedded Workbench 101

List

List

8051 IAR Embedded Workbench™

102 User Guide

The List options determine whether a listing is produced, and the type of information

included in the listing.

— List

List |

IV List file
I Irsert mnemarics
™ Add Hinclude file text
[T Active lines only

™ Form feed after function

[Lines/page: ISD

— Cross reference

Include unreferenced:
™ tdefines
™ Enums and typedefs
™ Furctions

Tab spacing: IS I" Dual ine spacing

™ Aszembly output file ™ Explain C declarations

™ Preprocessor output file

Figure 63: Compiler list file options
LIST FILE

Insert mnemonics
Use this option to make the listing include generated assembly lines.

By default the compiler does not include the generated assembly lines in the listing. If
you want these to be included, for example to be able to check the efficiency of code
generated by a particular statement, use this option.

Add #include file text

Use this option to make the listing include #include files.

Normally the listing does not include #include files, since they usually contain only
header information that would waste space in the listing. If they for example contain
function definitions or preprocessed lines, use this option to have them included in the
listing.

Active lines only

Use this option to make the compiler list only active source lines.

Normally the compiler lists all source lines. To save listing space by eliminating
inactive lines, such as those in false #1 £ structures, you use this option.

Compiler options __4

Form feed after function

Use this option to generate a form-feed after each listed function in the assembly
listing.

By default the listing simply starts each function on the next line. To cause each
function to appear at the top of a new page, you would include this option.

Form-feeds are never generated for functions that are not listed, for example, as in
#include files.
Lines/page

This option causes the listing to be formatted into pages, and specifies the number of
lines per page in the range 10 to 150.

By default the listing is not formatted into pages. To format it into pages with a form
feed at every page, you use this option.
TAB SPACING

Use this option to set the number of character positions per tab stop to n, which must
be in the range 2 to 9.

By default the listing is formatted with a tab spacing of 8 characters. If you want a
different tab spacing, you set it with this option.

CROSS REFERENCE

Use this option to include a cross-reference list in the listing.

By default the compiler does not include global symbols in the listing. To include at
the end of the listing a list of all variable objects, and all functions, #define
statements, enum statements, and typedef statements that are referenced, you use
this option.

You can also choose to use dual-line spacing in the listing.

ASSEMBLY OUTPUT FILE
Use this option to generate assembler source code to filename.s03.

By default the compiler does not generate an assembler source. To send assembler
source to the file with the same name as the source leafname but with the extension
503, use this option.

If you also select the options List file and Insert mnemonics, the C source lines are
included in the assembly source file as comments.

Part 3. The IAR Embedded Workbench 103

List

8051 IAR Embedded Workbench™
104 User Guide

PREPROCESSOR OUTPUT FILE
Use this option to generate preprocessor output to filename.1i.

By default the compiler does not generate preprocessor output. To send preprocessor
output to the file with the same name as the source leafname but with the extension i,
use this option.

EXPLAIN C DECLARATIONS
Use this option to include an English description of each C declaration in the file.

This may aid, for example in the investigation of error messages. The following
example shows a C declaration and its description:

The declaration:
void (* signal(int _ sig, void (* func) ())) (int);
gives the description:

Identifier: signal
storage class: extern
prototyped near func function returning
near - near func code pointer to
prototyped near func function returning
near - void
and having following parameter(s) :
storage class: auto
near - int
and having following parameter(s) :
storage class: auto
near - int
storage class: auto
near - near_func code pointer to
near func function returning
near - void

Compiler options __o

#undef

The #undef options allow you to undefine the predefined symbols.

Figure 64: Compiler #undef options

UNDEFINE SYMBOL
Use this option to remove the definition of the named symbol.

By default the compiler provides various predefined symbols. If you want to remove
one of these, for example to avoid a conflict with a symbol of your own with the same
name, you use this option.

For a list of the predefined symbols, see the 8051 IAR C Compiler Reference Guide.

Part 3. The IAR Embedded Workbench 105

Include

Include

The Include option allows you to define include paths for the C compiler.

Include I

Include paths: [one per line)
$TOOLKIT _DIF$hinc, =]

Figure 65: Compiler Include path options

INCLUDE PATHS
Use this option to add a path to the list of #include file paths.

By default the compiler searches for include files only in the source directory (if the
filename is enclosed in quotes as opposed to angle brackets), the C_ INCLUDE paths,
and finally the current directory. If you have placed #include files in another
directory, you must use this option to inform the compiler of that directory.

Enter the full file path of your #include files or use an argument variable, see
Configure tools..., page 161 and onwards.

8051 IAR Embedded Workbench™
106 User Guide

Assembler options

This chapter first explains how to set the options from the IAR Embedded
Workbench™. It then provides complete reference information for each
assembler option.

Setting assembler options
To set assembler options in the AR Embedded Workbench, choose Options... from
the Project menu to display the Options dialog box. Then select A8051 in the
Category list to display the assembler options pages:

| Options For Target “Debug” [%]
. Categony: Factory Settings |
G] .
|C%ngeag1 Cade generation | Debugl ﬂdefinel List I ﬂundefl Includel
HLINK, ¥ Case sensitive user symbols Macra quate chars: [« > -
C-5PY

" Disable Hifdef/Hendif matching

Warning:
' Enable @& &l wamings

" Dizsable © Just warning: I
© amings from: I o I

[~ Make a LIBRARY module

()8 I Cancel |

Figure 66: Assembler options

Click the tab corresponding to the type of options you want to view or change.

Notice that assembler options can be specified on a target level, a group level, or a file
level. When options are set on the group or file level, you can choose to override
settings inherited from a higher level.

To restore all settings globally to the default factory settings, click on the Factory
Settings button.

The following sections give full descriptions of each assembler option.

Part 3. The IAR Embedded Workbench 107

Code generation

108

Code generation

8051 IAR Embedded Workbench™
User Guide

The Code generation options control the code generation of the assembler.

Code generation |

V' Case sensitive user symbols Macra quate chars: [« > -

" Disable Hifdef/Hendif matching

Warning:
' Enable @& &l wamings

" Dizsable © Just warning: I
© amings from: I o I

[~ Make a LIBRARY module

Figure 67: Assembler code generation options

CASE SENSITIVE USER SYMBOLS

By default, case sensitivity is on. This means that, for example, LABEL and label
refer to different symbols. You can deselect Case sensitive user symbols to turn case
sensitivity off, in which case LABEL and label will refer to the same symbol.

DISABLE #IFDEF/#ENDIF MATCHING (-D)

This option allows unmatched #ifdef. . .#endif statements to be used without
causing an error.

The checks for #ifdef. . .#endif matching are performed for each module, and a
#endif outside modules will therefore normally generate an error message. Use this
option to turn checking off.

This allows you to write constructs such as:
#ifdef Versionl

MODULE M1
NOP
ENDMOD
#endif
MODULE M2

Assembler options __4

WARNINGS

The assembler displays a warning message when it finds an element of the source that
is legal, but probably the result of a programming error (see the 8051 IAR Assembler
Reference Guide).

By default, all warnings are enabled. The Warnings option allows you to enable only
some warnings, or to disable all or some warnings.

Use the Warnings radio buttons and entry fields to specify which warnings you want
to enable or disable.

MAKE A LIBRARY MODULE

By default, the assembler produces a program module ready to be linked with the [AR
XLINK Linker™. Select the Make a LIBRARY module option if you instead want
the assembler to make a library module for use with the AR XLIB Librarian™.

Note: If the NAME directive is used in the source (to specify the name of the program
module), the Make a LIBRARY module option is ignored. This means that the
assembler produces a program module regardless of the Make a LIBRARY module
option.

MACRO QUOTE CHARS

The Macro quote chars option sets the characters used for the left and right quotes of
each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, select one of four types of brackets to be used as macro quote
characters:

tacro quote chars

Figure 68: Selecting macro quote characters

Part 3. The IAR Embedded Workbench 109

Debug

Debug

8051 IAR Embedded Workbench™
110 User Guide

The Debug options allow you to generate information to be used by a debugger such
as the IAR C-SPY® Debugger.

Debug I

V' Generate debug information
7 File references

& Embedded source

Figure 69: Assembler debugging options

GENERATE DEBUG INFORMATION

In order to reduce the size and link time of the object file, the assembler does not
generate debug information in a Release project. You must use the Generate debug
information option if you want to use a debugger with the program.

When you select this option to generate debug information, File references is selected
by default. If you instead want to include the entire source file into the object file,
select Embedded source.

Assembler options __

#define

The #define option allows you to define symbols in addition to the predefined
symbols in the 8051 Assembler.

Hdefine

Defined symbols: [one per line]

testver ;I

framerate=3

Figure 70: Assembler #define options

#define

The #define option provides a convenient way of specifying a value or choice that you
would otherwise have to specify in the source file.

Enter the symbols you want to define in the #define page, one per line.

e For example, you could arrange your source to produce either the test or
production version of your program depending on whether the symbol testver
was defined. To do this you would use include sections such as:

#ifdef testver
; additional code lines for test version only
#endif

You would then define the symbol testver in the Debug target but not in the
Release target.

e Alternatively, your source might use a variable that you need to change often, for
example framerate. You would leave the variable undefined in the source and
use the #define option to specify a value for the project, for example
framerate=3.

To remove a defined symbol, select in the Defined symbols list and press the Delete
key.

Part 3. The IAR Embedded Workbench |||

List

List

8051 IAR Embedded Workbench™
112 User Guide

The List options are used to cause the assembler to generate a listing, to select the
contents of the listing, and to generate other listing-type output.

List
il Iné:lude header ™ Include cross reference
V' Include listing I= | Hlefities:
I~ fincluded text I= [htermal symbiols

S [i i
[T Active lines only 2 Dol e spachig

™ Macro definitions

[V Macro expansions I Li .
ines/page; ISU

™ Macro execution info

[Assembled lines only Tab spacing: IS

™ Multine code
™ Mo stuc, assembler lisl

™ Include cycle count

Figure 71: Assembler list file options

LIST FILE

By default, the assembler does not generate a list file. Selecting List file causes the
assembler to generate a listing and send it to the file sourcename.lst.

Note: If you want to save the list file in another directory than the default directory for
list files, use the QOutput Directories option in the General category; see Output
directories, page 93, for additional information.

When List file is selected the following list options become available:

Option Description

Include header Includes a header in the listing.

Include listing Includes the body of the listing.

#included text Includes #include files in the listing.

Active lines only Includes only active lines in the listing.

Macro definitions Includes macro definitions in the listing.

Macro expansions Includes macro expansions in the listing.

Macro execution info Prints macro execution information on every call of a
macro.

Assembled lines only Excludes lines in false conditional assembly sections

from the listing.

Table 17: Assembler list file options

Assembler options __

Option Description

Multiline code Lists the code generated by directives on several
lines, if necessary.

No structured assembler list Excludes structured assembly sections from the
listing.
Include cycle count Includes the cycle count.

Table 17: Assembler list file options (continued)

INCLUDE CROSS-REFERENCE

The Include cross-reference option causes the assembler to generate a
cross-reference table at the end of the listing. For an example, see Listing format in the
8051 IAR Assembler Reference Guide for details.

LINES/PAGE

The default number of lines per page is 44 for the assembler listing. Use this option to
set the number of lines per page, within the range 10 to 150.

Use the Lines/page option to set the number of lines per page for the assembler listing.

TAB SPACING

By default, the assembler sets eight character positions per tab stop. Use the Tab
spacing option to change the number of character positions per tab stop, within the
range 2 to 9.

Enter your preferred number of character positions per tab stop.

Part 3. The IAR Embedded Workbench | |3

#undef

#undef

8051 IAR Embedded Workbench™
|14 User Guide

The #undef option allows you to undefine the predefined symbols provided in the
assembler.

Hundef |

Predefined symbals:

IV _FILE_
IV _LINE_
IV _TIME__
¥ _DATE_
V _Tio_

Figure 72: Assembler #undef options

#UNDEF

By default, the assembler provides certain predefined symbols; see the 8057 IAR
Assembler Reference Guide for more information. The #undef option allows you to
undefine such a predefined symbol to make its name available for your own use
through a subsequent #define option or source definition.

To undefine a symbol, deselect it in the Predefined symbols list.

Assembler options __

Include

The Include option allows you to define the include path for the assembler.

Include

Include paths: [one per line)
chprojectzhinclude ;I

Figure 73: Assembler Include path options

INCLUDE

By default the assembler searches for #include files in the current working
directory. The Include option allows you to specify the names of directories that the
assembler will also search if it fails to find the file.

Enter the full path of the directories that you want the assembler to search for
#include files.

See the 8051 IAR Assembler Reference Guide for information about the #include
directive.

Note: By default the assembler searches for #include files also in the paths specified
in the A8051 INC environment variable. We do not, however, recommend the use of
environment variables in the IAR Embedded Workbench.

Part 3. The IAR Embedded Workbench |15

Include

8051 IAR Embedded Workbench™
116 User Guide

XLINK options

This chapter describes how to set XLINK options and gives reference
information about the options available in the IAR Embedded Workbench.
XLINK options allow you to control the operation of the IAR XLINK
Linker™.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR XLINK Linker™ and
IAR XLIB Librarian™ Reference Guide.

Setting XLINK options

To set XLINK options in the AR Embedded Workbench choose Options... from the
Project menu to display the Options dialog box. Select XLINK in the Category list
to display the XLINK options pages:

Options For Target “Debug” [%]

Cateqgory: Factary Settings |
G]
|E%n380[§1 Output | ﬂdefinel Diagnosticsl List I Includel Input I Libraryl Prd I L4
48051
C5PY ~ Dlutput fle

™ Owvenide default Secondary output file:

Jtest.d03

— Format
" Debug info

&' Debug info with terminal |10
" Other

[tEut farmat: Idebug [ubrof]

Ll L

Farmatsarnatt: INone

()8 I Cancel |

Figure 74: XLINK options

Then click the tab corresponding to the type of options you want to view or change.

Notice that XLINK options can be specified on a target level, a group level, or a file
level. When options are set on the group or file level, you can choose to override
settings inherited from a higher level.

Part 3. The IAR Embedded Workbench |17

Output

To restore all settings to the default factory settings, click on the button Factory
Settings.

The following sections give full reference information about the XLINK options.

Output

8051 IAR Embedded Workbench™
118 User Guide

The Output options are used for specifying the output format and the level of
debugging information.

Clutput l

— Output file
™ Overide default
[Frojectd. 403

Secondary output file:

— Format
" Debug info

& Debug info with terminal |10
" Other

[tEut farmat: Idebug [ubrof]

Ll [

Farmatsarnatt: INone

Figure 75: XLINK output file options

OUTPUT FILE

Use Output file to specify the name of the XLINK output file. If a name is not
specified the linker will use the name project.do03. If a name is supplied without a
file type, the default file type for the selected output format (see Qutput format, page
119) will be used.

Note: If you select a format that generates two output files, the file type that you
specify will only affect the primary output file (first format).
Override default

Use this option to specify a filename or file type other than default.

FORMAT

The format options determine the format of the output file generated by the IAR
XLINK Linker. The IAR proprietary output format is called UBROF, Universal
Binary Relocatable Object Format.

XLINK options __4

Debug info

Use this option to create an output file in debug (ubrof) format, with a 403 extension,
to be used with the IAR C-SPY® Debugger.

Specifying the option Debug info overrides any Output format option.

Note: For emulators that support the IAR Systems debug format, select ubrof from
the Output format drop-down list.

Debug info with terminal I/O

Select this option to simulate terminal I/O when running C-SPY.

Output format

Use Output format to select an output format other than the default format.
In a debug project, the default output format is debug (ubrof).

In a release project, the default output format is Motorola.

Note: When you specify the Output format option as debug (ubrof), C-SPY debug
information will not be included in the object code. Use the Debug info option
instead.

Format variant

Use this option to select enhancements available for some output formats. The
Format variant options depend on the output format chosen.

For more information, see the JAR XLINK Linker™ and IAR XLIB Librarian™
Reference Guide.

Part 3. The IAR Embedded Workbench |19

#define

#define

The #define option allows you to define symbols.

Hdefine |
Defined symbols: [one per line]
Telease_version ;I
=

Figure 76: XLINK defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful
for configuration purposes.

Any number of symbols can be defined in a linker command file. The symbol(s)
defined in this manner will be located in a special module called ?ABS ENTRY MOD,
which is generated by the linker.

XLINK will display an error message if you attempt to redefine an existing symbol.

8051 IAR Embedded Workbench™
120 User Guide

XLINK options __4

Diagnostics

The Diagnostics options determine the error and warning messages generated by the
TAR XLINK Linker.

Diagnostics

Fange checks
& Generate enors

™ Segment overlap warings)
 Generate warrings

™ Mo global type checking Dissbled

—warnings/E mor
™ Suppress all wamings
Suppress thesze diagnostics:

Treat these as warnings:

Treat these as emors:

Figure 77: XLINK diagnostics options

ALWAYS GENERATE OUTPUT

Use Always generate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is
encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be patched in later in
the absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap warnings to reduce segment overlap errors to warnings,
making it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use No global type checking to disable type checking at link time. While a
well-written program should not need this option, there may be occasions where it is
helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in
the object modules involved). A warning is generated if there are mismatches.

Part 3. The IAR Embedded Workbench 121

List

RANGE CHECKS

Use Range checks to specify the address range check. The following table shows the
range check options in the IAR Embedded Workbench:

IAR Embedded Workbench Description

Generate errors An error message is generated
Generate warnings Range errors are treated as warnings
Disabled Disables the address range checking

Table 18: XLINK range check options

If an address is relocated outside of the target CPU’s address range—code, external
data, or internal data address—an error message is generated. This usually indicates
an error in an assembly language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that
something may be wrong, although the generated code may still be correct. The
Warnings options allow you to disable or enable all warnings and to change the
severity classification of errors and warnings.

Refer to the XLINK diagnostics chapter in the JAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide for information about the warning and error messages.

List

8051 IAR Embedded Workbench™
122 User Guide

The List options determine the generation of an XLINK cross-reference listing.

Lt |
V| Generate linker listing

V' Segment map

Symbals
" None

' Symbol listing
& Module map

Figure 78: XLINK list file options

XLINK options __

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file project.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module.

This entry map is useful for quickly finding the address of a routine or
data element.

Module map A list of all segments, local symbols, and entries (public symbols) for
every module in the program.

Table 19: XLINK list file options

Lines/page

Sets the number of lines per page for the XLINK listings to 1ines, which must be in
the range 10 to 150.

Part 3. The IAR Embedded Workbench |23

Include

Include

8051 IAR Embedded Workbench™
124 User Guide

The Include option allows you to set the include path for linker command files, and
specify the linker command file.

Include l

Include paths: [one per line)
$TOOLEIT _DIR$ALIES =]

—#LCL file name
™ Overide default
I$TDDLKIT_DIH$\config\Ink8051 xel J

Figure 79: XLINK include files options

INCLUDE PATHS
Specifies a path name to be searched for object files.

By default, XLINK searches for object files only in the current working directory. The
Include paths option allows you to specify the names of the directories which it will
also search if it fails to find the file in the current working directory.

To make products more portable, use the argument variable $TOOLKIT DIR$\1ib\
for the 1ib subdirectory of the active product (that is, standard system #include
files) and $PROJ_DIR$\1ib\ for the 1ib subdirectory of the current project
directory. For an overview of the argument variables, see Table 31, page 162.

XCL FILENAME

A default linker command file is selected automatically for the memory model and
processor variant selected on the Target page in the General category. You can
override this by selecting Override default and then specifying an alternative file.

The argument variables $TOOLKIT DIRS$ or $SPROJ_DIRS can be used here too, to
specify a project-specific or predefined linker command file.

XLINK options __4

Input

The Input options define the status of input modules.

Input |

Module status

" Inherent, no ohiect code

€ Load as PROGRAM

© Load az LIBRARY

Figure 80: XLINK input files options
MODULE STATUS

Inherent

Use Inherent to link files normally, and generate output code.

Inherent, no object code

Use Inherent, no object code to empty-load specified input files; they will be
processed normally in all regards by the linker but output code will not be generated
for these files.

One potential use for this feature is in creating separate output files for programming
multiple EPROMs. This is done by empty-loading all input files except the ones that
you want to appear in the output file.

Load as PROGRAM

Use Load as PROGRAM to temporarily force all of the modules within the specified
input files to be loaded as if they were all program modules, even if some of the
modules have the LIBRARY attribute.

This option is particularly suited for testing library modules before they are installed
in a library file, since this option will override an existing library module with the
same entries. In other words, XLINK will load the module from the specified input
file rather than from the original library.

Part 3. The IAR Embedded Workbench |25

Library

Load as LIBRARY

Use Load as LIBRARY to temporarily cause all of the modules within the specified
input files to be treated as if they were all library modules, even if some of the modules
have the PROGRAM attribute. This means that the modules in the input files will be
loaded only if they contain an entry that is referenced by another loaded module.

If you have made modifications to CSTARTUP, this option is particularly useful when
testing CSTARTUP before you install it in the library file, since this option will override
the existing program module CSTARTUP.

Library

8051 IAR Embedded Workbench™
126 User Guide

The Library options allow you to set the library options and override the default
linker command file.

Library
Reen
I | ke rrutiple DETHS r .
¥ | Wse AW itran ™ Mon interuptable stack handle
= | rterptatle

™ Overide default library

| EEEIE [

Lo Grampimdules as:) Default
5 [itiraries:
) Frograms

Figure 81: XLINK library options

USE MULTIPLE DPTRS

This option will include a library supporting multiple DPTRs. The library used is
determined by the processor selected in the General category.

Microcontroller Library
8X517 cl517str.r03
8X320 cl320str.ro3

Table 20: Libraries supporting multiple DPTRs

Also see the Configuration chapter in the 8051 IAR C Compiler Reference Guide.

XLINK options __

USE MDU LIBRARY

This option will include a library supporting the extended math unit (MDU) in the
8X517 microcontroller. The option includes c18517.r03 if Interruptable is not
selected. If Interruptable is selected, c18517i.r03 is included.

Also see the Configuration chapter in the 8051 IAR C Compiler Reference Guide.

REENTRANT

Use the Use reentrant C library option to specify that the linker should produce
reentrant code.

The library used is as follows:

Memory model Non-reentrant Reentrant
Tiny cl8051t.ro3 cl8051tr.r03
Small cl8051s.r03 cl8051sr.ro3
Compact cl8051c.r03 cl8051cr.ro3
Medium cl8051m.r03 cl805Imr.r03
Large cI80511.r03 cl80511r.r03
Banked cl8051b.r03 cl8051br.ro3

Table 21: Non-reentrant and reentrant C library files

Use the Non-interruptable stack handle option to load the library move_xsp.r03
before the standard library; this disables interrupts before calls to reentrant functions,
and enables them again afterwards, to reduce the stack requirements. Note that the
move xsp library affects all reentrant functions, both user-defined and system
functions.

OVERRIDE DEFAULT LIBRARY

A default library file is selected automatically for the memory model you specify in
the General category. You can override this by selecting Override default library
name, and then specifying an alternative library file. You can also specify how to load
the library modules.

Part 3. The IAR Embedded Workbench |27

Processing

Processing

8051 IAR Embedded Workbench™
128 User Guide

The Processing options allow you to specify additional options determining how the
code is generated.

Processing |

IV Fill unused code memary

IDHFF
I 2bytes | * l

 Arithmetic sum

& Ll (0w1021)
L2 ((w4C110B7)
" Crc polynomial:

IDx‘I 1021
IAS is 'l

Filler byte:
v

Size:

Figure 82: XLINK processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by
the linker with the value hexvalue. The linker can introduce gaps either because of
alignment restriction, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a
value in the output file.

Filler byte

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.

XLINK options __

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum.

Crclé CRCI6, generating polynomial Ox 11021 (default)
Crc32 CRC32, generating polynomial 0x4C| IDB7.

Crc polynomial CRC with a generating polynomial of hexvalue.

Table 22: XLINK checksum algorithms
You may also specify that one’s complement or two’s complement should be used.

In all cases it is the least significant 1, 2, or 4 bytes of the result that will be output, in
the natural byte order for the processor.

The CRC checksum is calculated as if the following code was called for each bit in the
input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)

{

unsigned long newcrc = (oldcrc << 1) * bit;
if (oldcrc & 0x80000000)

newcrc “= POLY;
return newcrc;

}

POLY is the generating polynomial. The checksum is the result of the final call to this
routine. If the complement is specified, the checksum is the one’s or two’s
complement of the result.

The linker will place the checksum byte(s) at the label _checksum in the segment
CHECKSUM. This segment must be placed using the segment placement options like
any other segment.

For additional information about segment control, see the IAR XLINK Linker™ and
IAR XLIB Librarian™ Reference Guide.

Part 3. The IAR Embedded Workbench 129

Processing

8051 IAR Embedded Workbench™
130 User Guide

C-SPY options

This chapter describes how to set C-SPY options in the IAR Embedded
Workbench™ and gives detailed reference information about the options.

Note: If you prefer to run C-SPY outside the IAR Embedded Workbench, refer
to the C-SPY command line options chapter in Part 4: The C-SPY simulator in this
guide for information about the available options. In addition, reference
information about the IAR C-SPY® Debugger is provided in the C-SPY
reference chapter in Part 4: The C-SPY simulator in this guide.

Setting C-SPY options

To set C-SPY options in the IAR Embedded Workbench choose Options... from the
Project menu, and select C-SPY in the Category list to display the C-SPY options

pages:

Options For Target “Debug” [%]
Cateqgory: Factary Settings
G]
v Setup | Serial Communication | ROM menitor | INTEL RISH |
48051 _
HLINE, -~ Processor wariant

* |8><E51 vl
— Setup file
[T Use setup file

| -]

— Device Description File

[T Use device description file

™ Make CODE writable Driver: ISimuIator 'l

()8 I Cancel |

Figure 83: C-SPY options

To restore all settings globally to the default factory settings, click on the Factory
Settings button.

Part 3. The IAR Embedded Workbench |31

Setup

Setup

8051 IAR Embedded Workbench™
132 User Guide

The Setup options specify the processor variant, the setup file, and device description
file to be used.

-~ Processor wariant

IBXES‘I 'l
— Setup file
[T Use setup file

| -]

— Device Description File

[T Use device description file

™ Make CODE writable Driver: ISimuIator 'l

Figure 84: C-SPY setup options

PROCESSOR VARIANT

In the General category, select the processor type to use. Here you you should select
the variant closest to the actual target you will be using.

SETUP FILE

To register the contents of a macro file in the C-SPY startup sequence, select Use
setup file and enter the path and name name of your setup file, for example,
watchdog . mac. If no extension is specified, the extension mac is assumed. A browse
button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load the device-specific definitions allowing you to view and edit
the contents of the special function registers while debugging.

The device description files contain various device specific information such as I/O
registers (SFR) definitions, vector, and control register definitions. Some files are
provided with the product and have the extension ddf. A browse button is available
for your convenience.

C-SPY options __4

MAKE CODE WRITABLE

This option will make C-SPY use the external memory as code memory. Segments
that are linked as CODE will be placed in the external memory, and C-SPY will execute
code from external memory instead of from a ROM memory. To use external data
with this option, link external data at addresses not used by the CODE segments.

DRIVER

Selects one of the following drivers for use with C-SPY:
C-SPY version Driver
Simulator s8051.cdr
ROM monitor r8051.cdr
Intel RISM r8051i.cdr

Table 23: C-SPY driver options

Serial Communication

In the Serial Communication page the serial port to be used with the ROM-monitor
or the Intel RISM is set up.

Options For Target “Debug” E
Cateqgory: Factary Settings
G] ; —
ICC805T Setup Serial Communication | ROM menitor | INTEL RISH |
48051
pad

Por -
Baud lm
Farity lﬁ
D ata bits lm
Stop bitz lm
Handshaking lﬁ

™ Log communication

Icspycomm.log J

()8 I Cancel

Figure 85: C-SPY serial communication options

Part 3. The IAR Embedded Workbench 133

ROM monitor

C-SPY tries connecting with the selected baud rate when making the first contact with
the ROM-monitor board.

If this option has not been given, C-SPY will try using the COM1 port at 9600 baud.
The evaluation board must of course support the requested baud rate.

Parameters Description

PORT One of the supported ports: COM1, COM2, COM3, COM4

BAUD One of following speeds: 300, 600, 1200, 2400, 4800, 9600,
19200,38400,57600,115200 (default 9600)

PARITY Only N (None) is allowed.

DATA BITS Only 8 is allowed.

STOP BITS 1 or 2 stop bits (default I).

HANDSHAKING NONE or RTSCTS (default NONE).

Table 24: C-SPY serial communication options

For trouble-shooting purposes, there is a possibility to log all characters sent between
C-SPY and the ROM-monitor to a file. If you check the Log communication option,
the file cspycomm. 1og will be created in the current working directory.

ROM monitor

8051 IAR Embedded Workbench™
134 User Guide

The ROM-monitor page contains all the options specific to the ROM-monitor. The
options are only available when the ROM-monitor driver has been selected on the
Setup option page. See also Part 5: C-SPY for the 8051 ROM-monitor.

~Code

™ Suppress Load

¥ Fast Dowrload

r— Target Congistency Check ——
' None
" Verify Boundaries
© Verify all

Figure 86: C-SPY ROM-monitor options

C-SPY options __4

CODE

C-SPY uses a special fast download mode that runs with very little protocol overhead.
The ROM-monitor must be fast enough to handle the incoming stream using full error
checking on the memory or it will fail.

If fast download fails, a warning message is given by C-SPY. The download will then
restart using a slower—but safer—communication protocol.

Suppress load

This option disables the downloading of code which can be time-consuming, but
creates C-SPY tables internally. This command is useful if you need to exit C-SPY for
a while and continue without loading code. The implicit RESET performed by C-SPY
at startup is not disabled though.

Fast download

This option enables fast downloading of user code. This option is checked by default,
which means that fast downloading is enabled. If you uncheck it, downloading will
take more time since the error-free protocol is used. However, this should only be
necessary if the ROM-monitor is not fast enough to process the data stream, or due to
an insufficiently shielded communication cable.

TARGET CONSISTENCY CHECK

None

This option, which is the default, disables all target consistency checking.

Verify boundaries

This option verifies that the memory on the ADB is writable and mapped in a
consistent way. A warning message will be generated if there are any problems during
download.

Verify all

This option verifies download. Similar to the Verify boundaries option, but checks
every byte after loading to verify that the hardware (ADB) is OK.

Intel RISM

The 8051 TAR Embedded Workbench also supports the Intel RISM ROM-monitor,
which is described in a separate document supplied with the product.

Part 3. The IAR Embedded Workbench |35

Intel RISM

8051 IAR Embedded Workbench™
136 User Guide

IAR Embedded
Workbench reference

This chapter contains detailed descriptions about the windows, menus, menu
commands, and their components which are found in the IAR Embedded
Workbench.

The IAR Embedded Workbench window

The following illustration shows the different components of the IAR Embedded
Workbench window.

7 IAR Embedded Workbench - Project].pri [[OI=]
Menu bar —— File Edit View Project Tools Options Window Help
Edit bar EEEE s %% ||H@E@.535@E|@\E%Em\’?—P"OIECC
[1 ar
@1 Project!. pri =] A || 2 Messages =13
Taigets: [Debug =] || B |FindinFies | oo Outgue | =l
Project = &3 Debug Linking. . Me_sszges
window E-423 Common sources T otal number of enars: 0 __ window
[common.c Total number of wamings: 0
B
N [— | |
=[O || [=TEEE =[O]
ﬂ‘ 00000000 2f 2a 20 54 75 74 6f 72 60 61 6c 20 31 |4
. /% Global call counter 4/ 00000010 46 69 62 6f 6e 61 63 63 69 20 6e 75 6d . .
Editor ——— || int call_count; 00000020 73 Od Oa 20 2a 20 20 Od Oa 20 2a 20 43 Binary Editor
window 00000030 72 69 67 68 74 3a 20 31 39 39 38 20 43 _|||— window
/% Get and print mext Fibonacci number. 00000040 53 79 73 74 65 6d 73 2e 20 41 6 e 20
void do foreground process(void) 00000050 68 74 73 20 72 65 73 65 72 76 65 64 2=
(00000060 20 2a Od Da 20 2a 20 41 72 63 68 63 76
unsigned int fih; 00000070 20 20 20 24 52 65 76 69 73 69 6f e 3a
next_counter () ; 00000080 31 20 24 Od Oa 20 2a Od Oa 20 2a 2f 0d
fih = get fik{ call count); 00000090 23 69 6= 63 6z 75 64 65 20 22 74 75 74
put_fib(fib }; 000000a0 68 22 Od Oa Od Oa Od Oa 00 2f 2a 20 47
} ||| 000000b0 61 6e 20 63 61 6z 6 20 63 6F 75 6e T4 ¥
ENH] H |l J 0
Status bar — Ready [| oM

Figure 87: IAR Embedded Workbench window

These components are explained in greater detail in the following sections.

Part 3. The IAR Embedded Workbench 137

The IAR Embedded Workbench window

8051 IAR Embedded Workbench™
138 User Guide

MENU BAR

Gives access to the JAR Embedded Workbench menus.

Menu Description

File The File menu provides commands for opening source and project
files, saving and printing, and exiting from the IAR Embedded
Workbench.

Edit The Edit menu provides commands for editing and searching in Editor
windows.

View The commands on the View menu allow you to change the

information displayed in the IAR Embedded Workbench window.

Project The Project menu provides commands for adding files to a project,
creating groups, and running the IAR tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add
tools for use with the IAR Embedded Workbench.

Options The Options menu allows you to customize the IAR Embedded
Workbench to your requirements.

Window The commands on the Window menu allow you to manipulate the
IAR Embedded Workbench windows and change their arrangements
on the screen.

Help The commands on the Help menu provide help about the IAR
Embedded Workbench.

Table 25: IAR Embedded Workbench menu bar

The menus are described in greater detail on the following pages.

TOOLBARS
The IAR Embedded Workbench window contains two toolbars:

o The edit bar.
e The project bar.

The edit bar provides buttons for the most useful commands on the [AR Embedded
Workbench menus, and a text box for entering a string to do a toolbar search.

The project bar provides buttons for the build and debug options on the Project menu.

You can move either toolbar to a different position in the IAR Embedded Workbench
window, or convert it to a floating palette, by dragging it with the mouse.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available the corresponding toolbar button will be grayed out,
and you will not be able to select it.

IAR Embedded Workbench reference __¢

Edit bar

The following illustration shows the menu commands corresponding to each of the
edit bar buttons:

D & % BB o | jl%%“@.\

Open Print Copy Undo Toolbar search text box Find Goto

New Save Cut Paste Redo Toolbar Replace
search

Figure 88: IAR Embedded Workbench edit bar

Toolbar search

To search for text in the frontmost Editor window enter the text in the Toolbar search
text box, and press Enter or click the Toolbar search button.

7 1AR Embedded Workbench - [common.h] [_ O] =]
File Edit View Project Toolz Options Window Help |8 ﬂ

D@ W& |5 B B|o o i R
DR R oRBEM @)

#define MAX FIBONACCI 10

void init_fibonacci(weid };

unsigned int get_fibonacci(char index };
void put_value(unsigned int wvalue);

NN L
Fieady Ln1.Col 25 [(WM o

Figure 89: Toolbar search

Alternatively, you can select a string you have previously searched for from the
drop-down list box.

You can choose whether or not the edit bar is displayed using the Edit Bar command
on the View menu.

Part 3. The IAR Embedded Workbench 139

The IAR Embedded Workbench window

Project bar

The following illustration shows the menu command corresponding to each of the
project bar buttons:

R R OBB D2
| | | | |

Make Debugger Cascade Tile Help

Compile Stop building Split Tile

Figure 90: IAR Embedded Workbench project bar

You can choose whether or not the project bar is displayed using the Project Bar
command on the View menu.

PROJECT WINDOW

The Project window shows the name of the current project and a tree representation
of the groups and files included in the project.

&1 Project1_prj M= 3
Targets: IDebug j ﬂl Pin button
R 0o

LIC
Ea Common sources
E-@ commonc
. B stdioh
! B wwalsh
‘B commonh
tutor.c

B ok

‘B commonh

Figure 91: Project window

Pressing the right mouse button in the Project window displays a pop-up menu which
gives you convenient access to several useful commands. Save As Text... allows you
to save a description of the project, including all options that you have specified.

8051 IAR Embedded Workbench™
140 User Guide

IAR Embedded Workbench reference __¢

Optiong...

[Compile Chrl+Fg

SR Make F3
Euild &1

BRI St Build) CilkSERELL LEE
Save bz Text...

Figure 92: Project window pop-up menu

Pin button

The Pin button, in the top right corner of the Project window, allows you to pin the
window to the desktop so that it is not affected by the Tile or Cascade commands on
the Window menu.

Targets

The top node in the tree shows the current target. You can change the target by
choosing a different target from the Targets drop-down list box at the top of the
Project window. Each target corresponds to a different version of your project that you
want to compile or assemble. For example, you might have a target called Debug,
which includes debugging code, and one called Release, with the debugging code
omitted.

You can expand the tree by double-clicking on the target icon, or by clicking on the
plus sign icon, to display the groups included in this target.

Groups

Groups are used for collecting together related source files. Each group may be
included in one or more targets, and a source file can be present in one or more groups.

Source files

You can expand each group by double-clicking on its icon, or by clicking on the plus
sign icon, to show the list of source files it contains.

Once a project has been successfully built any include files are displayed in the
structure below the source file that included them.

Note: The include files associated with a particular source file may depend on which
target the source file appears in, since preprocessor or directory options may affect
which include files are associated with a particular source file.

Part 3. The IAR Embedded Workbench 141

The IAR Embedded Workbench window

8051 IAR Embedded Workbench™
142 User Guide

Editing a file

To edit a source or include file, double-click its icon in the Project window tree
display.

Moving a source file between groups

You can move a source file between two groups by dragging its icon between the
group icons in the Project window tree display.

Removing items from a project

To remove an item from a project, click on it to select it, and then press Delete.
To remove a file from a project you can also use the Project Files dialog box,
displayed by choosing Files... from the Project menu.

EDITOR WINDOW

Source files are displayed in the Editor window. The IAR Embedded Workbench
editor automatically recognizes the syntax of C programs, and displays the different
components of the program in different text styles.

¥ Common.c IH[=] E3

#include <stdio.h>
#include "common.h™

static unsigned int fibonacci[MAX FIBONACCI];

/*
Initiglize tha array above with the first Fibonacci
numbers.
=
void init fibonacci(void |}
{
char i;
fibhonacei[0] 1;

fibhonaceil[1l] 1;

for [i=Z ; i<MAX FIBONACCI ; ++i)

fibonaceil[i] = fibonacci[i-1] + fibonaccil[i-Z];

}
(el | oy

Figure 93: Editor window

IAR Embedded Workbench reference __¢

The following table shows the default styles used for each component of a C program:

Item Style

Default Black plain
Keyword Black bold
Strings Blue
Preprocessor Green

Integer (dec) Red

Integer (oct) Magenta
Integer (hex) Magenta

Real Blue

C++ comment: // Dark blue italic
C comment: /¥..*/ Dark blue italic

Table 26: Editor syntax coloring

To change these styles choose Settings... from the Options menu, and then select the
Colors and Fonts page in the Settings dialog box, see Colors and Fonts, page 168.
Auto indent

The editor automatically indents a line to the same indent as the previous line, making
it easy to lay out programs in a structured way.

Matching brackets

When the cursor is next to a bracket you can automatically find the matching bracket
by choosing Match Brackets from the Edit menu.

Read-only and modification indicators

The name of the open source file is displayed in the Editor window title bar.

If a file is a read-only file, the text (Read Only) appears after the file name, for
example Common (Read Only).

When a file has been modified after it was last saved, an asterisk appears after the
window title, for example Common *.

Editor options

The IAR Embedded Workbench editor provides a number of special features, each of
which can be enabled or disabled independently in the Editor page of the Settings
dialog box. For more information see Settings..., page 164.

Part 3. The IAR Embedded Workbench 143

The IAR Embedded Workbench window

Editor key summary

Use the following keys and key combinations for moving the insertion point:

To move the insertion point Press
One character left Arrow left
One character right Arrow right

One word left

One word right

One line up

One line down

To the start of the line
To the end of the line

To the first line in the file

To the last line in the file

Ctri+Arrow left
Ctrl+Arrow right
Arrow up

Arrow down
Home

End

Ctrl+Home

Ctrl+End

Table 27: Editor keyboard commands for cursor navigation

Use the following keys and key combinations for scrolling text:

To scroll

Press

Up one line
Down one line
Up one page

Down one page

Ctrl+Arrow up
Ctrl+Arrow down
Page Up

Page Down

Table 28: Editor keyboard commands for scrolling

Use the following key combinations for selecting text:

To select

Press

The character to the left
The character to the right
One word to the left

One word to the right

To the same position on the previous line

To the same position on the next line
To the start of the line
To the end of the line

One screen up

Shift+Arrow left
Shife+Arrow right
Shift+Ctrl+Arrow left
Shife+Ctrl+Arrow right
Shife+Arrow up
Shift+Arrow down
Shift+Home

Shift+End

Shift+Page Up

Table 29: Editor keyboard commands for selecting text

8051 IAR Embedded Workbench™
144 User Guide

IAR Embedded Workbench reference __¢

To select Press

One screen down Shift+Page Down
To the beginning of the file Shift+Ctrl+Home
To the end of the file Shift+Ctrl+End

Table 29: Editor keyboard commands for selecting text (continued)

Splitting the Editor window into panes

You can split the Editor window horizontally or vertically into multiple panes, to
allow you to look at two different parts of the same source file at once, or cut and paste
text between two different parts. To split the window drag the appropriate splitter

control to the middle of the window:

|AR Embedded Workbench - [COMMON.C] W= B

File Edt “iew Project Tools Options ‘window Help = 5'5'

Ded/&|sBeo]|

Y S E

sk =

kinclude <stdio.h>
#include "common. h™

e

numbsers.,

static unsigned int fibonacci[MAX FIEONACCI];

Initialize tha array above with the first Fibomacci

i

#include <stdio.hs
#include "common. h™

S*

AT

Ready

static unsigned int fibonacci[MAX FIBONACCI];

Tnitialize tha array above with the first Fibonacoi

Splitter

ﬂ control

-

L4
Ln 1, Col1 [Now |

Figure 94: Splitting the Editor window

To revert to a single pane double-click the appropriate splitter control, or drag it back
to the end of the scroll bar. You can also split a window into panes using the Split

command on the Window menu.

STATUS BAR

Displays the status information, and the state of the modifier keys.

Part 3. The IAR Embedded Workbench 145

The IAR Embedded Workbench window

8051 IAR Embedded Workbench™
146 User Guide

As you are editing in the Editor window the status bar shows the current line and
column number containing the cursor, and the Caps Lock, Num Lock, and Overwrite
status:

ILn 8. Cal 4 CAP [MUM | OWR 4

Figure 95: Editor window status bar

You can choose whether or not the status bar is displayed using the Status Bar
command on the View menu.

MESSAGES WINDOW

The Messages window shows the output from different IAR Embedded Workbench
commands. The window is divided into multiple pages and you select the appropriate
page by clicking on the corresponding tab.

i Meszages M=l E3
Buid | Find in Files | Tool Output | 5l Pin button
Linking...
Total number of erars: 0
Total number of warnings: 0
J | ol

Figure 96: Messages window

Pressing the right mouse button in the Messages window displays a pop-up menu
which allows you to save the contents of the window as a text file.

Save Text fz... |

Figure 97: Save As... pop-up menu

To specify the level of output to the Messages window, select the Make Control page
in the Settings window. See Make Control, page 169.

Pin button

The Pin button, in the top right corner of the Messages window, allows you to pin the
window to the desktop so that it is not affected by the Tile or Cascade commands on
the Window menu.

IAR Embedded Workbench reference __¢

Build

Build shows the messages generated when building a project. Double-clicking a
message in the Build panel opens the appropriate file for editing, with the cursor at the
correct position.

Find in Files

Find in Files displays the output from the Find in Files... command on the Edit
menu. Double-clicking an entry in the panel opens the appropriate file with the cursor
positioned at the correct location.

Tool Output

Tool Output displays any messages output by user-defined tools in the Tools menu.

BINARY EDITOR WINDOW

The Binary Editor window displays and allows you to edit the contents of a binary file.
The data is displayed in hexadecimal format, with its ASCII equivalent to the right of
each line. You can edit the contents by inserting or overwriting data.

To open the Binary Editor window, choose Binary Editor... from the Tools menu.

/‘T IAR Embedded Workbench - [tutor.c] [_[O]x]
| File Edit Wiew Project Took Options Window Help = ﬂ|£|

i

DeW & a8« Fdvw

o R R Ees o

00000000 23 69 6e 63 bHo Y3 64 63 20 22 T4 75 T4 6f VI Ze #include "tutor. =
00000010 68 2ZZ 0d Oa Od Oa 69 6e 74 20 62 61 6o 6o 5F 63 h"....int call o
00000020 6f 75 6e 74 3b Od DOa Od Oa 2f Za O0d Da 20 20 20 ount; .../ %,

00000030 20 49 6Ge 63 72 65 61 73 65 Z0 T4 AB 63 Z0 Z7 A3 Increase the 'o
oonoon4o 61 6Ge Ge Sf 63 6f 75 Re T4 27 20 TR 61 J2 69 61 all count' waria
00000050 62 6c 65 Ze Od Oa Z0 20 20 20 47 65 74 20 61 6e ble... Get an

00000060 &4 20 70 72 69 fe Y4 Z0 T4 68 65 Z0 61 73 73 6f d print the asso
00000070 63 69 &1 T4 63 64 Z0 46 69 62 &f fe 61 63 63 69 ciated Fibonaccdi
00000080 20 e 75 &d 62 65 72 Ze Od Oa 2Za 2f 0Od Oa 76 6f muber...*/ . .vo
00000090 69 64 Z0 &4 6f S5f 66 6f 72 63 67 72 6f 73 6e 64 id do_foreground
000000a0 5f 70 72 6f 63 65 73 73 I8 76 6f 689 64 20 0d Oa _process(void)..
ANAANMWA Tk (A A= 20 20 78 Aa 73 AQ A7 A= GG Ad 70 A0 A2 simsdema A

a f= [i Jid|
Ready poz 00000046 NUM |OVR 2

Figure 98: Binary Editor window

Part 3. The IAR Embedded Workbench

147

File menu

File menu

The File menu provides commands for opening projects and source files, saving and
printing, and exiting from the IAR Embedded Workbench.

The menu also includes a numbered list of the most recently opened files to allow you
to open one by selecting its name from the menu.

=

n Save LCil+5
Save bz
Save Al

&k Frirt.. Cul+P
Frint Setup...

1 TutorZ.c
2 Tutorl.c
3 Common.c
4 Tutorial prj

Exit

Figure 99: File menu

NEW...

Displays the following dialog box to allow you to specify whether you want to create
a new project, or a new text file:

New B
New
= -DK
SourcesT ext

Cancel
Binary File —I
Help |

Figure 100: New dialog box

Choosing Source/Text opens a new Editor window to allow you to enter a text file.

8051 IAR Embedded Workbench™
148 User Guide

IAR Embedded Workbench reference __¢

Choosing Project displays the following dialog box to allow you to specify a name
for the project and the target CPU family:

Mew Project HE
Target CPLI Farnily:

|8051 'l
Save ir: Ia projects j gl

File name: IProiect‘I Create I
Save as ype: IProiect Filez [*.prj) j Cancel |

Figure 101: New Project dialog box

The project will then be displayed in a new Project window. By default new projects
are created with two targets, Release and Debug.

Selecting Binary File opens the Binary Editor window, allowing you to enter binary
data:

= BinaryDatal M=l E3
gooooooo
ooooooio
oooooozo
oooooo3n
oooooo4n
ooooooso
ooooooen
oooooovo
oooooosn
oooooo9o
00oo0o=0
000000ko
0oooooc=0
ooooooda
0oooooen
gooooofo

Figure 102: Binary Editor window

Note: The Binary Editor starts in overwrite mode.

Part 3. The IAR Embedded Workbench 149

File menu

8051 IAR Embedded Workbench™
150 User Guide

OPEN...

Displays a standard Open dialog box to allow you to select a text or project file to
open. Opening a new project file automatically saves and closes any currently open
project.

CLOSE

Closes the active window.

You will be warned if a text document has changed since it was last saved, and given
the opportunity to save it before closing. Projects are saved automatically.

SAVE

Saves the current text or project document.

SAVE AS...

Displays the standard Save As dialog box to allow you to save the active document
with a different name.

SAVE ALL

Saves all open text documents.

PRINT...

Displays the standard Print dialog box to allow you to print a text document.

PRINT SETUP...

Displays the standard Print Setup dialog box to allow you to set up the printer before
printing.

EXIT

Exits from the IAR Embedded Workbench. You will be asked whether to save any
changes to text windows before closing them. Changes to the project are saved
automatically.

IAR Embedded Workbench reference __¢

Edit menu

The Edit menu provides commands for editing and searching in Editor windows.

3 [do (1
G| Heds [Str
& Cut Chiked
LCopy Chil+C
Paste Chil+
¥, Find..
$_3_ Feplace...

Find in Files...

Match Brackets Cril+hd

Figure 103: Edit menu

UNDO

Undoes the last edit made to the current Editor window.

REDO
Redoes the last Undo in the current Editor window.

You can undo and redo an unlimited number of edits independently in each Editor
window.

CUT, COPY, PASTE

Provide the standard Windows functions for editing text within Editor windows and
dialog boxes.

FIND...

Displays the following dialog box to allow you to search for text within the current
Editor window:

Find

Find'what. [i++

™ Matchwhole Word Only - Direction——— " £apg) |
™ Match Case © Up & Down

Figure 104: Find dialog box

Part 3. The IAR Embedded Workbench

151

Edit menu

8051 IAR Embedded Workbench™
152 User Guide

Enter the text to search for in the Find What text box.

Select Match Whole Word Only to find the specified text only if it occurs as a
separate word. Otherwise int will also find print, sprintf etc.

Select Match Case to find only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Select Up or Down to specify the direction of the search.

Choose Find Next to find the next occurrence of the text you have specified.

REPLACE...

Allows you to search for a specified string and replace each occurrence with another
string.

Replace [%]

Find *hat: Iround

Beplace

Fieplace "with: Itrunc:

Fieplace Al |
Cancel |

™ Match whole Waord Only
™ Match Case

Figure 105: Replace dialog box

Enter the text to replace each found occurrence in the Replace With box. The other
options are identical to those for Find....

Choose Find Next to find the next occurrence, and Replace to replace it with the
specified text. Alternatively choose Replace All to replace all occurrences in the
current Editor window.

IAR Embedded Workbench reference __¢

FIND IN FILES...

Allows you to search for a specified string in multiple text files. The following dialog
box allows you to specify the criteria for the search:

Find in Files [7]

Search String: Eind

Ipnnt j Cancel

[~ Match Case ™ Match Whale wiord

Look jn: I 29 new_tut j @I gl
| test Diwol.c exmplB.c tutor.c
|22 temtfles exmpll.c FIB.C TuterZ.c
@ COMMON.C @ exmpl2.c intdemo. ¢ Tutor3 o
@ demo.c exmpl3.c

@ dema_twa.c exmpkd.c) timer.c

@ demal.c @ exmpli.c timerOmz.c

4] | |
File name: I"CDMMDN.E""tutDr c"

Files of type: IE/E++ Source Files [*.c.” cpp:”.cc) j

Selected Files:

CABRNEW 2348091 \news_tut\COMMON.C
C:AARMEW 2348051 \new_tuthtutor.c

Remove All

Figure 106: Find in Files dialog box

Specify the string you want to search for in the Search String text box, or select a
string you have previously searched for from the drop-down list box.

Select Match Whole Word or Match Case to restrict the search to the occurrences
that match as a whole word or match exactly in case, respectively.

Select each file you want to search in the File Name list, and choose Add to add it to
the Selected Files list.

You can add all the files in the File Name list by choosing Add All, or you can select
multiple files using the Shift and Ctrl keys and choose Add to add the files you have
selected. Likewise you can remove files from the Selected Files list using the Remove
and Remove All buttons.

Part 3. The IAR Embedded Workbench 153

Edit menu

8051 IAR Embedded Workbench™
154 User Guide

When you have selected the files you want to search choose Find to proceed with the
search. All the matching occurrences are listed in the Messages window. You can then
very simply edit each occurrence by double-clicking it:

/E' IAR Embedded Workbench - [Messages] == E3
@Eile Edit Wiew Project Tool: Options ‘Window Help _|ﬁ||1|
A S

DeE|&z]s & &s o |
ey (Rl e e me]

Buld Findin Files | Tool Qutput | 'l
Path | Line | Shing
CAARNEW 2345805 vnew_tut\COMMOM.C iz} Frint the given number to the standard output

CAARNEW 2358051 vnew_tuthtutor.c 7 Get and print the associated Fibonacci number.
CAARNEW 2358051 vnew_tuthtutor.c 20 Frintz the Fibonacci numbers.
1 | 3|

Figure 107: Messages window displaying found strings

Double-clicking an item opens the corresponding file in an Editor window with the
cursor positioned at the start of the line containing the specified text:

£ 1AR Embedded Workbench - [tutor.c] H[=1 E3

File Edit “iew Project Toolz Options Window Help ;Iilll
w2 = ER T R EIR A-=]
ey (Rloe e o2

int call count; ﬂ
S
Increase the 'call count' wariable.
A Get and print the asscociated Fibonacci number.
=
void do_foreground process(void) -
o) of

Figure 108: Editor window displaying found string

MATCH BRACKETS

If the cursor is positioned next to a bracket this command moves the cursor to the
matching bracket, or beeps if there is no matching bracket.

IAR Embedded Workbench reference __¢

View menu

The commands on the View menu allow you to change the information displayed in
the IAR Embedded Workbench window.

|w EditBar
|7 Froject Bar

Statuz Bar

Goto Line... Chil+G

Figure 109: View menu

EDIT BAR
Toggles the edit bar on and off.

PROJECT BAR
Toggles the project bar on and off.

STATUS BAR

Toggles the status bar on and off.

GOTO LINE...

Displays the following dialog box to allow you to move the cursor to a specified line
and column in the current Editor window:

Line: Calumn:

(I
Cancel |

Figure 110: Goto Line dialog box

Part 3. The IAR Embedded Workbench |55

Project menu

Project menu
The Project menu provides commands for adding files to a project, creating groups,
specifying project options, and running the IAR Systems development tools on the

current project.

Files...
Mew Group...
Targets...

Optiong...

% Compile Chil+F
B3 Make Fg
Link

Euild &1

sB

BRI St Build) CilkSERELL LEE

Librarian

@ Debugger

Figure 111: Project menu

FILES...

Displays the following dialog box to allow you to edit the contents of the current
project:

Loak jn: Ia tutar ﬂ gl
Ia Common.c

BIEE

@ TutorZ.c
Ia Tutor3.c

File name: ITulul.c

Files of type: IE/E++ Source Files [*.c.” cpp:”.cc) j

Add to Group:

Common sources b2

Files in Group:

Add All

Add l:

Bemove

Remove &l

Dane Cancel

Figure 112: Project Files dialog box

8051 IAR Embedded Workbench™
156 User Guide

IAR Embedded Workbench reference __¢

The Add to Group drop-down list box shows all the groups included in the current
target. Select the one you want to edit, and the files currently in that group are
displayed in the Files in Group list at the bottom of the dialog box.

The upper part of the Project Files dialog box is a standard file dialog box, to allow
you to locate and select the files you want to add to each particular group.
Adding files to a group

To add files to the currently displayed group select them using the standard file
controls in the upper half of the dialog box and choose the Add button, or choose Add
All to add all the files in the File Name list box.

Removing files from a group

To remove files from the currently displayed group select them in the Files in Group
list and choose Remove, or choose Remove All to remove all the files from the group.

You can use the Project Files dialog box to make changes to several groups. Choosing
Done will then apply all the changes to the project. Alternatively, choosing Cancel
will discard all the changes and leave the project unaffected.

Source file paths

The IAR Embedded Workbench supports relative source file paths to a certain degree.

If a source file is located in the project file directory or in any subdirectory of the
project file directory, the IAR Embedded Workbench will use a path relative to the
project file when accessing the source file.

NEW GROUP...

Displays the following dialog box to allow you to create a new group:

Group Mame:
IEommon Sources k
Add to Targets: Cancel |

Figure 113: New Group dialog box

Part 3. The IAR Embedded Workbench 157

Project menu

8051 IAR Embedded Workbench™
158 User Guide

Specify the name of the group you want to create in the Group Name text box. Select
the targets to which you want to add the new group in the Add to Targets list. By
default the group is added to all targets.

TARGETS...

Displays the following dialog box to allow you to create new targets, and display or
change the groups included in each target:

Targets [%]
Targets:
ks

Release Cancel |
Mew...
Delete

Included Groups: Excluded Groups:
Common sources

Figure 114: Targets dialog box

To create a new target, select New... and enter a name for the new target.

To delete a target, select it and click Delete.

To view the groups included in a target select it in the Targets list.

The groups are shown in the Included Groups list, and you can add or remove groups
using the arrow buttons.

OPTIONS...

Displays the Options dialog box to allow you to set directory and compiler options on
the selected item in the Project window.

You can set options on the entire target, on a group of files, or on an individual file.

IAR Embedded Workbench reference __¢

Options For Target “Debug” [%]

Cateqgory:

General
|1 Target | Output Directaries I
ABOST

HLINE .
CSPY i~ Processor variant

I a5 < l

— bemory model

ITin_l,l 'l

Cancel |

Figure 115: Options dialog box

The Category list allows you to select which set of options you want to modify. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench, and will typically include the following options:

Category Description Refer to the chapter
General General options General options
1CC8051 8051 Compiler options Compiler options
A8051 8051 Assembler options Assembler options
XLINK IAR XLINK Linker™ options XLINK options
C-SPY IAR C-SPY® Debugger options C-SPY options

Table 30: Option categories in IAR Embedded Workbench

Selecting a category displays one or more pages of options for that component of the
TIAR Embedded Workbench.

For more detailed information about the tools installed, see the 8051 IAR C Compiler
Reference Guide, the 8051 IAR Assembler Reference Guide and the IAR XLINK
Linker™ and IAR XLIB Librarian™ Reference Guide.

COMPILE

Compiles or assembles the currently active file or project as appropriate.

Part 3. The IAR Embedded Workbench 159

Project menu

8051 IAR Embedded Workbench™
160 User Guide

You can compile a file or project by selecting its icon in the Project window and
choosing Compile. Alternatively, you can compile a file in the Editor window
provided it is a member of the current target.

MAKE

Brings the current target up to date by compiling, assembling, and linking only the
files that have changed since last build.

LINK

Explicitly relinks the current target.

BUILD ALL

Rebuilds and relinks all files in the current target.

STOP BUILD

Stops the current build operation.

LIBRARIAN

Starts the IAR XLIB Librarian™ to allow you to perform operations on library
modules in library files.

DEBUGGER

Starts the IAR C-SPY Debugger so that you can debug the project object file.

You can specify the version of C-SPY to run in the Debug options for the target. If
necessary a Make will be performed before running C-SPY to ensure that the project
is up to date.

IAR Embedded Workbench reference __¢

Tools menu

The Tools menu is a user-configurable menu to which you can add tools for use with
the IAR Embedded Workbench.

LConfigure Tools...

Binary Editor...

Becord Macro Alt+R
Stop Eecard Macm AlE
Elay acr Albrhd

Figure 116: Tools menu

CONFIGURE TOOLS...

Configure Tools... displays the following dialog box to allow you to specify a
user-defined tool to add to the menu:

Configure Tools
Menu Content:
Shaw Cliphoard Lok

Cancel

Add |
Remove |

Menu Text: ™ Rediect to Dutput ‘Window
IShDW Clipboard ™ Prompt for Command Line
Command:

Iclipbrd.exe Browse... |
Argument:

Initial Directary:

Figure 117: Configure Tools dialog box

Specify the text for the menu item in the Menu Text box, and the command to be run
when you select the item in the Command text box. Alternatively, choose Browse to
display a standard file dialog box to allow you to locate an executable file on disk and
add its path to the Command text box.

Specify the argument for the command in the Argument text box, or select Prompt
for Command Line to display a prompt for the command line argument when the
command is selected from the Tools menu.

Part 3. The IAR Embedded Workbench 161

Tools menu

8051 IAR Embedded Workbench™
162 User Guide

Variables can be used in the arguments, allowing you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on

the selected file.

The following argument variables can be used:

Variable Description

$CUR_DIRS Current directory

$SCUR_LINES Current line

SEW_DIRS Directory of the IAR Embedded Workbench, for example
c:\program files\iar systems\ew23

SEXE DIRS Directory for executable output

SFILE DIRS Directory of active file, no file name

$FILE_FNAMES
$FILE_PATHS
$LIST DIRS
$OBJ_DIRS
$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET DIRS

$TARGET FNAMES$

$TARGET PATHS
$TOOLKIT DIRS

File name of active file without path

Full path of active file (in Editor, Project, or Message window)
Directory for list output

Directory for object output

Project directory

Project file name without path

Full path of project file

Directory of primary output file

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example c: \program
files\iar systems\ew23\8051

Table 31: Argument variables

The Initial Directory text box allows you to specify an initial working directory for
the tool.

Select Redirect to Output Window to display any console output from the tool in the
Tools window.

Note: Tools that require user input or make special assumptions regarding the console
that they execute in, will not work if you set this option.

When you have specified the command you want to add choose Add to add it to the
Menu Content list. You can remove a command from the Tools menu by selecting it
in this list and choosing Remove.

IAR Embedded Workbench reference __¢

To confirm the changes you have made to the Tools menu and close the dialog box
choose OK.

The menu items you have specified will then be displayed in the Tools menu:

LConfigure Tools...

Show Clipboard

Binary Editor...

Becord Macro Alt+R
Stop Eecard Macm AlE
Elay acr Albrhd

Figure 118: Customized Tools menu

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to
add these to the Tools menu you need to specify an appropriate command shell in the
Command text box, and the command line command or batch file name in the
Argument text box.

The command shells are specified as follows:

System Command shell
Windows 95/98 command . com
Windows NT/2000 cmd . exe (recommended) or command . com

Table 32: Command shells

The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /cC option terminates the shell after execution, to allow the IAR Embedded
Workbench to detect when the tool has completed.

For example, to add the command Backup to the Tools menu to make a copy of the
entire project directory to a network drive, you would specify Command as
command and Argument as:

/C copy c:\project*.* F:
or

/C copy $PROJ DIRS*.* F:

Part 3. The IAR Embedded Workbench 163

Options menu

BINARY EDITOR...

Opens the Binary Editor window where you can edit a file in hexadecimal format. It
displays a standard file dialog box allowing you to select a file. For more information,
see Binary Editor window, page 147.

RECORD MACRO

Allows you to record a sequence of editor keystrokes as a macro.

STOP RECORD MACRO

Ends the recording of a macro.

PLAY MACRO

Replays the macro you have recorded.

Options menu

8051 IAR Embedded Workbench™

164 User Guide

The Settings... command on the Options menu allows you to customize the IAR
Embedded Workbench according to your own requirements.

Options
Settings...

Figure 119: Options menu (IAR Embedded Workbench)

SETTINGS...

Displays the Settings dialog box to allow you to customize the IAR Embedded
Workbench.

Select the feature you want to customize by clicking the Editor, External Editor,
Key Bindings, Colors and Fonts, or Make Control tabs.

Editor

The Editor page allows you to change the editor options:

IAR Embedded Workbench reference __¢

Settings [%]
Editar | External Editorl Key Bindingsl Calars and Fontsl Make Eontroll

Tab Size: IS V' Syritax Highlighting

Indent Size: |2 IV Auto Indent
™ Show Line Numbers

Tab Key Function: ™ Scan for Changed Files

€ Insett Tab V' Show Bookmarks

& [ndent with Spaces

I~ Enable Virtual Space

QK I Cancel | Lol Help

Figure 120: Editor settings

It provides the following options:

Option Description

Tab Size Specifies the number of character spaces corresponding to
each tab.

Indent Size Specifies the number of character spaces to be used for
indentation.

Tab Key Function Specifies how the tab key is used.

Syntax Highlighting Displays the syntax of C programs in different text styles.

Auto Indent When you insert a line, the new line will automatically have
the same indentation as the previous line.

Show Line Number Displays line numbers in the Editor window.

Scan for Changed Files The editor will check if files have been modified by some

other tool and automatically reload them. If a file has been
modified in the IAR Embedded Workbench, you will be
prompted first.

Show Bookmarks Displays compiler errors and Find in Files... search results.

Enable Virtual Space Allows the cursor to move outside the text area.

Table 33: Editor settings

For more information about the IAR Embedded Workbench Editor, see Editor
window, page 142.

External Editor

The External Editor page allows you to specify an external editor.

Part 3. The IAR Embedded Workbench |65

Options menu

8051 IAR Embedded Workbench™
166 User Guide

An external editor can be called either by passing command line parameters or by
using DDE (Windows Dynamic Data Exchange).

Settings [%]
Editor ~ External Editor | Key Bindingsl Colors and Fontsl Make Eontroll

V' Use External E ditor
Type: IEommand Line j

Editor: ID:\WINNT\Notepad.exe J

Argurnents: |$F|LE_F'ATH$

QK I Cancel | Lol |

Figure 121: Specifying external command-line editor

Selecting Type: Command Line will call the external editor by passing command
line parameters. Provide the file name and path of your external editor in the Editor
field. Then specify the command line to pass to the editor in the Arguments field.

Note: Variables can be used in arguments. See Table 31, Argument variables, page
162, for information about the argument variables that are available.

Selecting Type: DDE will call the external editor by using DDE. Provide the file
name and path of your external editor in the Editor field.

Specifty the DDE service name used by the editor in the Service field. Then specify a
sequence of command strings to send to the editor in the Command field.

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewright®:

IAR Embedded Workbench reference __¢

Settings [%]
Editor ~ External Editar | Key Bindingsl Colors and Fontsl Make Eontroll
V' Use External E ditor
Tepe: |DDE =l
E ditor: Ic:\cw32\cw32.exe J

Service: IEodewright

LCommand: |System BufE ditFile $FILE_PATHE
$FILE_PATH$ MovToline $CUR_LINES

QK I Cancel | Lol |

Figure 122: External editor DDE settings

The service name and command strings depend on the external editor that you are

using. Refer to the user documentation of your external editor to find the appropriate
settings.

Note: Variables can be used in the arguments. See Table 31, Argument variables, page
162, for more information about the argument variables that are available.

Key Bindings

The Key Bindings page displays the shortcut keys used for each of the menu options,
and allows you to change them:

Settings [%]
Editor I Esternal Editor Ky Bindings | Calars and Fontsl Make Eontroll

Command: Frezz new shortout key:

ﬂ INone Set Shortcut |

Current shortcut:
Chil+5

Remove

Remave Al
F'ri_nt Setup LI ——

— Description

Save the active document

QK I Cancel | Lol |

Figure 123: Specifying key bindings

Select the command you want to edit in the Command list. Any currently defined
shortcut keys are shown in the Current shortcut list.

Part 3. The IAR Embedded Workbench 167

Options menu

8051 IAR Embedded Workbench™

168 User Guide

To add a shortcut key to the command click in the Press new shortcut key box and
type the key combination you want to use. Then click Set Shortcut to add it to the
Current shortcut list. You will not be allowed to add it if it is already used by another
command.

To remove a shortcut key select it in the Current shortcut list and click Remove, or
click Remove All to remove all the command’s shortcut keys.

Then choose OK to use the new key bindings you have defined and the menus will be
updated to show the shortcuts you have defined.

You can set up more than one shortcut for a command, but only one will be displayed
in the menu.
Colors and Fonts

The Colors and Fonts page allows you to specify the colors and fonts used for text in
the Editor windows, and the font used for text in the other windows.

The panel shows a list of the C syntax elements you can customize in the Editor
window:

Settings [%]

Editor I External Editorl Key Bindings ~ Celors and Fonts | Make Eontroll

- Editor Window—————————————— [~ Other Windows —
fort. ||| [=1

Char Caolar | Fant... |

Preprocessor

Integer [dec] Type Style:

Integer [oct] lﬁ

Integer [hex) LI Marmial

Zammple

QK I Cancel | Lol |

Figure 124: Specifying Editor window colors and fonts

To specify the style used for each element of C syntax in the Editor window, select the
item you want to define from the Editor Window list. The current setting is shown in
the Sample box below the list box.

You can choose a text color by clicking Color and a font by clicking Font.... You can
also choose the type style from the Type Style drop-down list.

Then choose OK to use the new styles you have defined, or Cancel to revert to the
previous styles.

Make Control

IAR Embedded Workbench reference __¢

The Make Control page allows you to set options for Make and Build:

Settings

E ditor I External Editorl Key Bindingsl Colors and Fonts Make Control |

Meszage Filkering Level:

Stop Build Operation Or: INever vl
Save Editar Windows On Build: IAIways vl

QK I Cancel | Lol |

Figure 125: Make Control settings

The following table gives the options, and the alternative settings for each option:

Option

Setting

Message Filtering Level

Stop Build Operation On

Save Editor Windows On Build

All: Show all messages. Include compiler and linker information.

Messages: Show messages, warnings, and errors.
Warnings: Show warnings and errors.
Errors: Show errors only.

Never: Do not Stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Table 34: Make Control settings

Part 3. The IAR Embedded Workbench

169

Window menu

Window menu

8051 IAR Embedded Workbench™
170 User Guide

The commands on the Window menu allow you to manipulate the Workbench
windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen,
and allows you to activate one by selecting it.

Mew Window
Lascade

Tile Horizontal

H M6

Tile Wertical
Armange lcong
Cloze All

Split

Meszage Window

1 Tutorial prj
2 Tutorl.c

Figure 126: Window menu

NEW WINDOW

Opens a new window for the current file.

CASCADE, TILE HORIZONTAL, TILE VERTICAL

Provide the standard Windows functions for arranging the IAR Embedded
Workbench windows on the screen.

ARRANGE ICONS

Arranges minimized window icons neatly at the bottom of the IAR Embedded
Workbench window.

CLOSE ALL

Closes all open windows.

SPLIT

Allows you to split an Editor window horizontally into two panes to allow you to see
two parts of a file simultaneously.

IAR Embedded Workbench reference __¢

MESSAGE WINDOW

Opens the Messages window that displays messages and text output from the IAR
Embedded Workbench commands.

Help menu
Provides help about the AR Embedded Workbench.

Lontents
‘? Search for Help on...
How to Use Help
Embedded ‘Workbench Guide
C Compiler Reference Guide

Aszzembler Reference Guide
C Library Reference Guide
#LIME and #LIE Reference Guide

14F on the Web L4

About....

Figure 127: Help menu

CONTENTS
Displays the Contents page for help about the IAR Embedded Workbench.

SEARCH FOR HELP ON...

Allows you to search for help on a keyword.

HOW TO USE HELP
Displays help about using help.

EMBEDDED WORKBENCH GUIDE

Provides access to an online version of this user guide, available in Acrobat® Reader
format.

C COMPILER REFERENCE GUIDE

Provides access to an online version of the 8051 IAR C Compiler Reference Guide,
available in Acrobat® Reader format.

Part 3. The IAR Embedded Workbench |71

Help menu

8051 IAR Embedded Workbench™
172 User Guide

ASSEMBLER GUIDE

Provides access to an online version of the 8051 IAR Assembler Reference Guide,
available in Acrobat® Reader format.

XLINK AND XLIB GUIDE

Provides access to a PDF version of the JAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide, available only in Acrobat® Reader format.

C LIBRARY REFERENCE GUIDE

Provides access to the C library documentation, which is available in Acrobat® Reader
format.

IAR ON THE WEB

Allows you to browse the home page, news page, and FAQ (frequently asked
questions) page of the IAR website, and to contact IAR Technical Support.
ABOUT...

Displays the version numbers of the user interface and of the 8051 IAR Embedded
Workbench.

!I!I!I!I!IW[!I

Part 4: The C-SPY
simulator

This part of the 8051 IAR Embedded Workbench™ User Guide contains
the following chapters:

e Introduction to C-SPY

e C-SPY expressions

e C-SPY macros

e Device description file

o C-SPY reference

e C-SPY command line options.

173

174

Introduction to C-SPY

The IAR C-SPY Debugger® is a powerful interactive debugger for embedded
applications. This chapter gives an overview of the functions for debugging
projects provided in this tool.

For information about the C-SPY options available in the IAR Embedded
Workbench, see the chapter C-SPY options in Part 3: The IAR Embedded
Workbench. For information about the available command line options, see the
C-SPY command line options chapter.

Debugging projects

DISASSEMBLY AND SOURCE MODE DEBUGGING

C-SPY allows you to switch between C or assembler source and disassembly mode
debugging as required.

Wherever source code is available, the source mode debugging displays the source
program, and you can execute the program one statement at a time while monitoring
the values of variables and data structures. Source mode debugging provides the
quickest and easiest way of developing your application, without having to worry
about how the compiler or assembler has implemented the code.

Disassembly mode debugging displays a mnemonic assembler listing of your program
based on actual memory contents rather than source code, and lets you execute the
program exactly one assembler instruction at a time. Disassembly mode debugging
lets you focus on the critical sections of your application, and provides you with
precise control over the simulated hardware.

During both source and disassembly mode debugging you can display the registers
and memory, and change their contents.

If the file that you are debugging changes on the disk, you will be prompted to reload
the file.
Source window

As you debug an application the source or disassembly source is displayed in a Source
window, with the next source or disassembly statement to be executed highlighted.

You can navigate quickly to a particular file or function in the source code by selecting
its name from the file or function box at the top of the Source window.

Part 4. The C-SPY simulator

175

Debugging projects

8051 IAR Embedded Workbench™
176 User Guide

For convenience the Source window uses colors and text styles to identify key
elements of the syntax. For example, by default C keywords are displayed in bold and
constants in red. However, the colors and font styles are fully configurable, so that you
can change them to whatever you find most convenient. See Window Settings, page
239 for additional information.

PROGRAM EXECUTION
C-SPY provides a flexible range of options for executing the target program.

The Go command continues execution from the current position until a breakpoint or
program exit is reached. You can also execute up to a selected point in the program,
without having to set a breakpoint, with the Go to Cursor command. Alternatively,
you can execute out of a C function with the Go Out command.

Program execution is indicated by a flashing Stop command button in the debug
toolbar. While the program is executing you may stop it either by clicking on the Stop
button or by pressing the Escape key. You may also use any command accelerator
associated with the Stop command.

Single stepping

The Step and Step Into commands allow you to execute the program a statement or
instruction at a time. Step Into continues stepping inside function or subroutine calls
whereas Step executes each function call in a single step.

The Autostep command steps repeatedly, and the Multi Step command lets you
execute a specified number of steps before stopping.

Breakpoints

You can set breakpoints in the program being debugged using the Toggle Breakpoint
command. Statements or instructions at which breakpoints are set are shown
highlighted in the Source window listing.

Alternatively the Edit Breakpoints command allows you to define and alter complex
breakpoints, including break conditions. You can optionally specify a macro which
will perform certain actions when the breakpoint is encountered.

For detailed information, see Edit Breakpoints..., page 230.

Introduction to C-SPY __,4

Interrupt simulation

C-SPY includes an interrupt system allowing you to optionally simulate the execution
of interrupts when debugging with C-SPY. The interrupt system can be turned on or
off as required either with a system macro or by using the Interrupt dialog box and
loading it into the simulator. The interrupt system is activated by default, but if it is
not required, it can be turned off to speed up instruction set simulation.

For the latest information about how to set up the interrupt simulation, see the
cs8051. htm file.

The interrupt system has the following features:

e Interrupts, single or periodical, can be set up so that they are generated based on
the cycle counter value.

o C-SPY provides interrupt support suitable for the 8051 processor variants.

e By combining an interrupt with a data breakpoint, you can simulate peripheral
devices, such as a serial port.

Note: The C-SPY interrupt system uses the cycle counter as a clock to determine
when an interrupt will be raised in the simulator. If you change the system cycle
counter, it affects your interrupt orders. When changing the cycle counter, you have
two alternatives:

1 Save the old cycle counter value in a macro variable to reconstruct your interrupt
orders and cancel the current waiting interrupt orders. This allows you to
reconstruct the situation as the old cycle counter is saved.

2 Change the cycle counter without saving the old value. Your previously ordered
interrupts are not modified according to the new cycle counter value—they remain
as before. This approach does not allow you to reconstruct the situation.

Performing a C-SPY reset will reset the cycle counter. If there are repeatable orders,
they remain but with an adjusted event time which is their repeat value. All other
interrupt orders are cleared.

Example

The cycle counter is 123456.

A repeatable order that raises an interrupt every 4000 cycles is ordered.

A single order is about to raise an order at 123500 cycles.

After a system reset the repeatable interrupt order remains and will raise an interrupt
every 4000 cycles with the first interrupt at 4000 cycles. The single order is removed.

Part 4. The C-SPY simulator 177

Debugging projects

8051 IAR Embedded Workbench™
178 User Guide

Interrupts are ordered by giving a vector. You should be familiar with the 8xC51
derivatives interrupt system. To let the simulator generate an interrupt, specify the
interrupt vector. This is done with the vector name defined in the Device Description
file.

C function information

C-SPY keeps track of the active functions and their local variables, and a list of the
function calls can be displayed in the Calls window. You can also trace functions
during program execution using the Trace command and tracing information is
displayed in the Report window. For additional information, see Trace, page 238.

You can use the Quick Watch command to examine the value of any local, global, or
static variable that is in scope. You can monitor the value of a macro, variable, or
expression in the Watch window as you step through the program.

Viewing and editing memory and registers

You can display the contents of the processor registers in the Register window, and
specified areas of memory in the Memory window.

The Register window allows you to edit the content of any register, and the register is
automatically updated to reflect the change.

The Memory window can display the contents of memory in groups of 8, 16, or 32
bits, and you can double-click any memory address to edit the contents of memory at
that address.

Terminal /O

C-SPY can simulate terminal input and output using the Terminal I/O window.

Macro language

C-SPY includes a powerful internal macro language, to allow you to define complex
sets of actions to be performed; for example, calculating the stack depth or when
breakpoints are encountered. The macro language includes conditional and loop
constructs, and you can use variables and expressions.

Tutorial 3, page 50, shows how C-SPY macros can be used.

Profiling

The profiling tool provides you with timing information on your application. This is
useful for identifying the most time-consuming parts of the code and optimizing your
program.

Introduction to C-SPY __,4

Code coverage

The code coverage tool can be used for identifying unused code in an application, as
well as providing you with code coverage status at different stages during execution.

When displaying source at assembler level, every assembler instruction that has been
executed is marked with an * (asterisk). This information is updated when
disassembled source is read into the C-SPY source buffer. This means that an
assemble statement may not be marked with * immediately after it has been executed.

Part 4. The C-SPY simulator 179

Debugging projects

8051 IAR Embedded Workbench™
180 User Guide

C-SPY expressions

In addition to the C symbols defined in your program, C-SPY® allows you to
define C-SPY variables and macros and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY
expressions and can be used in the Watch and QuickWatch windows and in
C-SPY macros.

This chapter defines the syntax of the expressions and variables used in C-SPY
macros and gives examples about how to use macros in debugging.

Expression syntax

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

e C symbols
o Assembler symbols—that is, CPU register names and assembler labels
o C-SPY variables and C-SPY macros; see the chapter C-SPY macros.

C SYMBOLS

C symbols can be referenced by their names or using an extended C-SPY format
which allows you to reference symbols outside the current scope.

Expression What it means

i C variable 1 in the current scope or C-SPY variable i.
\1i C variable i in the current function.

\func\i C variable i in the function func.

mod\ func\i C variable i in the function func in the module mod.

Table 35: C-SPY C symbols expressions

Note: When using the module name to reference a C symbol, the module name must
be a valid C identifier or it must be encapsulated in backquotes * (ASCII character
0x60), for example:

nice module name\func\i
‘very strange () module + - name‘\func\i

In case of a name conflict, C-SPY variables have a higher precedence than
C variables. Extended C-SPY format can be used for solving such ambiguities.

Examples of valid C-SPY expressions are:

i = my var * my mac() + #asm label
another mac(2, my var)
mac_var = another modulelanother func\my_var

Part 4. The C-SPY simulator 181

Expression syntax

8051 IAR Embedded Workbench™
182 User Guide

ASSEMBLER SYMBOLS

Assembler symbols can be used in C expressions if they are preceded by #. These
symbols can be assembler labels or CPU register names.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #main Sets myptr to point to label main.

Table 36: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label,
hardware registers have a higher precedence. To refer to an assembler label in such a
case, you must encapsulate the label in backquotes * (ASCII character 0x60). For
example:

Example What it does
#pc Refers to program counter.
#'pc Refers to assembler label pc.

Table 37: Handling name conflicts between h/w registers and assembler labels

FORMAT SPECIFIERS

The following format specifiers can be used in the Display Format drop-down list in
the Symbol Properties dialog box (see Inspecting expression properties, page 219)
and in a macro message statement:

Macro message specifier Description

%$b Binary format

%sc Char format

%d Signed decimal format

Yot Float format [-]ddd.ddd
%0 Unsigned octal format

9op Pointer format

%s String format

Jou Unsigned decimal format

$X Unsigned hexadecimal format
$X Unsigned hexadecimal format (capital letters)

Table 38: C-SPY expressions format specifiers

The precision for the default float format is seven or 15 decimals for four and eight
byte floats.

C-SPY expressions __o

Strings with format % s are printed in quotation marks. If no NULL character (* \0’) is
found within 1000 characters, the printout will stop without a final quotation mark.

Part 4. The C-SPY simulator 183

Expression syntax

8051 IAR Embedded Workbench™
184 User Guide

C-SPY macros

The IAR C-SPY® Debugger provides comprehensive macro capabilities
allowing you to automate the debugging process and to simulate peripheral
devices. Macros can be used in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks.

This chapter deals with how to use and set up C-SPY macros. At the end of
the chapter, there is comprehensive reference information for each built-in
system macro provided with C-SPY. Tutorial 3 in the Compiler tutorials chapter
gives an example of how the C-SPY macros can be used.

Using C-SPY macros

C-SPY allows you to define both macro variables (global or local) and macro
functions. In addition, several predefined system macro variables and macro functions
are provided; they return information about the system status, and perform complex
tasks such as opening and closing files, and file I/O operations. System macro names
start with double underscore and are reserved names.

Note: To view the available macros, select Load macro... from the Options menu.
The available macros will be displayed in the Macro Files dialog box, under
Registered Macros. You can select whether to view all macros, the predefined
system macros, or the user-defined macros; see also Load Macro..., page 243.

Defining macros

To define a macro variable or macro function, you should first create a text file
containing its definition. You can use any suitable text editor, such as the IAR
Embedded Workbench™ Editor. Then you should register the macro file. There are
several ways to do this:

e You can register a macro by choosing Load Macro... from the Options menu.
For more information, see Load Macro..., page 243.

o In the IAR Embedded Workbench, you can specify which setup file to use with a
project. See Setting C-SPY options, page 131, for more information.

e When starting C-SPY with the Windows Run... command, you can use the - £
command line option to specify the setup file. See C-SPY command line options,
page 247, for more information.

@ Macros can also be registered using the system macro __ registerMacroFile.
This macro allows you to register macro files from other macros. This means that
you can dynamically select which macro files to register, depending on the
run-time conditions. For more information, see __registerMacroFile, page 201.

Part 4. The C-SPY simulator

185

Using C-SPY macros

8051 IAR Embedded Workbench™
186 User Guide

Executing C-SPY macros

You can assign values to a macro variable, or execute a macro function, using the
Quick Watch... command on the Control menu, or from within another C-SPY
macro including setup macros. For details of the setup macros, see C-SPY setup
macros, page 189.

A macro can also be executed if it is associated with a breakpoint that is activated.

MACRO VARIABLES

A macro variable is a variable defined and allocated outside the user program space.
It can then be used in a C-SPY expression.

The command to define one or more macro variables has the following form:
var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and retains its value
and type through the whole debugging session. A macro variable defined within a
macro body is created when its definition is executed and deallocated on return from
the macro.

By default a macro variable is initialized to signed integer 0. When a C-SPY variable
is assigned a value in an expression its type is also converted to the type of the
operand. For example:

Expression What it means
myvar = 3.5 myvar is now type £loat, value 3. 5.
myvar = (int¥*)i myvar is now type pointer to int, and the value is the same as i.

Table 39: Examples of C-SPY macro variables

A complex type (struct or union) cannot be assigned to a macro variable but a
macro variable can contain an address to such an object.

MACRO FUNCTIONS

C-SPY macro functions consist of a series of C-SPY variable definitions and macro
statements which are executed when the macro is called. An unlimited number of
parameters can be passed to a macro, and macros can return a value on exit.

C-SPY macros __o

A C-SPY macro has the following form:

macroName (parameterList)

{

macroBody

}

where parameterList is a list of macro formal names separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is not performed on the values passed to the macro parameters. When
an array, struct, or union is passed, only its address is passed.
MACRO STATEMENTS

The following C-SPY macro statements are accepted:

Expressions

expression;

Conditional statements

if (expression)
statement

if (expression)
statement
else
statement

Loop statements

for (init expression; cond expression; after expression)
statement

while (expression)
statement

do

statement
while (expression) ;
Return statements
return;

return (expression) ;

If the return value is not explicitly set by default, signed int 0 is returned.

Part 4. The C-SPY simulator 187

Using C-SPY macros

8051 IAR Embedded Workbench™
188 User Guide

Blocks
{

statementl
statement2

statementN

}

In the above example, expression means a C-SPY expression; statements are
expected to behave in the same way as corresponding C statements would do.
Printing messages

The message statement allows you to print messages while executing a macro. Its
definition is as follows:

message argList;

where argList is a list of C-SPY expressions or strings separated by commas. The
value of expression arguments or strings are printed to the Report window.

It is possible to override the default display format of an element in argList by
suffixing it with a : followed by a format specifier, for example:

message intl:%X, int2;

This will print int1 in hexadecimal format and int2 in default format (decimal for
an integer type).

Displaying contents of complex objects

To display the contents of complex objects (structures, unions and arrays) when
executing a quick expression, watch expression or message macro command, the
expression should be prefixed with the @ character.

Example

Thelne%age"My structure: ", my struct, "\n";

will print the address of the structure my struct while

message "My structure: ", @my struct, "\n";

will print a list of all structure members and their values.

C-SPY macros __o

Resume statement

The resume statement allows you to resume execution of a program after a
breakpoint is encountered. For example, specifying:

resume;

in a breakpoint macro will resume execution after the breakpoint.

Error handling in macros

Two types of errors can occur while a macro is being executed:

Stop errors, which stop execution. Stop errors are caused by mismatched macro
parameter types, missing parameters, illegal addresses when setting a breakpoint
or map, or illegal interrupt vectors when setting up an interrupt. They are handled
by the C-SPY error handler, and execution stops with an appropriate error
message.

Minor errors, which cause the macro to return an error number. Minor errors are
caused by actions such as failing to open a file, or cancelling a non-existing
interrupt. You can test for minor errors by checking the value returned by the
system macro; zero indicates successful execution, any other value is a C-SPY
error number.

C-SPY setup macros

The setup macros are reserved macro names that will be called by C-SPY at specific
stages during execution. To use them you should create and register a macro with the
name specified in the following table:

Macro Description

execUserExit () Called each time the program is about to exit.

Implement this macro to save status data, etc.

execUserInit () Called before communication with the target system is established.

If you have not already chosen the processor option using the IAR
Embedded Workbench or the C-SPY command line option, you
can use this macro. It can also be used for performing other
initialization, for example, port initialization for the emulator and
ROM-monitor variants. Notice that since there is still no code
loaded, you cannot, for example, set a breakpoint from this macro.

execUserPreload() Called after communication with the target system is established

but before downloading the target program.
Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

Table 40: C-SPY setup macros

Part 4. The C-SPY simulator 189

Descriptions of system macros

Macro Description

execUserReset () Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserSetup () Called once after the target program is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

execUserTrace () Called each time C-SPY issues a trace printout (when the Trace
command is active).

Table 40: C-SPY setup macros (continued)

Descriptions of system macros

__autoStep

__calls

8051 IAR Embedded Workbench™
190 User Guide

The following sections provide reference information for each of the C-SPY system
macros.

__autoStep (delay)

Parameters

delay Delay between steps in tenth of a second (integer)

Return value

int 0

Description

Steps continuously, with selectable time delay, until a breakpoint or the program exit
is detected. For additional information, see Autostep..., page 228.

Example

__autoStep(12);

__calls(mode)

Parameters

mode Predefined string, one of:
"ON" turns calls mode on

"OFF" turns calls mode off

C-SPY macros __o

Return value

int 0

Description

Toggles calls mode on or off. For additional information, see Calls window, page 217.

Example
__calls("ON") ;
__cancelAllInterrupts _ cancelAllInterrupts/()

Return value

int 0

Description

Cancels all ordered interrupts. For additional information, see Interrupt..., page 236.

Example

__cancelAllInterrupts() ;

__cancellInterrupt _ cancellnterrupt (interrupt id)
Parameters
interrupt id The value returned by the corresponding

__orderInterrupt macro call (unsigned long)

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 41: __cancellnterrupt return values

Description

Cancels an interrupt. For additional information, see Interrupt..., page 236.

Part 4. The C-SPY simulator 191

Descriptions of system macros

Example

__cancellInterrupt (interrupt id)

__clearAllBreaks _ _clearAllBreaks()
Return value

int 0

Description

Clears all user-defined breakpoints. For additional information, see Edit
Breakpoints..., page 230.

Example

__clearAllBreaks();

__clearAllMaps _ _clearAllMaps()

Return value

int 0

Description

Clears all user-defined memory mappings. For additional information, see Memory
Map..., page 233.

Example

__clearAllMaps () ;

__clearBreak _ clearBreak(address, segment, access)
Parameters
address The breakpoint location (string)
segment The memory segment name (string), one of: CODE, IDATA,

XDATA, or SFR

8051 IAR Embedded Workbench™
192 User Guide

C-SPY macros __o

access The memory access type (string); concatenation of any of “R”, “W”,
“p 4T op MO

R Read
W Write
F Fetch
I Read immediate
0 Write immediate
Return value
Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 42: __clearBreak return values

Description

Clears a given breakpoint. For additional information, see Edit Breakpoints..., page
230.

Example

The following example shows how a line in the source file is specified as address:
__clearBreak(".demo\\12", "CODE", "F");

The following example shows how address is specified in hexadecimal notation:

__clearBreak ("0x1300", "CODE", "F");

__clearMap _ clearMap (address, segment)

Parameters

address The address (integer)

segment The memory segment name (string), one of: CODE, IDATA,
XDATA, or SFR

Part 4. The C-SPY simulator 193

Descriptions of system macros

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 43: __clearMap return values

Description

Clears a given memory mapping. For additional information, see Memory Map...,
page 233.

Example

__clearMap (1234, "CODE") ;

___closeFile _ _closeFile(filehandle)
Parameters
filehandle The macro variable used as filehandle by the __openFile macro

Return value

int 0.

Description

Closes a file previously opened by __openFile.

Example

__closeFile(filehandle) ;

__disablelInterrupts _ disableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 44: __disablelnterrupts return values

8051 IAR Embedded Workbench™
194 User Guide

C-SPY macros __o

Description

Disables the generation of interrupts. For additional information, see Interrupt..., page
236.

Example

_ _disableInterrupts() ;

__enablelnterrupts _ enablelnterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 45: __enablelnterrupts return values

Description

Enables the generation of interrupts. For additional information, see Interrupt..., page
236.

Example

__enablelInterrupts() ;

__getLastMacroError _ getLastMacroError ()

Return value

Value of the last system macro error code.

Description

Returns the last macro error code (excluding stop errors).

Example

__getLastMacroError () ;

Part 4. The C-SPY simulator 195

Descriptions of system macros

go go ()

Return value

int 0
Description

Starts execution. For additional information, see Go, page 229.

Example

go () ;

~ _multiStep _ multiStep(kindOf, noOfSteps)

Parameters
kindOf Predefined string, one of:
"OVER" does not enter C functions or assembler
subroutines
"INTO" enters C functions or assembler subroutines
noOfSteps Number of steps to execute (integer)

Return value

int 0

Description

Executes a sequence of steps. For additional information, see Multi Step..., page 228.

Example

__multiStep ("INTO", 12);

__openFile _ openFile(filehandle, filename, access)
Parameters
filehandle The macro variable to contain the file handle
filename The filename as a string

8051 IAR Embedded Workbench™
196 User Guide

C-SPY macros __o

access The access type (string); one of the following:
bl ASCII read
"rb" Binary read
Tw! ASCII write
"wb" Binary write

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 46: __openkFile return values

Description

Opens a file for I/O operations.

Example

var filehandle;
__openFile(filehandle, "C:\\TESTDIR\\TEST.TST", "r");

__orderInterrupt _ orderInterrupt (address, activation time, repeat interval,
jitter, latency, probability)

Parameters
address The interrupt vector (string)
activation time The activation time in cycles (integer)

repeat interval The periodicity in cycles (integer)

jitter The timing variation range (integer between 0 and 100)
latency The latency (integer)
probability The probability in percent (integer between 0 and 100)

Return value

The macro returns an interrupt identifier (unsigned long).

Description

Generates an interrupt. For additional information, see Interrupt..., page 236.

Part 4. The C-SPY simulator 197

Descriptions of system macros

__printLastMacroError

___processorOption

8051 IAR Embedded Workbench™
198 User Guide

Example

__orderInterrupt ("0x03", 5000, 1500, 50, 0, 75);

__printLastMacroError ()
Return value
int 0

Description

Prints the last system macro error message (excluding stop errors) to the Report
window.

Example

__printLastMacroError () ;

__processorOption (procOption)

Parameters
procOption The processor option given in the same way it would have

been given on the command line (string)

Return value

int 0

Description

Sets a given processor option. This macro can only be called from the
execUserInit () macro. For additional information, see -v, page 251.
Example

__processorOption("-v1") ;

C-SPY macros __o

__readFile _ readFile(filehandle)

Parameters

filehandle The macro variable used as the filehandle by the __openFile
macro

Return value

The return value depends on the access type of the file.

In ASCII mode a series of hex digits, delimited by space, are read and converted to an

unsigned long, which is returned by the macro.

In binary mode one byte is read and returned.

Description

Reads from a file.

When the end of the file is reached, the file is rewound and a message is printed in the

Report window. For additional information, see Report window, page 220.

Example

Assuming a file was opened with the r access type containing the following data:

1234 56 78

callsto __readFile () would return the numeric values 0x1234, 0x56, and 0x78.

__readFileGuarded _ _readFileGuarded(filehandle, errorstatus)

Parameters

filehandle The macro variable used as the file handle by the __openFile
macro

errorstatus A C-SPY variable to contain the error status

Return value

Result Value

Successful The value read

Unsuccessful -1L

Table 47: __readFileGuarded return values

Part 4. The C-SPY simulator 199

Descriptions of system macros

Description

Reads from a file. This macro works in exactly the same way as __readFile, except
that when the end of the file is encountered - 1L is returned, and the value of
errorstatus is set to the corresponding error number.

Example

__readFileGuarded(filehandle, errorstatus)

__readMemoryByte _ readMemoryByte (address, segment)
Parameters
address The memory address (integer)
segment The memory segment name (string), one of: CODE, IDATA,

XDATA, or SFR

Return value

The macro returns the value from memory.

Description

Reads one byte from a given memory location.

Example

__readMemoryByte (0x2000, "CODE") ;

__realtime _ _realtime (what)

Parameters
what Predefined string, one of:
"ON" turns real-time mode on

"OFF" turns real-time mode off

Return value

int 0

8051 IAR Embedded Workbench™
200 User Guide

__registerMacroFile

__reset

C-SPY macros __o

Description

Toggles real-time mode on or off. Notice that real-time mode only applies to the
emulator and ROM-monitor versions of C-SPY. For additional information, see
Realtime, page 238.

Example

__realtime ("OFF");

__registerMacroFile (filename)

Parameters

filename A file containing the macros to be registered (string)

Return value

int 0

Description

Registers macros from a specified macro file. For additional information, see Load
Macro..., page 243.

Example

__registerMacroFile("c://testdir//macro.mac") ;

__reset()

Return value

int 0

Description

Resets the target processor. For additional information, see Reset, page 229.

Example

__reset();

Part 4. The C-SPY simulator 20|

Descriptions of system macros

__rewindFile

Parameters

filehandle

Return value

int 0

Description

_rewindFile (filehandle)

The macro variable used as filehandle by the __openFile
macro

Rewinds the file previously opened by __openFile.

Example

__rewindFile (filehandle) ;

__setBreak _ setBreak(address,
cond_type,

Parameters

address

segment

length

count

condition

cond_type

8051 IAR Embedded Workbench™
202 User Guide

segment, length, count, condition,

access, macro)

The address in memory or any expression that evaluates to a valid
address, for example a function or variable name. A . (period)
must precede a code breakpoint (string).

The memory segment name (string), one of: CODE, IDATA,
XDATA, or SFR

The number of bytes to be covered by the breakpoint (integer)

The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

The breakpoint condition (string)

The condition type; either “CHANGED” or “TRUE” (string)

__setMap

C-SPY macros __o

access The memory access type (string); concatenation of any of “R”,
“W”, “F”, “I”, or “O”.
R Read
W Write
F Fetch
I Read immediate
o] Write immediate
macro The expression to be executed after the breakpoint is accepted
(string)
Return value
Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 48: __setBreak return values

Description

Sets a given breakpoint.

Examples
The following example shows a code breakpoint:

__setBreak(".demo\\12", "CODE", 1, 3, "d>16", "TRUE",
"afterMacro ()");

The following example shows a data breakpoint:

__setBreak ("0ox32", "IDATA", 1, 1, ", "TRUE", "I",
" readTCNT()") ;

For additional information, see Edit Breakpoints..., page 230.

"RE",

__setMap (address, segment, length, type)
Parameters
address The start location (hex value)

Part 4. The C-SPY simulator

203

Descriptions of system macros

__step

8051 IAR Embedded Workbench™
204 User Guide

segment The memory segment name (string), one of: CODE, IDATA,
XDATA, or SFR

length The number of bytes to be covered by mapping (integer)

type The memory mapping type; “G” (guarded) or “P” (protected)
(string)

Return value

int 0

Description

Sets a given memory mapping. For additional information, see Memory Map..., page
233.

Example

__setMap (1234, "CODE", 1000, "G");

__step (kindOf)

Parameters

kindOf Predefined string, one of:
"OVER" does not enter C functions or assembler subroutines

"INTO" enters C functions or assembler subroutines

Return value

int 0

Description

Executes the next statement or instruction. For additional information, see Step, page
228.

Example

__step ("OVER") ;

__writeFile

__writeMemoryByte

C-SPY macros __o

_writeFile(filehandle, value)

Parameters

filehandle The macro variable used as the file handle set by the __openFile
macro

value The value to be written to the file. value is written using a format

depending on with what access type the file was opened. In ASCI|
mode the value is written to the file as a string of hex digits
corresponding to value. In binary mode the lowest byte of
value is written as a binary byte

Return value

int 0

Description

Writes to a file.

Example

__writeFile(filehandle, 123);

__writeMemoryByte (value, address, segment)

Parameters

value The value to be written (integer)

address The memory address (integer)

segment The memory segment name (string), one of: CODE, IDATA,

XDATA, or SFR

Return value

int 0

Description

Writes one byte to a given memory location.

Example

__writeMemoryByte (0xFF, 0x2000, "CODE") ;

Part 4. The C-SPY simulator 205

Descriptions of system macros

8051 IAR Embedded Workbench™
206 User Guide

Device description file

This chapter contains detailed information about the Device Description File
(DDF) which is used by the IAR C-SPY Debugger to set up the SFR window
and the interrupt simulation system. The DDF file consists mainly of two

different sections, the [Sfr] section and the [INTERRUPT VECTOR] section.

SFR window setup

This section describes the SFR setup syntax for C-SPY for the 8051 microcontroller.
For more examples, see the * . ddf files in the \8051\config directory in the
program’s root directory.

Syntax

SfrN = name, segment name, address[:bit[-endbit]], sizel,
attribute] [, attribute]...[; comment]

Note: This must be on a single line.

Restrictions

e The section under which the SFR definitions will exist is [SEx] with contiguously

enumerated keys Sfr0 - SErN.

Each SFR can carry attributes.

The SFR name is case sensitive.

The address can be specified either as a hex or a decimal number.

The bit-range (address field extension) is specified using decimal numbers.

The size (# memory units, not bytes) can be specified as a hex or a decimal

number.

o The base attribute must be specified as a decimal number (2, 8, 10, or 16, where
16 is default).

e The readable and writable mask attributes are specified using hex masks, where
the bits correspond to true (1) and false (0) (def = all read/writable (all 1:s)).

Example

[Sfr]

Sfr0 = FOO, Memory, 0x0010, 2, readable (0x0)

Sfrl = BAR, Memory, 0x0012, 1, base(10), writable (0x0)
Sfr2 NIB, Memory, 0x0014:0-3, 1, base(2)

Part 4. The C-SPY simulator 207

Interrupt system simulation

readable (0x0) specifies that reading from any of the bits in this SFR is not
allowed, and writable(0x0) that writing to any of the bits is not allowed.

SFR GROUPS

In order to logically tie related SFRs together, groups should be specified under the
section [SErGroupInfo].

Syntax

GroupN=group name [, sfr name] [, sfr name] [,sfr name] ... [;
comment]

[GroupN:1=[sfr name] [,sfr namel...] [; comment]
Example

[SfrGroupInfol

Group0 = Timer0, FOO, BAR,NIB

Groupl = Timerl, SOMESFR, ANOTHERSFR, ...

Groupl:1 = MORESFR, ...

Interrupt system simulation

8051 IAR Embedded Workbench™
208 User Guide

To enable the interrupt system you have to set up the properties for the interrupts and
load it into the C-SPY simulator.

You can define the interrupt system in two ways:

e Write your own interrupt system according to the specification described under
Interrupt system syntax below.

e Use one of the predefined interrupt systems set up in the * . ddf (device
description file) file. See the \ 8051\ config directory for available device
description files.

LOADING THE DEVICE DESCRIPTION FILE

In the IAR Embedded Workbench, you specify the device description file when
setting options for your project. On the Setup page in the C-SPY category, check Use
device decription file and enter the appropriate file name.

Load the device description file with the -p option.

Example

CW8051 demo.d03 -p c:\iar\ew23\8051\config\io51.ddf

Device description file __o

INTERRUPT SYSTEM SYNTAX

To be able to use the interrupt simulation, you must specify what interrupts to simulate
and how to simulate them.

This is done in the [INTERRUPT VECTORS] section of the device description file. If
a global enable bit is used, this is specified first in the [INTERRUPT VECTORS]
section. The global enable bit is specified with a BIT-ADDRESS (see Syntax below).
After this optional global enable bit, all interrupts used can be specified.

Syntax

Name Name of the interrupt. If the name contains space, enclose the string
inside .

Vector Interrupt vector. The vector address for the interrupt.

Pending Pending bit. The bit indicating that an interrupt occurred.

Enable Enable bit(s) The local enable bit/bits used to enable/disable the
interrupt.

Priority Priority bit(s). The priority bit/bits. If more than one priority bit is
used the priority is set low -> high (left -> right).

Ctrl A control string consisting of two characters. The first character
decides if the interrupt is active High or Low [H|L]. The second
character decides if the interrupt should be cleared by Software or
Hardware [S|H]

BIT-ADDRESS Is a byte/bit pair enclosed in ’<’ and ">’ separated by a comma’,".
Example: <0x88,0x02> is bit | at address 88H.

Example

Below is a short sample from a * . ddf file. For more examples, see the * . ddf files
in the \8051\config directory.

[INTERRUPT VECTORS]

/7

// Global enable at address 0xA8, bit 7.
<0xa8,0x80>

/7

// Name Vector Pending Enable Priority(low--high) Ctrl
//

A e e External Interrupt 0 -------------------
extern0 0x03 <0x88,0x02> <0xa8,0x01> <0xb8,0x01> HS
/7

/] o mmmmmmmmmmmm e —mm - Timer 0 Overflow --------------—-——-——--
timero0 0x0B <0x88,0x20> <0xa8,0x02> <0xb8,0x02> HH

Part 4. The C-SPY simulator 209

Interrupt system simulation

8051 IAR Embedded Workbench™
210 User Guide

C-SPY reference

This chapter contains detailed descriptions about the windows, menus, menu
commands, and their components found in the IAR C-SPY® Debugger.

The C-SPY window

Menu bar

Toolbar

Source
window

Status bar

The following illustration shows the main C-SPY window:

SPY - [Source]
= File Edit “iew Execute Control Options Window Help

|zl =emsoeaa5m 2|

jZle 2225 0] — Debug

bar

I tutor.c j I rnain

|

/* Gat and print next Fibonacci numbsr. #/
void do_foreground processiveid)
i
unsigned int fib;
++ocall count;
fib = get fibonacei| call count)
put_wvalue | fikb);

roid main(void)

{

call count = O;
init fibonaceil();
while [call count < MAX FIBONACCI)

do_foreground process();

}

Ready

/% Main program. FPrints the Fibonacci numbsrs.

4

o

|Ln 27, Col 2

[oz/oi/on [135348

Figure 128: C-SPY window

Part 4. The C-SPY simulator 21 |

The C-SPY window

8051 IAR Embedded Workbench™
212 User Guide

TYPES OF C-SPY WINDOWS
The following windows are available in C-SPY:

Source window
Watch window
Report window
Register window
SFR window
Profiling window
Terminal I/O window
Locals window
Memory window
Calls window

Code Coverage window.

These windows are described in greater detail on the following pages.

MENU BAR

Gives access to the C-SPY menus:

Menu Description

File The File menu provides commands for opening and closing files, and

exiting from C-SPY.
Edit The Edit menu provides commands for use with the Source window.

View The View menu provides commands to allow you to select which
windows are displayed in the C-SPY window.

Execute The Execute menu provides commands for executing and debugging the
source program. Most of the commands are also available as icon buttons
in the debug bar.

Control The Control menu provides commands allowing you to control the
execution of the program.

Options The commands on the Options menu allow you to change the
configuration of your C-SPY environment, register and display macros.

Window The Window menu lets you select or open C-SPY windows and control
the order and arrangement of the windows.

Help The Help menu provides help about C-SPY.

Table 49: C-SPY menus

The menus are described in greater detail on the following pages.

C-SPY reference __o

TOOLBAR AND DEBUG BAR

The toolbar and debug bar provide buttons for the most frequently used commands on
the menus. You can move each bar to a different position in the C-SPY window, or
convert it to a floating palette, by dragging it with the mouse.

You can display a description of any button by pointing to it with the mouse pointer.
When a command is not available the corresponding button will be grayed out and you
will not be able to select it.

Toolbar

This diagram shows the command corresponding to each of the toolbar buttons:

Calls window Register Tile Horizontal
window

=4 B0EE 280 ¢
] | | | | |

Cut Paste Watch Tile
window vertical

Open Copy Memory Cascade Help
window

Figure 129: C-SPY toolbar

You can choose whether the toolbar is displayed by using the Toolbar command on
the View menu.

Debug bar

The following diagram shows the command corresponding to each button:

Toggle
Stop Step Into Autostep Go to Cursor Source/Disassembly

| | |
Slelz2as223|5 6 v
|

Reset Step Go Out Go Toggle Breakpoint Find

Figure 130: C-SPY debug bar

Part 4. The C-SPY simulator 213

The C-SPY window

Use the Debug Bar command on the View menu to toggle the debug bar on and off.

SOURCE WINDOW

The C-SPY Source window shows the source program being debugged, as either C or
assembler source code or disassembled program code. Y ou can switch between source
mode and disassembly mode by choosing Toggle Source/Disassembly from the View
menu, or by clicking the Toggle Source/Disassembly button in the debug bar.
Clicking the right mouse button in the Source window displays a pop-up menu:

é Toggle Breakpoaint F5
Edit Breakpoints... F7

Luick Watch...

2% Goto Cursor
Move to PC

Aszzemble...

Figure 131: Source window pop-up menu

When you start C-SPY, the first executable statement in the main function will be
displayed in the Source window. If the Source window is initially blank, no main
function has been found and the program starts in a low-level assembly module,
assembled without debug information, so there is no corresponding source code.

Source file and function

The Source file and Function boxes show the name of the current source file and
function displayed in the Source window, and allow you to move to a different module
or function by selecting a name from the corresponding drop-down list. The following
types of highlighting are used in the Source window:

Source IH[=] B3
= prarr ol .
Source file Icommon_c J ||n|t_f|b s I Function
S* Initialize MAX FIR Fibonacci numbsrs. */
void init_fib(void |}
{ L
short i = Z;
Cursor thot[0] = root[1] = 1;
for [i=2 ; B FIE ; Breakpoint
root[i] = get_fib (i) + getlf:i_b{i—l:l;
} get_fib - 1000080 -
I} | AW

8051 IAR Embedded Workbench™
214 User Guide

Current position Data tip
Figure 132: Highlighting in C-SPY Source window

C-SPY reference __o

Current position

The current position indicates the next C statement or assembler instruction to be
executed, and is highlighted in blue.

Cursor

Any statement in the Source window can be selected by clicking on it with the mouse
pointer. The selected statement is indicated by the cursor.

Alternatively, you can move the cursor using the navigation keys.

The Go to Cursor command on the Execute menu will execute the program from the
current position up to the statement containing the cursor.

Breakpoint

C statements or assembler instructions at which breakpoints have been set are
highlighted in the Source window.

To set a breakpoint choose Toggle Breakpoint... from the Control menu or click the
Toggle Breakpoint button in the toolbar.

Data tip

If you position the mouse pointer over a function, variable, or constant name in the C
source shown in the Source window, the function start address or the current value of
the variable or constant is shown below the mouse pointer.

REGISTER WINDOW

The Register window gives a continuously updated display of the contents of the
processor registers, and allows you to edit them. When a value changes it becomes
highlighted.

Bl Register M=l E3
A B RO R1 R2 R3 R4 RS R6 R7

oo | Joo | oz | [| oo | I3z | oo | o | oz | Is |
PC SP DPTR CAFRSO-P CYCLES

[o276 | [aB] [0276 [oooooooo |oooooo0379

Figure 133: Register window

To change the contents of a register, edit the corresponding text box. The register will
be updated when you tab to the next register or press Enter.

You can configure the registers displayed in the Register window using the Register
Setup page in the Settings dialog box.

Part 4. The C-SPY simulator 215

The C-SPY window

8051 IAR Embedded Workbench™
216 User Guide

Note: If the contents of a register changes during execution, the change will be
highlighted in this window.

SFR WINDOW

The SFR window allows you to view and edit the contents of the special function
registers.

In order to make this window available, you must specify a device description file
(dd£) with SFR definitions when you start C-SPY. Use the option Device description
file in the IAR Embedded Workbench as described on page 132, or the command line
option -p, page 249, to specify the device description file.

The contents of the window is controlled by the SFR settings; see Settings..., page
239, for additional information.

Use the drop-down list to select which group of SFRs to display:

51 SFR =]
J SFR A ‘

PO = 0OxFF Pl = 0OxFF P2 = 0=x00 P3 = 0OxFF

PSW = 0Ox00 ACC = 0Ox00 B = 0x00 SP = 0x49

DPL = 0Ox76 DFH = 0Ox0z PCOH = 0x00 TCOH = (Ox00

THOD = 0x00 TLO = 0x00 TL1 = 0x00 THO = 0x00

TH1 = 0x00 IE = 0x00 P = 0x00 SCON = 0x00

SBUF = 0x00 T2COH = 0Ox00 T2MOD = 0x00 RC2L = (Ox00

RC2H = 0x00 TL2 = 0x00 TH2 = 0x00

Figure 134: SFR window

To edit the contents of an SFR, double-click its current value and type a new value.
Then press Enter. The new contents will be highlighted, both in the SFR window and
in the Memory window. If C-SPY during execution changes the memory or SFR
contents, the change will be highlighted in this window.

Note: The value 0x- - signifies a write-only register.

MEMORY WINDOW

The Memory window gives a continuously updated display of a specified block of
memory and allows you to edit it.

If C-SPY during execution changes the memory or SFR contents, the change will be
highlighted in this window.

Choose 8, 16, or 32 to display the memory contents in blocks of bytes, words, or long
words.

C-SPY reference __o

Clicking the right mouse button in the Memory window displays a pop-up menu
which gives you access to several useful commands.

8 Z2BitMode
[16 16:Bit Made
32 32Bit Mode

Edit Breakpoints... F7?
emary Map...

Memory Fill...

Figure 135: Memory window pop-up menu

To edit the contents of memory, double-click the address or value you want to edit:

Memory [_ (O] x]

| 8 [16 32 |[cove |
0x00000000 0200 0375 £147 9000 0185 B3A0 1203 BBEC +..W.Ge......... i’
0x00000010 4D60 €a78 4780 037¢ 0018 BE4T FATE 4780 M ixG..v...G5.xG.

000000020 0376 0018 BB31 FPATE 1FE0 0376 0018 BRIF P L T
0x00000030 FaSO 0001 AES3 AFS8Z 9000 0112 0086 6003 vianas .
0x00000040 E4F0 A380 FES0 0001 AB8Z 0000 O1A9 B2ESevienonns

000000050 ©300 5005 7600 0280 FeO0 OOE4 1200 &8F90 B
000000060 O0ES 1200 8F90 0O0EC 1200 8F90 0OFO0 1200cvevivnnnns
0x00000070 ADSO 00F6 1200 ADSO O0O0FC 1200 ADYS DOOOo.ns u. .
E{ID—DIDDDDBD 1203 7002 0271 EF6ES 8270 O3EE RS583 ZZE4 P T = T L i
4 Moz

Figure 136: Editing memory in C-SPY

The following dialog box then allows you to edit the memory:

16-Bit Edit [x]
~0:00000030 ———
IDDD2 IDDDD IDDDD IDDDD
—0«00000038 ———
|255 IDDDD IDDDD IDDDD

()8 I Cancel |

Figure 137: Memory edit dialog box

CALLS WINDOW
Displays the C call stack. Each entry has the format:
module\ function(values)

where values is a list of the parameter values, or void if the function does not take
any parameters.

Part 4. The C-SPY simulator 217

The C-SPY window

8051 IAR Embedded Workbench™
218 User Guide

i Calls (0]]
tutor\do_foreground_process(void] AI

tutorimain[void]

| 2

Figure 138: Calls window

STATUS BAR

Shows help text, and the position of the cursor in the Source window. Use the Status
Bar command on the View menu to toggle the status bar on and off.

WATCH WINDOW

Allows you to monitor the values of C expressions or variables:

B Watch =] E3
I Expreszion Walue
i 2
fibonacei 0x32

Figure 139: C-SPY Watch window

Viewing the contents of an expression

To view the contents of an expression such as an array, a structure or a union, click
the plus sign icon to expand the tree structure.

Adding an expression to the Watch window

To add an expression to the Watch window, click in the dotted rectangle, then hold
down and release the mouse button. Alternatively, click the right mouse button in the
Watch window and choose Add from the pop-up menu.

Add

Hemove

Eraperties...
Figure 140: Add command on C-SPY Watch window pop-up menu
Then type the expression and press Enter.

You can also drag and drop an expression from the Source window.

C-SPY reference __o

Inspecting expression properties

Select an expression in the Watch window and choose Properties... from the pop-up
menu.

Add
Remove
Froperties...

Figure 141: Properties... command on C-SPY Watch window pop-up menu

You can then edit the value of the expression and change the display format in the
Symbol Properties dialog box:

Symbol Properties
Expression:
Ii
Type:
Ivalue of type zigned shart

Walue:
|2

Dizplay Format:

I Default j

Figure 142: Symbol Properties dialog box

Removing an expression

Select the expression and press the Delete key, or choose Remove from the pop-up
menu. When a value changes it becomes highlighted.

LOCALS WINDOW

Automatically displays the local variables and their parameters:

¥ Locals IH[=] B3
I commontinit_fibonaccilvoid) j |
Expreszion | Walue |
i 2

Figure 143: Locals window

Part 4. The C-SPY simulator 219

The C-SPY window

8051 IAR Embedded Workbench™
220 User Guide

Editing the value of a local variable

To change the value of a local variable, click the right mouse button, and choose
Properties... from the pop-up menu.

You can then change the value or display format in the Symbol Properties dialog box.

TERMINAL /O WINDOW

Allows you to enter input to your program, and display output from it.

Terminal 170

Output:

1 -
] =

3
) -
1 ¥

Input:

Figure 144: Terminal I/0 window

To use this window, you need to link the program with the option Debug info with
terminal I/0. C-SPY will then direct stdout and stderr to this window. The
window will only be available if your program uses the terminal I/O functions in the
C library.

If the Terminal I/O window is open, C-SPY will write output to it, and read input from
it.

If the Terminal I/O window is closed, C-SPY will open it automatically when input is
required, but not for output.

REPORT WINDOW

Displays debugger output, such as diagnostic messages and trace information.

[_ [0 x]

B Report

Download completed, 723 hytes loaded

Stop at .tutor.ch2? [main)

Break at .common.chld [init fibonacei)
FETCH access at address 0x000060 [CODE)

Break at .common.chld [init fibonacei)

FETCH access at address 0x000060 [CODE)

Figure 145: Report window

C-SPY reference __o

CODE COVERAGE WINDOW

Reports the current code coverage status. The report includes all modules and
functions and the statements that have not yet been executed.

=] E3

$oommwon 16,678
¢»init_fibonacei 50.00%

~@Line: 18 Col: 13

@Line: 19 Col: 5

~@Line: 18 Col: 34

@Line: 20 Col: 1

+ g get_fibonacci 0%

-qut_value 0%

E ¢ tutor 27.27%
-Qdo_foreground_process 0%
B omain 50.00%

E---QLine: 28 Col: 2

@Line: 29 Col: 4

5---§Line: 30 Ccol: 2

Figure 146: Code coverage window

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The plus sign and minus sign icons allow you
to expand and collapse the structure.

The percentage displayed at the end of every line shows the amount of code that has
been covered so far. In addition, the following colors are used for giving you an
overview of the current status on all levels:

e Red signifies that 0% of the code has been covered.
e Yellow signifies that some of the code has been covered.
e Green signifies that 100% of the code has been covered.

When a statement has been executed, it is removed from this window.

When the contents becomes dimmed and an asterisk (*) appears in the title bar, this
indicates that C-SPY has continued to execute and that the Code Coverage window
needs to be refreshed because the displayed information is no longer up to date.

Double-clicking on a statement line in the Code Coverage window displays that
statement as current position in the Source window, which becomes the active
window.

Part 4. The C-SPY simulator 22|

The C-SPY window

8051 IAR Embedded Workbench™
222 User Guide

Clicking the right mouse button in the Code Coverage window displays a pop-up
menu that gives you access to several useful commands.

c Befresh
O Auto Refresh On

n Save List

Figure 147: Code coverage pop-up window

The code coverage information is reset when the processor is reset.

PROFILING WINDOW

Displays profiling information:

o wE =[5 ‘

Function [Count [Flat Time cycles [Flat Time (%) [Aooumulated Time [c... | Accumulsted Time (%) |
commaontinit_fibonacei 1 374 755 374 755
commonhget_fibonacei 10 144 2.9 144 291

commmonhput_walue 10 4094 82.69 4094 82.69
tutortdo_foreground_proc 10 180 364 1418 89.23

tutormain 0 155 313 4947 99.92

Figure 148: Profiling window

Clicking on the column header sorts the complete list depending on column.

Double-clicking on an item in the Function column automatically displays the
function in the Source window.

The information in the colums Flat time and Accumulated time can be displayed
either as digits or as column diagrams. Flat time signifies the time in a function
excluding child functions, while accumulated time signifies time in a function
including its child functions.

Clicking the right mouse button in the Profiling window displays a pop-up menu
which gives you access to several useful commands.

{E Prafiing On
‘0 Wew Measurement
|=E Bar Graph

H Save List..

Figure 149: Profiling window pop-up menu

C-SPY reference __o

The following diagram shows the commands corresponding to the Profiling bar
buttons:

Profiling Graph Current cycle
On/Off On/Off count

| | |
A NEZ
|

New Measurement

Save List

Figure 150: Profiling window buttons

Profiling On/Off

Switches profiling on and off during execution. Alternatively, use the Profiling
command on the Control menu to toggle profiling on and off.

New Measurement

Starts a new measurement. By clicking on the icon the values displayed are reset to
zZero.

Graph On/Off

Displays the relative numbers as graph or numbers.

B Profiling M= B3
& 5| & 13928 ‘

Function | Count | Flat Time [cycl... | Flat Time [%] | Accumulated Time [c... I Accumulated Time [% I
commontinit_fibonacei 1 1495 | | 1495 |
commontget_fibonacci 10 REY 1 REY [|
commomniput_value 10 9588 | 9588]
tutorsdo_foreground_proc 10 940 [| 11095]
tutorimain 1 237 | 12827 |

Figure 151: Profiling window Graph On/Off button

Save List

Saves list to file.

Part 4. The C-SPY simulator 223

File menu

Current Cycle Count

Displays the current value of the cycle counter.

File menu

8051 IAR Embedded Workbench™
224 User Guide

The File menu provides commands for opening and closing files, and exiting from
C-SPY.

[Open... Cti+0
LCloze Session

1 project].d03
2 project2.d03
3 project3.d03
4 projectd.d03

Exit

Figure 152: File menu (C-SPY)

OPEN...
Displays a standard Open dialog box to allow you to select a program file to debug.
If another file is already open it will be closed first.

Note: When you choose a file to be loaded via using the Open command or from the
list of recently used files, a dialog box is displayed showing driver and session options
to be used. You may modify them if a file to be loaded needs another set of options.

Observe that no driver option or input file name should be specified in the Options
field.

CLOSE SESSION

Closes the current C-SPY session.

RECENT FILES

Displays a list of the files most recently opened, and allows you to select one to open
it.

EXIT
Exits from C-SPY.

C-SPY reference __o

Edit menu

The Edit menu provides commands for use with the Source window.

Whda) Eilsz:

3 Cur il
Copy Chl+C
E, Paste Clrl+

% Find..

Figure 153: Edit menu (C-SPY)

UNDO, CUT, COPY, PASTE

Provides the usual Windows editing features for editing text in some of the windows
and dialog boxes.

FIND...
Allows you to search for text in the Source window.

This dialog box allows you to specify the text to search for:

Find |]

Find'what. [i++

™ Matchwhole Word Only - Direction——— " £apg) |
™ Match Case © Up & Down

Figure 154: Find dialog box (C-SPY)

Enter the text you want to search for in the Find What text box.

Select Match Whole Word Only to find the specified text only if it occurs as a
separate word. Otherwise int will also find print, sprintf etc.

Select Match Case to find only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Select Up or Down to specify the direction to search.

Choose Find Next to start searching. The source pointer will be moved to the next
occurrence of the specified text.

Part 4. The C-SPY simulator 225

View menu

View menu

The View menu provides commands to allow you to select which windows are
displayed in the C-SPY window.

|7 Toolbar

|7 Debug Bar

|7 Source Bar
Iemary Bar

|7 Locals Bar
Frofiling B ar
SER Bar

|7 Statuz Bar

Goto... Chil+G
Move to PC

|§[§ Toggle Source/Dizazzembly F8

Figure 155: View menu (C-SPY)

TOOLBAR
Toggles on or off the display of the toolbar.

DEBUG BAR
Toggles on or off the display of the debug bar.

SOURCE BAR

Toggles on or off the Source window toolbar.

MEMORY BAR

Toggles on or off the Memory window toolbar.

LOCALS BAR

Toggles on or off the Locals window toolbar.

PROFILING BAR

Toggles on or off the Profiling window toolbar.

8051 IAR Embedded Workbench™
226 User Guide

C-SPY reference __o

SFR BAR

Toggles on or off the SFR window toolbar, provided that you have specified the
device description file (ddf) to be used. This file contains information about the SFRs,
such as I/0O registers (SFR) definitions, vector, and control register definitions.

For additional information, see Device description file, page 132, and the chapter
Device description file.

STATUS BAR
Toggles on or off the display of the status bar, along the bottom of the C-SPY window.

GOTO...

Displays the following dialog box to allow you to move the source pointer to a
specified location in the Source window.

Location:

|.3—
Cancel |

Figure 156: Goto dialog box

To go to a specified source line, prefix the line number with a period (.). For example:

Location Description

.12 Moves to line 12 in current file.

.tutor.c\12 Moves to line 12 in file tutor. c.

main Moves to function main in current scope.
0x1000 Moves to address 0x1000 (C-level debugging)
1000 Moves to address 1000 (assembly-level debugging)

Table 50: Examples of using Goto... command to move to a specified source line

MOVE TO PC

Moves the source pointer to the current program counter (PC) position in the Source
window.

TOGGLE SOURCE/DISASSEMBLY

Switches between source and disassembly mode debugging.

Part 4. The C-SPY simulator 227

Execute menu

Execute menu

I\&

I |&

8051 IAR Embedded Workbench™
228 User Guide

The Execute menu provides commands for executing and debugging the source
program. Most of the commands are also available as icon buttons in the debug bar.

o Step F2
- Steplnta F3
g Autostep...
Multi Step...
™ Go F4
2% Goto Cursor

2 GoDut

= Beset F10

M Stop

Figure 157: Execute menu

STEP

Executes the next statement or instruction, without entering C functions or assembler
subroutines.

STEP INTO

Executes the next statement or instruction, entering C functions or assembler
subroutines.

AUTOSTEP...

Steps continuously, with a selectable time delay, until a breakpoint or program exit is
detected.

MULTI STEP...

Allows you to execute a specified number of Step or Step Into commands. This
option displays the following dialog box to allow you to specify the number of steps:

Multi Step [%]
Mr of steps

Figure 158: Multi Step dialog box

C-SPY reference __o

Select Over to step over C functions or assembler subroutines, or Into to step into
each C function or assembler subroutine. Then choose OK to execute the steps.

+++| GO
= Executes from the current statement or instruction until a breakpoint or program exit
is reached.
4%| GO TO CURSOR
=

Executes from the current statement or instruction up to a selected statement or
instruction.

GO OUT
£

Executes from the current statement up to the statement after the call to the current

function.
+——| RESET
E Resets the target processor.
['II} STOP

Stops program execution or automatic stepping.

Control menu

The Control menu provides commands to allow you to define breakpoints and change
the memory mapping.

é Toggle Breakpoaint F5
Edit Breakpoints... F7

Luick Watch...
emary Map...
Memory Fill...
Aszzemble...

Interrupt...

Trace

[Callz
Eealtime
s lie) Ff=

€% Profiling

Figure 159: Control menu

Part 4. The C-SPY simulator 229

Control menu

8051 IAR Embedded Workbench™
230 User Guide

TOGGLE BREAKPOINT

Toggles on or off a breakpoint at the statement or instruction containing the cursor in
the Source window. This command is also available as an icon button in the debug bar.

EDIT BREAKPOINTS...
Displays the following dialog box which shows the currently defined breakpoints, and

allows you to edit them or define new breakpoints:

Breakpoints E

Location:

I.common.c\‘l 83

Cloze |

Segment: Length: Count:

|cope =l [= | Resat |
Condition: Condition Type:

I IEondition True j

— Type Macro:

™ Read

™ white

¥ Fetch

™ Read Immediate
™ white Immediate

B

Add
Clear
Clear &l
Modify

Disable

Figure 160: Breakpoints dialog box

This dialog box lists the breakpoints you have set with the Toggle Breakpoint
command, and allows you to define, modify, or remove breakpoints with break
conditions.

To define a new breakpoint, enter the characteristics of the breakpoint you want to
define and choose Add.

To modify an existing breakpoint, select it in the Breakpoints list and choose one of
the following buttons:

Choose this To do this
Clear Remove the selected breakpoint.
Clear All Removes all the breakpoints in the list.

Table 51: Modifying existing breakpoints

C-SPY reference __o

Choose this To do this
Modify Modifies the breakpoint to the settings you select.
Disable/Enable Toggles the breakpoint on or off. Enabled breakpoints are prefixed

with a + in the Breakpoints list.

Table 51: Modifying existing breakpoints (continued)

For each breakpoint you can define the following characteristics:

Location

The address in memory or any expression that evaluates to a valid address, for
example a function or variable name.

When setting a code breakpoint, you can specify a location in the C source program
with the formats . source\line or .1ine. Notice that the line must start with a .
(period) which indicates the code breakpoint. For example, . common.c\12 sets a
breakpoint at the first statement on line 12 in the source file common. c.

When setting a data breakpoint, enter the name of a variable or any expression that
evaluates to a valid memory location. For example, my var refers to the location of
the variable my_var, and arr [3] refers to the third element of the array arr.

Note: You cannot set a breakpoint on a variable that does not have a constant address
in memory.

Segment

The memory segment in which the location or address belongs.

Length
The number of bytes to be guarded by the breakpoint.

Count

The number of times that the breakpoint condition must be fulfilled before a break
takes place. Click Reset to reset this to 1.

Condition

A valid expression conforming to C-SPY expression syntax.

Condition type Description

Condition True The breakpoint is triggered if the value of the expression is true.

Condition Changed The breakpoint is triggered if the value of the condition expression has
changed.

Table 52: Breakpoint conditions

Part 4. The C-SPY simulator 23|

Control menu

8051 IAR Embedded Workbench™
232 User Guide

Note: The condition is evaluated only when the breakpoint is encountered.

For an example of a breakpoint with a condition, see Defining complex breakpoints in
Tutorial 6, page 72.

For information about the C-SPY expressioin syntax, see the C-SPY expressions
chapter in this guide.

Type

Specifies the type of memory access guarded by the breakpoint:
Type Description

Read Read from location.

Write Write to location.

Fetch Fetch opcode from location.

Read Immediate Read from location, immediate break.

Write Immediate Write to location, immediate break.

Table 53: Breakpoint types

The Read, Write, and Fetch breakpoint types never break execution within a single
assembler instruction. Read and Write breakpoints are recorded and reported after the
instruction is completed. If a Fetch breakpoint is detected on the first byte of an
instruction, it will be reported before the instruction is executed; otherwise the
breakpoint is reported after the instruction is completed.

The Read Immediate and Write Immediate breakpoint types are only applicable to
simulators and will cause a break as soon as encountered, even in the middle of
executing an instruction. Execution will automatically continue, and the only action is
to execute the associated macro. They are provided to allow you to simulate the
behavior of a port. For example, you can set a Read Immediate breakpoint at a port
address, and assign a macro to the breakpoint that reads a value from a file and writes
it to the port location.

Macro

An expression to be executed once the breakpoint is activated.

C-SPY reference __o

QUICK WATCH...

Allows you to watch the value of a variable or expression and to execute macros.
Displays the following dialog box to allow you to specify the expression to watch:

RQuickWatch | x|

Evpression: {Becalclizte]

i I adawaen
Erfpresswon |1\u"a|ue | Close

Figure 161: Watch window

Enter the C-SPY variable or expression you want to evaluate in the Expression box.
Alternatively, you can select an expression you have previously watched from the
drop-down list. For additional information, see Expression syntax, page 181.

Choose Recalculate to evaluate the expression, or Add Watch to evaluate the
expression and add it to the Watch window. Choose Close to exit this dialog box.

MEMORY MAP...

C-SPY allows the simulation of non-existing and read-only memory by the use of
memory maps. A memory map is a specified memory area with an access type
attached to it, either no memory or read-only memory. The Memory Map dialog box
allows you to define memory maps:

Memory Map

Start Address Length Segment Tupe

[| [eooe =] [Guarced =] cisse |

Memaory Map

LClear

Clear Al

Figure 162: Memory Map dialog box

Part 4. The C-SPY simulator 233

Control menu

8051 IAR Embedded Workbench™
234 User Guide

To define a new memory map, enter the Start Address, Length, and Segment and

choose the Type according to the following table:

Type Description

Guarded Simulates addresses with no memory by flagging all accesses as illegal.

Protected Simulates ROM memory by flagging all write accesses to this address
as illegal.

Table 54: Memory map types

To delete an existing memory map, select it in the Memory Map list and choose

Clear.

If a memory access occurs that violates the access type of that memory map, C-SPY

will regard this access as illegal and display it in the Report window:

¥ Report 0] %]

Stop at O4E6
GUARDED memory access at address Ox0014 [CODE)
GUARDED memory access at address Ox0015 (CODE)

Stop at O4EC

GUARDED memory access at address Ox0014 [CODE)

GUARDED memory access at address Ox0015 (CODE)

Figure 163: Illegal access reported in Report window

MEMORY FILL...
Allows you to fill a specified area of memory with a value.

The following dialog box is displayed to allow you to specify the area to fill:

Memory Fill [%]
Start Address Length Segment
[2:100 [30 |oata =l
Walue

Operation———————————————
IFF & Copy AND

& HOR OR

()8 I Cancel |

Figure 164: Memory Fill dialog box

Enter the Start Address and Length in hexadecimal notation, and select the segment

type from the Segment drop-down list.

C-SPY reference __o

Enter the Value to be used for filling each memory location and select the logical
operation. The default is Copy, but you may choose one of the following operations:

Operation Description
Copy The Value will be copied to the specified memory area.
AND An AND operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Table 55: Memory fill operations

Finally choose OK to proceed with the memory fill.

ASSEMBLE...

Displays the assembler mnemonic for a machine-code instruction, and allows you to
modify it and assemble it into memory.

Assemble... is only available in disassembly mode. If you are debugging in source
mode, choose Toggle Source/Disassembly from the View menu to change mode.

Then double-click a line in the Source window, or position the cursor in the line and
choose Assemble.... This dialog box shows the address and assembler instruction at
that address:

Aszzembler [%]
Address: Azzembler [nput:

|ooooazsc RET

Cloze |

Figure 165: Assembler dialog box (C-SPY)

To modify the instruction, edit the text in the Assembler Input field and click
Assemble.

You can also enter an address in the Address field and then press Tab to display the
assembler instruction at that address.

Part 4. The C-SPY simulator 235

Control menu

8051 IAR Embedded Workbench™
236 User Guide

INTERRUPT...

The interrupt simulation can be used in conjunction with macros and complex
breakpoints to simulate interrupt-driven ports. For example, to simulate port input,
first specify an interrupt that will cause the appropriate interrupt handler to be called.
Then set a breakpoint at the entry of the interrupt-handler routine, and associate it with
a macro that sets up the input data by reading it from a file or by generating it using
an appropriate algorithm.

Note: C-SPY only polls for interrupts between instructions, regardless of how many
cycles an instruction takes.

The C-SPY interrupt system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. Changing the cycle counter will affect any
interrupts you have set up in the Interrupt dialog box.

Performing a C-SPY reset will reset the cycle counter, and any interrupt orders with a
fixed activation time will be cleared. For example, consider the case where the cycle
counter is 123456, a repeatable order raises an interrupt every 4000 cycles, and a
single order is about to raise an interrupt at 123500 cycles.

After a system reset the repeatable interrupt order remains and will raise an interrupt
every 4000 cycles, with the first interrupt at 4000 cycles. The single order is removed.

For an example where interrupts are used, see Tutorial 3, page 50.

The Interrupt... command displays the following dialog box to allow you to
configure C-SPY’s interrupt simulation:

Interrupt [x]
¥ Simulation On Cloge |
Wectar

[oe2 =

Activation Time
8000

Fiepeat Interval Latency

[1000 Jo

Frobability Time Yariance

100 — [o =

Interupts

Set
[Elear

[E[ean A
I adifie

Figure 166: Interrupt dialog box

C-SPY reference __o

To define a new interrupt enter the characteristics of the interrupt you want to simulate
and choose Set.

To edit an existing interrupt select it in the Interrupts list and choose Modify to
display or edit its characteristics, or Clear to delete it. Notice that deleting an interrupt
does not remove any pending interrupt from the system.

For each interrupt you can define the following characteristics:

Vector

The interrupt vector table for a specific derivative must be defined in the device
definitions file (dd£) which you specify using the C-SPY option Use description file
in the IAR Embedded Workbench; see page 132 for additional information.

An interrupt vector can be selected from the drop-down list in the Interrupt dialog
box.

For example, to generate an external interrupt, select the vector externalo.

The externalo is the same name as the interrupt name that is specified in the
DDF-file.

Activation Time

The time, in cycles, after which the specified type of interrupt can be generated.

Repeat Interval

The periodicity of the interrupt in cycles.

Latency

Describes how long, in cycles, the interrupt remains pending until removed if it has
not been processed. Latency is not implemented for the 8051 microcontroller.
Probability

The probability, in percent, that the interrupt will actually appear in a period.

Time Variance

A timing variation range, as a percentage of the repeat interval, in which the interrupt
may occur for a period. For example, if the repeat interval is 100 and the variance 5%,
the interrupt may occur anywhere between T=95 and T=105, to simulate a variation
in the timing.

Part 4. The C-SPY simulator 237

Control menu

8051 IAR Embedded Workbench™
238 User Guide

Simulation On/Off

Enables or disables interrupt simulation. If the interrupt is disabled the definition
remains but no interrupts will be generated.

TRACE

Toggles trace mode on or off. When trace mode is on, each step and function call is
listed in the Report window:

I Report IH[=l E3

Download completed, 924 hytes loaded
Stop at .tutor.chZd (main)

Figure 167: Report window with trace mode on

Note: The trace information will be reduced if calls mode is off.

CALLS

Toggles calls mode on or off. Toggling calls mode off does not affect the recognition
of the program exit breakpoint. When calls mode is on, the function calls are listed in
the Calls window:

TUTOR\main[void]

Figure 168: Calls window with calls mode on

REALTIME

Reserved for the emulator and ROM-monitor versions of C-SPY.

LOG TO FILE

Toggles writing to the log file on or off. When log file mode is on, the contents of the
Report window are logged to a file. Choose Select Log File... from the Options menu
to enable the log file function.

C-SPY reference __o

PROFILING

Toggles profiling on or off. For further information regarding Profiling, see Profiling
window, page 222.

Options menu

The commands on the Options menu allow you to change the configuration of your
C-SPY environment, and register macros.

Settings...
Load Macra...
Select Log File...

Figure 169: Options menu (C-SPY)

SETTINGS...

Displays the Settings dialog box to allow you to define the colors and fonts used in
the windows, and to set up registers.

Window Settings

Allows you to specify the colors and fonts used for text in the Source window, the font
used for text in other windows, and several general settings:

Settings [%]
‘window Settings | Reqister Setupl SFR Setupl ke Bindingsl
— Source window————————————— [~ Other windows -~ General
B | I[;a"S vl IV Datatip
Caolar | Fant | I” Restore
states
Type style: ¥ Syntax
Integer [oct] I > l highlight
Integer [hex) LI Normal
Tab space:
Zzmmple 2

QK I Cancel | Lol |

Figure 170: Window Settings tab in Settings dialog box

To specify the style used for each element of C syntax in the Source window, select
the item you want to define from the Source window list. The current setting is shown
by the Sample below the list box.

Part 4. The C-SPY simulator 239

Options menu

8051 IAR Embedded Workbench™
240 User Guide

You can choose a text color by clicking Color, and a font by clicking Font. You can
also choose the type style from the Type Style drop-down list.

To specify the font used in other windows, choose a window from the drop-down list

and click Font.

You can also specify the following general settings:

Settings

Description

Data tip

Restore states

Syntax highlight
Tab space

Shows the current value or function start address when the mouse
pointer is moved over a variable constant, or function name in the

Source window.

Restores breakpoints, memory maps, and interrupts between

sessions.

Highlights the syntax of C programs in the Source window.

Specifies the number of spaces used for expanding tabs.

Table 56: General window settings

Then choose OK to use the new styles you have defined, or Cancel to revert to the
previous styles.

Register Setup

Allows you to specify which registers to be displayed in the Register window and to

define virtual registers.

Settings

‘Window Settings Fegister Setup | SFR Setupl Key Bindingsl

— Register
Dizplayed registers:

—Wirtual register

Select Al |
Remave Al |

Delete |
Delete &l |

Mew

QK I Cancel | Lol

Help

Figure 171: Register Setup tab in Settings dialog box

To specify which registers are displayed in the Register window, select them in the

Displayed Register list and click OK.

Click Select All or Remove All to select or deselect all the registers.

C-SPY reference __o

The Virtual registers field allows you to specify any memory locations to be
displayed in the Register window, in addition to the standard registers.

To define virtual registers, click New to display the Virtual Register dialog box:

Mame Size Baze

[MoFed =l =]

Address Segment

[0 |cooe =l
()8 I Cancel |

Figure 172: Virtual Register dialog box

Enter the Name and Address for the virtual register, and select the Size in bytes, Base,
and Segment from the drop-down lists. Then choose OK to define the register. It will
be displayed in the Register window after the standard registers you have selected.

For information about the processor-specific symbols, see Assembler symbols, page
182.

SFR Setup

The special function registers are categorized into groups, and the Display control
tree structure allows you to select the registers or groups of registers to be displayed
in the SFR window; see SFR window, page 216, for additional information.

Settings E

window Settingsl Register Setup SFR Setup | Key Bindingsl

Lollapze All |
Expand All |
Select All |
Deselect All |

Dizplay

QK I Cancel Lol Help

Figure 173: SFR Setup tab in Settings dialog box

Part 4. The C-SPY simulator 24|

Options menu

8051 IAR Embedded Workbench™
242 User Guide

To view the contents of a group, click on its plus-sign icon or select the Expand All
button to view the contents of all groups. To hide the contents of a group, click on its
minus-sign icon or select the Collapse All button to hide the contents of all groups.

To select a register or a group of registers, click on its check box. When you select a
group, all registers in that group become selected. If you want to deselect one or more
registers from a selected group, first expand the group and then uncheck each register
that should not be displayed in the SFR window.

The Select All button selects all registers in all groups, and the Deselect All button
deselects all groups and the registers in them.

Choose OK to set the display of SFRs.

Note: The SFR Setup page is available only if you have specified the device
description file (* . dd£) to be used. This file includes necessary information about the
SFRs. For additional information, see Device description file, page 132, and the
chapter Device description file in this guide.

Key Bindings

Displays the shortcut keys used for each of the menu options, and allows you to
change them:

Settings [%]

window Settingsl Fiegister Setupl SFR Setup key Bindings |

Command:

Cateqgory:

ﬂ I General Commands j

Frezz new shortout key:

E xit
INone |
Fut Set Shortcut

Copy Current shortcut:

Eii?:lte EtrkeZ Remove
Togale Tool Bar —
Toaale Debua Bar LI ’ Remove Al
Drescription
’7Undo the last action ‘
()8 I Cancel | Ll |

Figure 174: Key Bindings tab in Settings dialog box

To define a shortcut key select the command category from the Category list, and then
select the command you want to edit in the Command list. Any currently defined
shortcut keys are shown in the Current shortcut list.

C-SPY reference __o

To add a shortcut key to the command click in the Press new shortcut key box and
type the key combination you want to use. Then click Set Shortcut to add it to the
Current shortcut list. You will not be allowed to add it if it is already used by another
command.

To remove a shortcut key select it in the Current shortcut list and click Remove, or
click Remove All to remove all shortcut keys for a command.

Then choose OK to use the key bindings you have defined, and the menus will be
updated to show the new shortcuts.

You can set up more than one shortcut for a command, but only one will be displayed
in the menu.
LOAD MACRO...

Displays the following dialog box, to allow you to specify a list of files from which to
read macro definitions into C-SPY:

Macro Files 2] X]
Look jn: I {23 tutor j _IIfF
% Tutor2. mac
File name: ITut0r2.mac
Files of twpe: IMacro Filez [*.mac] j
Selected Macro Files: Add

Add All

Femove Al

— Registered Macro
A i lUser € System

Mame Farameters | File - Fiegister |

_canceldlinterrupts] - Spstem Macro -

__cancellnterupt [e=pr] - Spstem Macro - Clase |
_ cleardllBreaks Il - Spstem Macro -

_cleardlMaps Il - Spstem Macro -

_clearBreak [string, st... - Swstem Macro -

_ clearkdap [expr, stri... - System Macro - LI

Figure 175: Macro Files dialog box

Part 4. The C-SPY simulator 243

Options menu

8051 IAR Embedded Workbench™
244 User Guide

Select the macro definition files you want to use in the file selection list, and click Add
to add them to the Selected Macro Files list or Add All to add all the listed files.

You can remove files from the Selected Macro Files list using Remove or Remove
All

Once you have selected the macro definition files you want to use click Register to
register them, replacing any previously defined macros or variables. The macros are
listed in the Report window as they are registered:

B Report =] 3

Processing file: C:hiarbewZ3V8051%tutoritutord.mac
CSPY wariable FileHandle registered

CSPY wariable InterruptlID registered

macro execlUserSetup registered

macro execlUserBeset registered

macro execlUserExit registered

macro TutordSetup registered -

AP

Figure 176: Listing of registered macros in Report window
Registered macros are also displayed in the scroll window under Registered Macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking once again sorts the contents in
the reverse order. Selecting All displays all macros, selecting User displays all user
macros, and selecting System displays all system macros.

Double-clicking on a user-defined macro in the Name column automatically opens
the file in Microsoft Notepad, where it is available for editing.

Click Close to exit the Macro Files window.

SELECT LOG FILE...

Allows you to log input and output from C-SPY to a file. This command displays a
standard Save As dialog box to allow you to select the name and the location of the
log file.

Browse to a suitable folder and type in a filename; the default extension is 1og. Then
click Save to select the specified file.

Choose Log to File in the Control menu to turn on or off the logging to the file.

C-SPY reference __o

Window menu

The first section of the Window menu contains commands to let you control the order

and arrangement of the C-SPY windows.

The central section of the menu lists each of the C-SPY windows. Select a menu

command to open the corresponding window.

The last section of the menu lists the open windows. Selecting a window makes it the

active window.

B Cascade

B Tile Horizontal

M Tile Yertical
Armange lcong

] Calls
Code Coverage
Locals
Memory
FErofiling
B Register
Feport
SER
Source
Terminal [/0
B watch

1 Source
2 Repart

Figure 177: Window menu (C-SPY)

CASCADE

Rearranges the windows in a cascade on the screen.

TILE HORIZONTAL

Tiles the windows horizontally in the main C-SPY window.

TILE VERTICAL

Tiles the windows vertically in the main C-SPY window.

ARRANGE ICONS

Tidies minimized window icons in the main C-SPY window.

Part 4. The C-SPY simulator 245

Help menu

Help menu

8051 IAR Embedded Workbench™
246 User Guide

Provides help about C-SPY.

Lontents
‘? Search for help on...
How to use help

Embedded ‘Workbench Guide

About....

Figure 178: Help menu (C-SPY)
CONTENTS

Displays the Contents page for help about C-SPY.

SEARCH FOR HELP ON...

Allows you to search for help on a keyword.

HOW TO USE HELP
Displays help about using help.

EMBEDDED WORKBENCH GUIDE

Provides access to a hypertext version of this user guide.

ABOUT...

Displays the version number of the IAR C-SPY Debugger user interface and of the
C-SPY driver for the 8051.

C-SPY command line
options
This chapter gives information about how you set C-SPY options from the

command line and lists a summary of command line options.

Normally, you specify the C-SPY options among the other project options in
the IAR Embedded Workbench; see the C-SPY options in Part 3: The IAR
Embedded Workbench chapter in this guide for detailed information.

Setting C-SPY options from the command line

You can specify C-SPY options when you start the IAR C-SPY Debugger,
cw23.exe, with the Windows Run... command or from the command line. When
you run C-SPY outside the IAR Embedded Workbench, the following dialog box will
appear when you open a project:

Session Oplions [%]
C-5P Driver:
Cancel |
Options:

vla

Figure 179: Session Options dialog box

Note: If you specify a valid input file name and a driver (and any other session
options) on the command line, C-SPY loads the input file automatically. Otherwise, if
no driver is specified (and there is more than one installed), a dialog box appears and
asks you to choose one and C-SPY continues. If no input file is given, C-SPY goes
into standby mode. In this case, you must load the input file from the File menu to
continue.

USING MACRO FILES FOR OPTIONS

There is a possibility to use the macro execUserInit () totell C-SPY what options
to use. Define this in a C-SPY macro file:

execUserInit ()

{

__processorOption ("-spCOM1:9600,N,8,1,NONE") ;
__processorOption("-cl");

}

Part 4. The C-SPY simulator 247

Summary of command line options

Note that the macro execUserInit () cannot contain the transparent ()
macro. This can be done in execUserPreload () since it is called after the
communication has been initialized.

Summary of command line options

The following command line options are available:

Option Description

-cl Verifies memory after downloading to ROM-monitor.
-c2 Verifies every byte after downloading to ROM-monitor.
-d driver Selects C-SPY driver.

-f file Specifies setup file.

-n Suppresses downloading of code to ROM-monitor.

-p file Loads device description file.

-rz Disables fast download to the ROM-monitor.

-sp Specifies the serial communication for the ROM-monitor.
-sl Creates log file for the ROM-monitor communication.
-v{o]|1} Specifies processor option.

-x Allows C-SPY to use a medium memory model where XDATA and

CODE are mapped to the same memory.

Table 57: Summary of C-SPY command line options

Descriptions of C-SPY command line options

The following section gives details about the C-SPY command line options.

-cl -cl

Use this option to verify that the memory on the EVB is writable and mapped in a
consistent way. A warning message will be generated if there are any problems during
download.

-c2 -c2

This option is similar to the -c1 option but it checks every byte after downloading to
verify that there are no hardware problems.

8051 IAR Embedded Workbench™
248 User Guide

C-SPY command line options __¢

-d -d driver

Use this option to select the appropriate driver for use with C-SPY:

Driver C-SPY version
s8051.cdr Simulator

r8051.cdr ROM monitor
r805li.cdr INTEL RISM monitor

Table 58: C-SPY supported drivers

Example
To debug project1.do3 with the simulator driver:

cw23 -d s8051 projectl.do03

-f -f file
Use this option to register the contents of the specified macro file in the C-SPY startup
sequence. If no extension is specified, the extension mac is assumed.
Example
To register watchdog.mac at startup when debugging watchdog.d03:

cw23 -f watchdog.mac watchdog.d03

-n -n

This option disables the downloading of code, which can be time-consuming; instead
it creates C-SPY tables internally. This command is useful if you need to exit C-SPY
for a while and continue without loading code. The implicit RESET performed by
C-SPY at startup is not disabled, though.

-p -p file
Use this option to load a device description file which contains various device specific
information such as I/O registers (SFR) definitions, vector, and control register
definitions.
Example
To use the 10051 .ddf description file, enter the following command:

cw23 -p 10051.ddf

Part 4. The C-SPY simulator 249

Descriptions of C-SPY command line options

-rz

-sp

-s1l

8051 IAR Embedded Workbench™
250 User Guide

-rz

Fast downloading of user code is enabled by default in the ROM-monitor version of
C-SPY. If you use the -rz option, downloading will take more time since the
error-free protocol is used. However, this should only be necessary if the
ROM-monitor is not fast enough to process the data stream, or due to an insufficiently
shielded communication cable.

If fast download fails constantly, there are a couple of things you can do:

e Lower the transmission speed (if possible).
e Use RTS/CTS handshaking between C-SPY and the ROM-monitor.
e Disable fast downloads. On the command line use the -rz option.

The precompiled ROM-monitor initializes the serial port to 9600 baud.

Your ROM-monitor might manage higher speeds. If the CPU has a clock rate of
16MHz or more, 19200 baud should work properly. This gives a download speed that
peaks at about 2Kbytes per second.

-spport[:baudl:parityl,bits[, stopl, handshakingl]1]1]

Parameters Description

port One of the supported ports: COM1, COM2, COM3, COM4

baud One of following speeds: 300, 600,1200,2400,4800, 9600,
19200,38400,57600,115200 (default 9600)

parity Only N (None) is allowed.

bits Only 8 data bits are allowed.

stop 1 or 2 stop bits (default I).

handshaking NONE or RTSCTS (default NONE).

Table 59: Serial port command line options

If this option has not been given, C-SPY will try using the COM1 port at 9600 baud.
Your evaluation board must of course support the requested baud rate.

Example

To use COM1 at 38400 baud, add the following to the C-SPY command line:

-spCOM1:38400,N, 8,1, NONE

-sl logfile

Use this option to log the communication between C-SPY and the ROM-monitor to
the specified log file. This can be particularly useful for trouble-shooting purposes.

C-SPY command line options __¢

-v{option}

Specifies the processor variant as follows:

Option Description
-v0 Max 256 byte data, 8 Kbyte code
vl Max 64 Kbyte data, 8 Kbyte code

Table 60: Available processor type options

-X
This option allows C-SPY to use a medium memory model where XDATA and CODE
are mapped to the same memory.

Part 4. The C-SPY simulator 25|

Descriptions of C-SPY command line options

8051 IAR Embedded Workbench™
252 User Guide

!I!I!I!I!IW[!I

Part 5: C-SPY for the 8051
ROM-monitor

This part of the 8051 IAR Embedded Workbench™ User Guide contains
the following chapters:

e Introduction to the ROM-monitor

e Controlling user applications

e The ROM-monitor boards

e The ROM-monitor program

e Advanced topics

e Diagnostic messages.

These chapters assume that you already have some working knowledge of

the evaluation board (EVB) you are using.

You should read this part in conjunction with Part 4: The C-SPY simulator
in this guide.

253

254

Introduction to the
ROM-monitor

This chapter helps you get started using the 8051 ROM-monitor and describes
the differences between the ROM-monitor and simulator versions of the 8051
C-SPY debugger. It assumes that you already have working knowledge of the
evaluation board you are using.

The C-SPY ROM-monitor

The IAR C-SPY ROM-monitor consists of the IAR C-SPY Debugger and a target
monitor program which comes in the following different versions:

Target monitor program Description
Mon517.a03 The EM31 ROM-monitor board, 32Kbytes PROM, 4800 baud,
@ 12 MHz
Mon504.a03 The KitCon-504 board, 128Kbytes Flash, 19200 baud, @ 40
MHz, 9600 baud @ 20 MHz
Mon505.a03 The KitCon-504 board, 128Kbytes Flash, 9600 baud @ 8 MHz.
Mon515.a03 The KitCon-504 board, 128K Flash, 9600 baud @ 10 MHz.
Mon541.a03 The KitCon-541 board, 128 KBytes Flash, @2 MHz
Monem31.a03 The MCB-517 board, 16/32Kbytes PROM, 4800 baud, @ 12 MHz

Table 61: ROM-monitor versions
The target monitor programs are available in the \8051\src\rom directory.

In order to be able to control the execution of your application from C-SPY, the
ROM-monitor must be installed on your evaluation board.

The ROM-monitor file can be burned directly into an EPROM, which replaces the
monitor supplied with your board. To be able to do this you must use an appropriate
programming adapter, typically supplied with the evaluation board, or use a separate
EPROM programmer.

The ROM-monitor can also be downloaded into flash ROM.
All files are in INTEL-format.

Part 5. C-SPY for the 8051 ROM-monitor 255

Differences between the ROM-monitor and simulator versions of C-SPY

Differences between the ROM-monitor and simulator versions of C-SPY

8051 IAR Embedded Workbench™
256 User Guide

The following table summarizes the key differences between the ROM-monitor and
simulator versions of C-SPY:

C-SPY ROM-Monitor C-SPY simulator

Only OP-fetch breakpoints. OP-fetch and data breakpoints.
Execution in real-time. Not real time.

Real interrupts. Simulated interrupts.

No cycle counter. Cycle counter.

Table 62: Differences between C-SPY ROM-monitor and C-SPY simulator

The ROM-monitor
program

This section gives a brief, target independent, description of how a
ROM-monitor works.

Communication

The ROM-monitor starts as soon as the EVB has been reset. It first tries to set up a
new connection with C-SPY by repeatingly sending out four characters with the
hexadecimal values c0 1a e5 c0 until getting an answer from C-SPY.

When the connection is established C-SPY starts controlling the ROM-monitor with
options like read/write memory, read/write registers, go, single step and reset.

All commands and data sent between C-SPY and the ROM-monitor are put into
packets. Bad or lost packets are retransmitted until the receiver acknowledges them.
Every time C-SPY has no ordinary commands to send to the ROM-monitor, it sends
a test command to check if the ROM-monitor is still active or if it has been reset.

Execution of user code

When the ROM-monitor is running, all interrupts are disabled. The ROM-monitor
keeps the user registers in its working area and uses its own stack.

Before executing the user program, all registers must be restored. The ROM-monitor
copies some or all of the user registers to the user stack. After that it pops them back
into the registers, restores the interrupts and makes a subroutine return to the user
code. Some space must be left on the stack to allow for calls to and returns from the
ROM-monitor.

Entering the ROM-monitor from user code is usually done through a breakpoint or an
interrupt. The breakpoint consists of an instruction written to the address, in the user
code, where the execution should be stopped. User instructions, overwritten by
breakpoints, are kept and stored by C-SPY.

Part 5. C-SPY for the 805] ROM-monitor 257

Execution of user code

8051 IAR Embedded Workbench™
258 User Guide

When single stepping, temporary breakpoint(s) are put where the next instruction will
begin. Overwritten code is stored by the ROM-monitor and restored after executing
the instruction. Interrupts are always disabled during single stepping. On some CPUs
a trace bit can be set instead of putting breakpoints in the code. The type of breakpoint
instruction depends on the CPU and can either be an instruction that causes an
interrupt or it can be a subroutine call to the ROM-monitor.

An interrupt is also used to stop user programs if no breakpoints can be reached.

This interrupt handles incoming characters received from the serial port during
execution of user code. On some EVBs this type of interrupt is used and on others a
periodical interrupt from a timer must be used instead.

C-SPY does not send any characters to the ROM-monitor when user code is running.
When Stop is pressed a stop character is sent from C-SPY. The interrupt handler will
detect it and jump to the ROM-monitor.

Most CPUs disable interrupts at reset. The ROM-monitor does not enable any
interrupts. Therefore the Stop interrupt has to be turned on by the user. In the 8051 this
is done by setting the ES and EA bits in the IE sfr register.

C-SPY debugger

I {trsese

Serial porthandler
Sl
Transfer protocal
Application
program yal
Command protocol tonitar
I internal
g storage
¢ﬂl CPU specific functions
RAM EPROM RAM

The transfer and command protocols are delivered as library functions. The serial port
handler and parts of the CPU specific functions are delivered in source code.

Controlling user
applications

This chapter describes how to control applications using the ROM-monitor.

Breakpoints

Code breakpoints are LCALL instructions, which call the ROM-monitor. The size of
the LCALL is 3 bytes and this may cause problems in cases where jumps to instructions
are in the middle of a covering breakpoint.

1000 E4 CLR A

1001 7810 MOV RO, #10h<- breakpoint is set here
LOOP: 1003 26 ADD A, @RO

1004 D8FD DJNZ RO, LOOP<- PC points here

In the example code above, the bytes containing the values 78, 10, 26 are replaced
with the 3-byte breakpoint/LCALL. A go in C-SPY, from the current PC position will
result in something else than ADD A, @RO.

Situations like this cannot be detected by C-SPY and you should be aware of this when
you set your own breakpoints.

Breakpoints set by C-SPY are always at the beginning of C statements and C
functions. To ensure that these are correct you should always compile your application
modules with the Code added to statements: 3 NOPs (-r1=3) option, to tell the
compiler to insert three extra NOPs at the beginning of each statement.

When stepping at assembler level, C-SPY checks if you are stepping to an instruction
that would, when running, be replaced with the last two bytes of a breakpoint, and then
gives a warning. By stepping through the assembler code you can trace badly placed
breakpoints.

C-SPY also checks that no breakpoints overlap each other.

The Control C feature

To stop a running program you click on the Stop button in C-SPY. A stop character
will be sent to the ROM-monitor. The character is detected by an interrupt routine that
stops the programs and enters the ROM-monitor. This will only work if interrupts
have been turned on by your application or from C-SPY.

Note that the interrupts are turned off by default.

Part 5. C-SPY for the 805] ROM-monitor 259

Single stepping

By default the ROM-monitor boards are configured to use the internal serial port for
the communication with C-SPY.

To enable the internal serial port interrupt from C-SPY, do this in Quick Watch
dialog box:

ES=1
EA=1

The following example shows how to enable this interrupt in your program:

#include <io51.h>
void enable control c(void)

{

ES=1;/* Enable internal serial port interrupt */
EA=1;/* Enable all enabled interrupts */

}

Each time the ROM-monitor starts execution of the application code it puts the serial
interrupt vector into the application code. If the internal serial port interrupt is used by
the ROM-monitor, a LOMP xxx vector is written to 0023h.

Single stepping

When single stepping at assembler level all interrupts are turned off (if the
ROM-monitor allows all interrupts to be turned off). The monitor temporarily sets out
a breakpoint where the instruction ends and starts running the user application.

Debugging in real time

8051 IAR Embedded Workbench™
260 User Guide

This section describes restrictions to C programs in a real-time environment.

To ensure that the program is executed in real time set Realtime ON in the Control
menu. When real-time checking is enabled C-SPY does not execute the following
commands in the Execute menu that require the CPU to be halted: Step, Step Into,
Autostep, and Go Out (and their toolbar button equivalents).

If the C function stack, Calls, is enabled, and the Terminal I/O window is open, the
following warnings will be displayed:

Warning[20] : Calls disabled in realtime
Warning[21] : Termio disabled in realtime

The C function stack and terminal I/O will automatically be turned off until the
Realtime command is set back to OFF.

Real-time checking is off by default.

Controlling user applications __

DEBUG OPTIONS

The code must be compiled with the Generate debug information - Code added to
statements: 3 NOP’s (-r1=3) option. This option inserts 3 NOP instructions at the
beginning of each C statement to reserve space for the 3-bytes long break instruction.
This is to make sure that two statements are not closer than three bytes to each other.
Otherwise breakpoint overlap errors will occur during the debugging.

CPU HALT

When C-SPY is executed in non-real-time mode (default) the ROM-monitor CPU will
often be temporarily halted for information exchange with C-SPY. This is however
not seen by the user.

Note that this affects the interrupt timing, and interrupts that occur during the halt
periods could be lost. The execution speed will also be reduced.

Only the Go and Goto Cursor commands with the C function stack disabled (Calls
OFF) execute the program without halting the CPU, with full interrupt support.

Any other execution command will enable the C function stack which halts the user
application.

Note that communication through the Terminal I/O window also temporarily halts the
ROM-monitor CPU even when executing the Go or Goto Cursor commands (or their
toolbar button equivalents) on the Execute menu.

PROCESSOR SHARING

If a program consists of several functions that are switched on and off from a realtime
executive, or similar processor sharing system, only modules from one task at a time
should be compiled with debug. Otherwise there is a potential risk that the C function
stack will contain incorrect information.

Debugging interrupts
If the ROM-monitor EPROM covers the exception vector table, all vectors are
normally remapped to the beginning of the user RAM area. The extra overhead added

is an LJMP instruction that takes 2 cycles. This allows you to install exception vectors
in RAM.

For all ROM-monitors, all unused vectors are filled with breakpoints that gives control
to the ROM-monitor if you failed to install a vector properly. This is done every time
the application is downloaded.

Part 5. C-SPY for the 805] ROM-monitor 261

Resolving problems with the ROM-monitor

H W N

To see how the ROM-monitor handles interrupt vectors:
Download an application that installs at least one exception vector.
Look at the exception vector table using the Memory window.
Find out where the vector you are interested in points.

Make sure the source window displays assembly instructions. If not, press the Toggle
C/Assembler button.

Choose Goto... from the View menu, then type the addresses where the exception
vectors you are interested in points. There should be a LIMP instruction that points to
your interrupt handler, otherwise it should be the beginning of your interrupt handler.

Resolving problems with the ROM-monitor

8051 IAR Embedded Workbench™
262 User Guide

This section includes suggestions for resolving problems when debugging with
C-SPY in conjunction with a ROM-monitor.
VERIFYING THE DOWNLOAD

Use the Target consistency check options on the ROM-monitor page of the C-SPY
options: Verify boundaries (-c1) or Verify all (- c2) to verify that the EVB memory
is writable and mapped in a consistent way. The Verify all option verifies every byte
after loading, and so is considerably slower but more thorough.

For more information, see the chapters C-SPY options and C-SPY command line
options, respectively.
CHECKING FOR PROBLEMS

Reload the application with the Suppress load (-n) and Verify all (-c2) options set
on the ROM-monitor page of the C-SPY options. This will verify whether the
memory contents have changed, or whether the program is self-modifying.

For more information, see the chapters C-SPY options and C-SPY command line
options, respectively.

For problems concerning the operation of the EVB, refer to the documentation
supplied with it, or contact your hardware distributor.

POSSIBLE PROBLEMS

The following list gives details of the most common problems.

Controlling user applications __

STOP only works from time to time

Normally, characters are polled from the serial port. But when C-SPY sends the stop
command while the application is running, the application must be interrupted.

Sometimes, however, an interrupt is not generated correctly. Then verify that
interrupts are enabled in the CPU and that the serial port is set to generate interrupts.

Warnings about write failure during load

ROM-monitors on EVBs, with the exception vectors in ROM, use a remapped
interrupt table where your interrupt vectors can be entered. If interrupts are used in the
user application and the ROM-monitor uses such a table, the table must be correctly
installed. If the exception vectors reside in the ROM-monitor, the vectors must point
into the USER RAM-based area where the actual vectors are installed (see the manual
for your EVB). Use the #define INTERRUPT_JUMP_TABLE option, rebuild the
monitor and put the remapped interrupt table at a safe place in RAM.

The application can also be linked to a place where there is no RAM. An incorrect
linker command file usually causes this. If you only have a few errors, the probable
cause is some interrupt vectors being loaded into ROM. If there are more than just a
few errors, your program is probably being loaded into ROM. In either case, give the
linker command file a closer look.

No progress in normal code when a periodic interrupt is running

Running with Calls ON selected in the Control menu (default) will steal a lot of time
when C- SPY and the ROM-monitor are communicating. Try running with Calls OFF
if the application still runs too slow, choosing Realtime ON will quicken things up.

Terminal /O window cannot be opened

The application has probably been linked with a real putchar () /getchar (). Use
the standard library and remove any special putchar () /getchar () from the
XLINK command line or xc1 file. The Terminal I/O window operates with a special
version of putchar () /getchar () which has its I/O redirected to the Terminal I/O
window.

Use the XLINK Debug info with terminal I/O (-rt) option to enable the Terminal
I/0 window.

Monitor works, but application won’t run

The application is probably linked to some illegal code area (like the interrupt table).
Do not use the original xc1 file delivered with the C compiler without changing the
start addresses of CODE and DATA segments to somewhere outside the interrupt
table.

Part 5. C-SPY for the 8051 ROM-monitor 263

Resolving problems with the ROM-monitor

8051 IAR Embedded Workbench™
264 User Guide

Monitor crashes when running application

If the monitor crashes the board will need a reset. This happens when the application
writes data to restricted memory areas (like the monitor’s RAM or the application
code).

Stack overflow or exception vectors that are not properly installed may also be the
problem.
No contact with the monitor

If the serial cable is damaged or of the wrong type, C-SPY might use the wrong port
or the wrong speed on the computer when trying to communicate with the
ROM-monitor.

For more information, see the chapters C-SPY options and C-SPY command line
options, respectively.

The monitor might also have been linked to the wrong address.

The application might also be compiled to use another type of serial port or another
address to the serial port on the EVB.

Advanced topics

This chapter describes more advanced use of the ROM-monitor, such as
executing transparent commands, adapting the ROM-monitor, switching
memory layout, building a new ROM-monitor, and compiling a modified

ROM-monitor from the IAR Embedded Workbench.

Executing transparent commands

If the ROM-monitor has been extended with transparent commands (see Writing
transparent commands, page 266) these can easily be executed. The reason for adding
ROM-monitor commands is that some operations are best performed when executed
on the board. This way we are not limited by the transfer speed between the computer
and the evaluation board (EVB). Let us assume that we have defined the transparent
command stringSearch text, returning the addresses where the text is found in
memory. This command would take too long to execute if it could only operate
through memory reads. By running the command on the EVB, we only have to send
the address of each match encountered in memory.

HOW TO EXECUTE A TRANSPARENT COMMAND
Follow these steps to execute a transparent command:

| In C-SPY, select Quick Watch... in the Control menu.

é Toggle Breakpoint F5
Edit Breakpoints... F7

Temaory Map...

Memory Fill...
Aszzemble. ..
Interrupt...

Trace
Callz
Eealtime
Lot File

€13 Erofiling

Figure 180: Quick Watch command in the Control menu

Part 5. C-SPY for the 8051 ROM-monitor 265

Writing transparent commands

2 Use the predefined macro __transparent (commandstring) to send your

transparent command to the ROM-monitor. Click the Recalculate button; the macro
will send the string argument as a transparent command to the ROM-monitor where
it will be interpreted and executed.

Quick Watch [%]
E xpression: &C
j Aszembler

;I Cloze |
] _'ILI

Walue:
=] addwatch |

I_transparent[‘ ‘stringS earch Hello"]

whatis:

_ILI Faormat
LI . IDefauIt - l

Figure 181: Quick Watch window

The output will be presented in the Report window, where you can examine it by
scrolling it up and down.

The _ transparent () macro can also be called from the C-SPY setup macros
defined in a macro file. Note that the macro execUserInit () cannot contain the
__transparent () macro because the communication channel has not been
opened. Macros used for initialization can be put in the macro execUserPreload ()
instead, since this macro is called after the communication has been set up.

Writing transparent commands

8051 IAR Embedded Workbench™
266 User Guide

The ROM-monitor works well as it is with C-SPY, but you may want to add even
more functionality to it. You can do this with transparent commands as described in
Executing transparent commands, page 265.

There are two useful functions, init transparent () and transparent ()
which can be found in the file transp.c.

Advanced topics 4

void init_transparent(boolean_R20 cold_start)

This function is called during ROM-monitor initialization. If you have state variables
or something that needs to be initialized you must do it explicitly in this function as
the ROM-monitor uses a minimized C-startup that does not initialize any variables.

void transparent(unsigned char leave)

Every transparent command typed in C-SPY ends up here. The parameter 1eave will
always be 0 when called from the IAR Embedded Workbench. If 1eave differs from
0, do not try to interpret any command, as there is none. If leave is 0, there is a
transparent command available, you can read it as shown in transp.c. How the
command is interpreted and handled is your decision.

Output is transmitted to C-SPY using easy put string R10 and you mustend the
output by sending the string #*.

When writing transparent commands, the following functions in the ROM-monitor
can be of interest:

boolean R20 poke byte R20(call address R20 caddr, char b,
unsigned char type)

Writes a byte to memory. caddr is the address to write at, b is the byte to be written
and type is the memory type as defined in the file monitor.h, you can normally
put Monitor MEM TYPE IRAM for IDATA memory.

This should return 0.
int peek byte R20(call address R20 caddr, unsigned char type)

Reads a byte from memory and returns it to the caller. If the byte was not readable,
-1 is returned.

CPU registers are kept in a global variable called cpu_register R20, refer to the
file r20.h for more information.

Addresses in the ROM-monitor are of the type address_R20 that is a union defined
in the file r20. h. This union is very small, but as the compiler does not handle small
unions as efficiently as integral numbers it is converted to a number when doing
function calls. This number is of the type call address_R20. The conversion is
done using the CAST () macro defined in r20 . h. This is a simple example function
that adds two to an address and passes it to another function:

call address r20 inc2(call address R20 caddr)

{

address_R20 addr;
CAST (addr) = caddr; /* Make addr valid */
addr.c.c0 += 2; /* inc 8 bits address */

Part 5. C-SPY for the 8051 ROM-monitor 267

Adapting the ROM-monitor

bar (CAST (addr)) ; /* call function */
return CAST (addr) ; /* return incremented address */

}

When incrementing addresses, you should use INC_ADDRESS_R20 defined in the file
r20.h.

Note that the bytes not used in caddr and addr are undefined in all monitor
functions. If IDATA memory is used, the byte in addr . c. c1 is undefined.
PROTECTED MEMORY

The ROM-monitor tests memory before writing to it by inverting the bits to make sure
that it is writable. Some memory locations, especially memory mapped I/O are
vulnerable to such attempts and should be protected. There are three different
verification functions in config. c for this:

Function Description

verify read CONFIG Use this to read protect C-SPY from reading the memory.
Useful if you have created a simple /O by decoding the bus
and a read cause undesirable events. By default all reads are
permitted.

verify write CONFIG Use this to write-protect memory. Can be useful if you do
not want to be able to write to I/O at all from C-SPY or for
similar reasons as for the previous function. By default all
writes are permitted.

verify test CONFIG Use this to prevent the ROM-monitor from testing the
memory by inverting the bits. Highly recommended on
memory-mapped I/O.

Table 63: Verification functions

USING ADDRESS MASKS

If you are using an incomplete address bus, not all addresses exist and certain
addresses are "translated” to other addresses. You can tell the ROM-monitor which
address lines are in use for a particular memory type in the function
address_mask_CONFIG. However, no harm is done if you omit this.

Adapting the ROM-monitor

8051 IAR Embedded Workbench™
268 User Guide

This section describes how you can adapt the 8051 EVB ROM-monitor to your own
hardware.

Advanced topics 4

The first step is to modify your hardware to the ROM-monitor. The entire application
must reside in RAM to be debuggable. You may have to modify your hardware so that
there is enough RAM.

ROM-MONITOR MEMORY USE

The size of the ROM-monitor is about 13Kbytes, but you should reserve some extra
Kbytes for future versions. It will however never be larger than 16Kbytes (use a
16Kbytes EPROM) and can be located anywhere in the CODE memory. The
ROM-monitor needs 2Kbytes RAM in XDATA memory and 16 bytes of user CODE
memory.

HARDWARE RESET

The ROM-monitor takes control during reset and prepares for running its C code by
setting up the stack in the file conf . s03. The first function is called monmain and
resides in the file r10 . c that is not delivered in source form. monmain will
immediately call init_all_ CONFIG that initializes everything.

At reset the 3 first bytes of the ROM-monitor program memory must be mapped to
0000h. These contain a LJMP to the beginning of the ROM-monitor.

At reset the ROM-monitor EPROM on the MCB-517 is also located at 0000h until
the LIMP to the right memory location has been executed. As soon as an instruction is
read from the right position of the ROM-monitor above 8000h, the ROM-monitor
EPROM at 0000h is automatically replaced with the user code and XDATA RAM
until next reset.

On EVB:s with switched memory like the EM31 ROM-monitor, reset should switch
the ROM-monitor EPROM to CODE and user code memory to XDATA.

The ROM-monitors for the KITCON-504, -505 and -515 sets up the memory map
after reset. The code inside #1ifdef MONSKS sets the EVB’s control registers.

SERIAL COMMUNICATION

Both the MCB-517 and EM ROM-monitor board use the internal serial port. The
functions that handle the communication for the internal port can be found in the file
scO.c.

The baud rate for the internal port is defined in the beginning of sc0 . c. The timer 1
used with the internal serial port cannot generate higher baud rate than 4800 when
using a 12.000 MHz crystal. If the crystal is replaced with one on 11.059 MHz speeds
of 9600 and 19200 can also be generated.

The serial code resides in the files sc0 . ¢ for the EM and MCB517, sc504 . ¢ for the
C504, sc505.c for C505 and sc515. ¢ for the C515 board.

Part 5. C-SPY for the 805] ROM-monitor 269

Adapting the ROM-monitor

8051 IAR Embedded Workbench™
270 User Guide

The ROM-monitor comes with all these files for the built-in serial port on these
boards. It can use its own receive interrupt vector for handling Stop commands. See
the example in Setting the interrupt vector, page 270.

WRITING YOUR OWN SERIAL PORT DRIVER

If you want to use another serial port than the ones mentioned above, you can write a
serial I/O module for your port. Make a copy of io.c and rename it to something
suitable for your serial port. Add the code needed to initialize the port, read a
character, write a character and the interrupt poll routine and possibly some others.

void init IO (boolean R20 cold start)
Initializes the serial port to 8 data bits, no parity, one stop bit and the proper speed.

void forbid serial interrupt IO(void)

This function is called when the control comes back to the ROM-monitor after a GO.
You can forget this function unless you need to add code to

permit_serial interrupt IO().

void permit serial interrupt IO(void)

The ROM-monitor uses polled I/O and receive interrupts for Stop commands. The
ROM-monitor will read all (expected) bytes from the serial port. If the serial port
latches the interrupt state and this causes problems for you, you should reset the
hanging serial interrupt here before the ROM-monitor gives control to your
application. Usually you can leave this function empty, and you can definitely leave
it empty when trying to get the ROM-monitor up and running on your serial port.

void put char IO (unsigned char c)
Waits until it is possible to transmit a character and then transmits the given character.

int get_char_ IO (void)
Tries to read a character from the serial port. Returns EOF if there is no character
available at the serial port.

SETTING THE INTERRUPT VECTOR

To set up the interrupt vector for your serial port, proceed as follows. Make sure that
the project top node was selected so that all files inherit this definition. If you use the
SCI port with the SCI interrupt for the EVB board replace the existing #define in
ICC8051 option in the Project menu to:

SERIAL_VECTOR=SERIAL_ PORT_INTERRUPT

The vector addresses are defined in the file monitor.h.

Advanced topics 4

SWITCHED MEMORY LAYOUT

The ROM-monitor also supports switched memory layouts like that on the EM
ROM-monitor board. This allows you to have separate CODE and XDATA memory
for your application.

When the ROM-monitor is running, it has user code memory always switched to
XDATA. This makes reads and writes to user code memory easier to perform. The
only thing mapped to CODE memory is the ROM-monitor EPROM. The user
XDATA memory is disabled when user CODE memory is in XDATA. When the
ROM-monitor wants to access user XDATA memory it temporary switches it back to
XDATA. Using a latch can perform the switching by read or write to two different
addresses. The latch can, of course, also be at one address, and it can be controlled by
writing different values to it.

The example in the file switch. inc contains four macros with switching code
working with the EM ROM-monitor. The four macros are written to work with two
switches using two pairs of latch addresses. Using these switches requires that the
USE_SWITCH is #defined.

The macro SWITCH_TO_MON_MODE switches ROM-monitor EPROM to CODE
memory to CODE. This macro also contains the macro SWITCH_TO_MON_XDATA
that switches user code memory to XDATA.

The macro SWITCH_TO_RUN_MODE switches user code memory to CODE. This
macro also contains the macro SWITCH TO USER_XDATA that switches user code
memory to XDATA.

The memory switches can be used as one or two. In the EM ROM-monitor there is
only one hardware latch. It is set or reset by reading two different addresses in CODE
memory. The two switches in the file switch. inc refers to the same pair of latch
addresses.

When the latch is set user code memory is in CODE and user xdata memory is in
XDATA. When the latch is reset the ROM-monitor is in CODE and user code memory
is in XDATA.

To make it possible to get back to the ROM-monitor from user code or run user code,
a part of the ROM-monitor code must always be accessible as CODE.

In the EM ROM-monitor the upper part of the ROM-monitor EPROM is always
accessible as CODE. This ROM-monitor code also includes the functions for reading
and writing user XDATA memory. If the switch is constructed to replace the whole
ROM-monitor EPROM with user RAM, a part of the ROM-monitor must be copied
to the user RAM. This is done by using the command #define

USE_COPY_RM HIGH.

Part 5. C-SPY for the 8051 ROM-monitor 27 |

Adapting the ROM-monitor

8051 IAR Embedded Workbench™
272 User Guide

BUILDING A NEW ROM-MONITOR

Before building the new ROM-monitor, the linker command file must be modified to
suit your board.

Modifying the linker command file

The following example explains the most important lines in the linker command file.
These are taken from the file mon517.xc1l.

-Z (XDATA) C_ARGX, X UDATA, X IDATA, ECSTR, RF XDATA,
XSTACK=07800

The ROM-monitor’s 2 Kbytes of RAM are located from 7800h to 7FFFh (the last 16
bytes is SFR_PROG):

-Z (XDATA) SFR_PROG=07FF0

It is very important that SFR_PROG is writeable and executable. The ROM-monitor
writes some instructions into this memory and then executes them to get access to the
SFR registers. If you are using switched memory you should let SFR_PROG be at a
position in the user CODE memory, which will be in the ROM-monitor’s XDATA
memory.

-Z (XDATA) JUMP_TABLE=8000

If INTERRUPT JUMP_TABLE is defined, JUMP_TABLE defines where the remapped
exception vector table starts.

-Z(CODE) INTVEC, RCODE, D CDATA, I CDATA, X CDATA, C_ICALL,
C_RECFN, CSTR, CCSTR, CODE, CONST, CTABLE=8000

The ROM-monitor ROM starts at 8000h (with a size of approx 13Kbytes).

The code of the segment RM_HIGH of the assembler routines in the file conf . s03,
placed somewhere in the end of the EPROM, is used to get back to ROM-monitor.
This code must always be accessable as CODE.

-Z (CODE) RM_HIGH=0BFO00
The two pairs of addresses read by the ROM-monitor when switching memory.

No program code should be executed at these addresses if you use the type of memory
switches written in the file switch.inc. The switching is not used with MCB-517,
and the addresses are set to any value.

-DSW_MON XDATA=0F000
-DSW_MON_CODE=0F000

-DSW_USER XDATA=0F800
-DSW_USER XDATA=0F800

Advanced topics o

If you are not using switched memory the macros in the file switch.inc can be
excluded by not defining USE_SWITCH. The macros in switch.inc can be used
anyway without any problems.

If you have an external serial communication chip, make sure its addresses do not
overlap your XDATA RAM memory. If you are using switched memory you can use
the switch to disable these addresses when running user code.

@ Compiling from the command line
Use the file mkmon .bat to compile and link the ROM-monitor. The new

ROM-monitor will reside in the file mon.a03.

Compiling in the IAR Embedded Workbench

If the ROM-monitor has been modified in any way—for example, with a new serial
communication routine or added transparent commands—it has to be re-built. For this
purpose, a project file template has been included to reduce the amount of work
involved. The name of this template is mon. prj; it is found in the \src\rom
directory.

The project file template includes the files that typically need updating when the
ROM-monitor is changed. Some minor modifications to the compiler and linker
options are however required.

Open the predefined project file mon.prj provided in the \8051\src\rom\
directory. This project includes the files required for the supported boards according
to the following table:

Board Files

C504 transp.c
config.c
sc504.c
conf.s03

C505 transp.c
config.c
sc505.c
conf.s03

C515 transp.c
config.c
sc515.c¢c
conf.s03

Table 64: Required files for ROM-monitor configuration

Part 5. C-SPY for the 8051 ROM-monitor 273

Adapting the ROM-monitor

8051 IAR Embedded Workbench™
274 User Guide

Board Files

C541 transp.c
config.c
sch541.c
conf.s03

EM3I transp.c
config.c
scO0.c
conf.s03

MCB517 transp.c
config.c
sc0.c
conf.s03

Table 64: Required files for ROM-monitor configuration (continued)
In this example we will assume that the board to be used is the PHYTEC C504 board.
Save the project under a new name, for example mymon504 . prj.

Select mon504 in the Target check box to display the project options to see what is
predefined and what has to be changed before building the ROM-monitor.

Make sure that the project-tree top node is selected, so that the changes will affect all
project files:

<] #

E-23 monG04files

B cori 03
(@ sc504.C

Figure 182: The mymon504 project
Open the options dialog by selecting Options... from the Project menu.

Start by looking at the category General to see what has to be changed.

Advanced topics 4

On the Output Directories page, you will notice that the output will be located in the
subdirectories of the mon504 directory:

Output Directories |

Executables:
|m0n541 WExe

Object files:
[mon4140bj

List files:
[mong414List

Figure 183: The mon504 output directories

Change to the category ICC8051 to see what is specific for the compiler. In the Code
Generation page the size optimization level has been set to 9 (max). Leave it that way.

Select the XLINK category and the Output page. Select Intel-extended from the
Output format drop-down list to generate code for your ROM-monitor:

Options For Target “mon504™ [%]
Category: Factary Settings |
G]
|E%n380[§1 Output | ﬂdefinel Diagnosticsl List I Includel Input I Libraryl Prd I L4

2051
E
C-5PY — Output file
™ Ovenide default Secondary output file:
Imym0n504.303
— Format
" Debug info
' Debug info with terminal |10
& Other
Output farmat;: Iintel-extended
Farmat wariatt: INone

K RN

Module-local spmbols: I Include All

()3 I Cancel

Figure 184: Output page in XLINK options

Part 5. C-SPY for the 8051 ROM-monitor 275

Adapting the ROM-monitor

Continue to the Include page in the XLINK category. Since the ROM-monitor has its
preferred location, we must specify an xc1 file written especially for the board in use.

Check the Override default box and browse your way to the linker command file that
came with the 8051 ROM-monitor. In this example the 1nk504 . xc1 is used:

Options For Target “mon504™ [%]
Category: Factary Settings |

G]
|E%n380[§1 Dutputl ﬂdefinel Diagnosticsl List Include | Input I Libraryl Prd I L4
Include paths: [one per ling)
$TOOLKIT_DIR$ALIBY ;I
—#CL file name
¥ Overide default
IE:\Program FilezWAR SystemshEw 2348051 \confighink 504, xcl

()3 I Cancel |

Figure 185: Specifying a linker command file for the ROM-monitor

Then click OK to save your settings.

In the project window, select the monS04files group to view the symbols that have
been defined for theses files:

T mymon504_prj =1 B3
Targets: Imon504 j s

(143 mon504

: {1 comman

Ea mon50dfiles:
B-[# conf.s03
#-[F) sc504.C

Figure 186: The mon504files group

8051 IAR Embedded Workbench™
276 User Guide

Advanced topics 4

Then select Options from the Project menu. In the ICC8051 category, display the
#define page. The following symbols should be defined or the ROM-monitor may
stop working:

ROM_MONITOR
SERIAL_VECTOR=SERIAL_ PORT_INTERRUPT

Options For Group “mon504files™ [X]
Categorny: ¥ Overide inkerited settings Femttag Saligs |
CCa05

Code Generationl Debug Hdefine | List I ﬂundefl Includel

Defined symbols: [one per line]

ROM_MONITOR =]
SERIAL_VECTOR=SERIAL_PORT_INTERRUPT

()3 I Cancel |

Figure 187: Predefined symbols for the ROM-monitor

Select the #define page in the A8051 category. The following symbols should be
defined for the assembler:

SERIAL_VECTOR=SERIAL_ PORT_INTERRUPT
MONSK5

Do not change these definitions, or it is likely that your ROM-monitor will stop
working. Click OK to exit the dialog box.

Select Make from the Project menu to get the PROMable ROM-monitor. If you get
warnings about labels or variables never being referenced, you can ignore them.
TESTING THE MODIFIED SERIAL COMMUNICATIONS

Compile and link the ROM-monitor with LOOP BACK defined for the file config. c.
You may find it easiest to remove the comments from #define LOOP_ BACK early in
config.c.

Part 5. C-SPY for the 8051 ROM-monitor 277

Adapting the ROM-monitor

8051 IAR Embedded Workbench™
278 User Guide

When your modified ROM-monitor compiles and links without errors, inspect the link
map and make sure that it is all right. Download the ROM-monitor (mon.a03) to you
board (burn an EPROM or emulate one) and connect some kind of terminal to it.

When your terminal is connected and set up properly to match the serial port of the
ROM-monitor, reset the ROM-monitor. A single hash mark # should appear on the
screen. Try typing on the terminal and the characters sent back should have their
ASCII code incremented by 1, i.e. an a will come back as a b.

If the hash mark does not appear, use a logic probe, oscilloscope or interface tester to
see if the ROM-monitor transmits something at reset. If it does, check the cable and
make sure that the serial ports have been set up to match each other.

If the ROM-monitor does not send any characters at all, check the link file,
init_IO(), put_char IO() and your hardware.

If the hash mark appears but characters are not echoed back incremented by 1, check
get char I0().If the ROM-monitor echoes the same character back, the most
likely problem is that you have local echo on your terminal. In that case, turn it off.

When your serial port code works, put the comment back around LOOP_BACK and
recompile the ROM-monitor. Download the new ROM-monitor and enable the log
file. The ROM-monitor should send 4 bytes every second, CO 1A F5 C0 (hex). One
way to supervise the communication is through a log file, which can be generated by
selecting Options... from the Project menu and checking the Log Communication
box on the Serial communication page. The file can then be examined in order to see
what was sent.

This sequence is a connect sequence from the ROM-monitor that is sent when the
ROM-monitor looks for C-SPY. C-SPY sends the same sequence when looking for
the ROM-monitor.

If this sequence does not appear, the most likely cause is that you have placed a part
of the ROM-monitor RAM area outside of RAM.

Connect C-SPY to the ROM-monitor and download the demo file demo.d03 and
verify that the ROM-monitor works as it should.

If you are planning to use the HOST PORT CONNECTOR on the board (connected
to the internal serial port), the RxD and TxD pins are (and always have been) swapped
compared to the usual connector (TERMINAL PORT CONNECTOR).

The ROM-monitor boards

Understanding the memory layout is important to avoid conflicts between the
ROM-monitor and your own programs. This chapter gives an overview of the
different boards available.

EM ROM-monitor

The EM ROM-monitor board has two memory layouts between which the
ROM-monitor switches. One of them is used when user code is running (RUN mode)
and one when the ROM-monitor is running (MONitor mode).

MEMORY MAPS IN RUN MODE

You need to know the RUN mode memory layout when you are linking your
applications. The first 56 Kbytes of CODE memory can be used, except the last 16
bytes of these 56 Kbytes.

One of the CPU’s interrupt vectors is used by the ROM-monitor for serial interrupt
(when the STOP button is pressed). This vector is put into the user code memory by
the ROM-monitor before running it. All other interrupt vectors can be used by your
application.

The first 56 Kbytes of the XDATA memory is RAM, the remaining 8 Kbytes is not
used.

The part of the ROM-monitor, above 56 Kbytes, is also visible in RUN mode. This
part contains the entrance to the ROM-monitor from a breakpoint or interrupt and the
return from the ROM-monitor to user code.

Part 5. C-SPY for the 805] ROM-monitor 279

EM ROM-monitor

8051 IAR Embedded Workbench™

280 User Guide

CODE memory

ROM-monitor
EPROM

16 bytes ROM-
monitor CODE
RAM

User 56 Kbytes
CODE RAM

FFFFh

E000h
DFFF

DFFOh
DFEFh

0000h

XDATA memory

Optional user
XDATA

User 56 Kbytes
XDATA RAM

The ROM-monitor boards __o

MEMORY MAPS IN MONITOR MODE

In monitor mode the ROM-monitor is mapped to all addresses in CODE memory. A
32 Kbytes EPROM will be at two places, a 16 Kbytes EPROM at four. The real
ROM-monitor starts at 8000h in the 32 Kbytes EPROM. The first instruction at
8000h, a LIMP to 8003h, will also be found as a reset vector at 0000h.

In monitor mode user code memory is connected to XDATA. Above 56 Kbytes of
XDATA there is RAM containing the ROM-monitor’s internal data.

CODE memory XDATA memory
FFFFh
ROM-monitor
2 Kbytes internal
E000h | RAM
DFFF .
ROM-monitor é%lg,ée;il;? itor
EPROM DFFOh
DFEFh
User 56 Kbytes
CODE RAM
0000h

Part 5. C-SPY for the 8051 ROM-monitor 28|

EM ROM-monitor

8051 IAR Embedded Workbench™

282 User Guide

MCB-517 ROM-MONITOR

The MCB-517 board has only one memory layout. The same memory maps are used
both when the ROM-monitor is running and when the user code is running.

CODE memory XDATA memory
ROM-monitor FFFFh)
EPROM Optional user
XDATA
8000h
ROM-monitor 7FFFh ROM-monitor
2 Kbytes internal 2 Kbytes internal
RAM and CODE RAM and CODE
RAM RAM
7800h
77FFh
User CODE and User CODE and
XDATA RAM XDATA RAM
0000h

The XDATA and CODE memory between 0000h-7FFFh are connected to the same
RAM. The first 30 Kbytes of CODE and XDATA are available for your application and
the optional 32 Kbytes XDATA at 8000h.

The 2 Kbytes RAM between 7800H-7FFFh contains the ROM-monitor’s internal
data. Writes to this area may cause a ROM-monitor crash.

The ROM-monitor program starts at 8000h in CODE memory. The first instruction at
8000h is an LIMP instruction to 8003h. At reset the EPROM resides at 0000h. As
soon as the LIMP has been executed and the CPU reads the next instruction above
8000h, the lower 32 Kbytes will be replaced with RAM.

The ROM-monitor boards __o

KITCON-504C, 505C AND 515C ROM-MONITOR

The KitCON-5xxC boards have only one memory layout. The same memory maps are
used both when the ROM-monitor is running and when the user code is running. The
XDATA and CODE memory between 0000h-7FFFh are connected to the same RAM.
The first 30 Kbytes of CODE and XDATA are available for your application and the
optional 32 Kbytes XDATA at 8000h.

The 2 Kbytes RAM between 7800h-7FFFh contains the ROM-monitor’s internal
data. Writes to this area may cause a ROM-monitor crash.

The ROM-monitor program starts at 0000h in CODE memory. The first instruction
at 0000h is an LOMP to 8003h. At reset the FLASH PROM resides at 0000h-FFFFh.
As soon as the LIMP has been executed the following instructions will change the
memory layout and the lower 32 Kbytes will be replaced with RAM.

The memory layout will be different depending on the way you set the EVB control
registers in (see the file conf . s03 in the cw8051r directory) and how you linked the
monitor (see the xc1 file) (see the KitCON-5xxC SIEMENS manuals to find out how
to set these registers). Our setting method in conf . 03 gives the memory layout
shown above.

Part 5. C-SPY for the 805| ROM-monitor 283

EM ROM-monitor

CODE memory XDATA memory
ROM-monitor FFFFh /0
EPROM FCO0h
FDFFh | RAM or
EEPROM Ul1
8000h
ROM-monitor 7FFFh ROM-monitor
2 Kbytes internal 2 Kbytes internal
RAM and CODE RAM and CODE
RAM RAM
7800h
77FFh
User CODE and User CODE and
XDATA RAM XDATA RAM
0000h

INTERNAL CPU MEMORY

The ROM-monitor needs only 6 bytes of the stack in internal memory. This DATA or
IDATA is used when breakpoints or interrupts are encountered. Before using more of
this memory the ROM-monitor saves the internal memory into its working area.

8051 IAR Embedded Workbench™
284 User Guide

Diagnostic messages

This chapter lists the error and warning messages that the 8051 C-SPY
ROM-monitor version can produce.

Warning messages

The warning messages of the ROM-monitor are referenced to by the number 40. The
following table lists the warning messages:

0 Memory write prevented by verify_write_ CONFIG
A memory write was prevented by the function verify write CONFIGin
the file config.c.

1 Memory read prevented by verify_read_ CONFIG
A memory read was prevented by the function verify read CONFIG in
the file config.c.

2 Fast download failed -- trying normal download
The ROM-monitor is not quick enough to handle a constant stream of data
and C-SPY switched to normal (slower) writes. You can disable fast
download using the -rz switch on the command line. Hardware handshake
or lowering the speed can also help. You should do something to get rid of
this warning as the downloads go slower than they should.

3 Memory read failed at address XXXX
If the given address should be correct, check your hardware.

4 Memory write failed at address XXXX
If the given address should be correct, check your hardware. You have
probably linked your application incorrectly if this happens during
download.

5 Memory write not recorded by memory
No memory seems to be connected to this address.

6 Breakpoint set failed at address XXXX
If the given address should be correct, check your hardware. Your application
must reside in RAM. Otherwise C-SPY will not be able to step it at assembly
or C level. C-SPY also inserts breakpoints when you run with calls on.

7 Failed to write SFR access instruction Into user CODE memory
The ROM-monitor SFR_PROG segment is linked to wrong location or the
hardware is wrong configured.

Part 5. C-SPY for the 805] ROM-monitor 285

Error messages

Error messages

The error messages of the ROM-monitor are referenced to by the number 130. The
following table lists the error messages:

0

Unable to step ROM
You can only step in RAM memory since the ROM-monitor must patch in
breakpoints when single stepping.

Stack points outside writable memory

The stack pointer has to be set up properly to read/writable memory or there
is no use in trying to run the code. A temporary stack is allocated by the
ROM-monitor for the application. This stack is very small so the first thing
the application must do is to set up the stack properly.

Instruction jumps to itself

The ROM-monitor inserts a breakpoint at the location where the instruction
ends. In this case the instruction points to itself and the ROM-monitor cannot
execute the instruction.

PC at illegal instruction
Tried to step an illegal instruction.

Fatal error messages

8051 IAR Embedded Workbench™
286 User Guide

The fatal error messages of the ROM-monitor are referenced to by the number 60. The
following table lists the fatal error messages:

0

Protocol version mismatch
You are mixing a new C-SPY with an old ROM-monitor or vice versa.

lllegal target ROM-monitor
Use the correct C-SPY with the ROM-monitor.

Unable to get extended error
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to read ROM-monitor memory
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to write registers
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to read registers
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to get protocol version
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

10

11

12

Diagnostic messages ¢

Unable to get Monitor status
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to get Sign on message
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Transparent command failed
A protocol error occurred. Reset the ROM-monitor and restart C-SPY. If you
have added new transparent commands check the file transp.c.

C-SPY address size not supported by Monitor
You are running C-SPY in banked mode but the ROM-monitor does not
support this.

Failed to adjust Monitor address size
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Unable to get address mask
A protocol error occurred. Reset the ROM-monitor and restart C-SPY.

Part 5. C-SPY for the 805] ROM-monitor 287

Fatal error messages

8051 IAR Embedded Workbench™
288 User Guide

A

About... (Help menu)

C-SPY .o 246
Embedded Workbench 172
accumulated time, in Profiling window 77
activation time, in interrupts. 237
Active lines only (C compiler option) 102
Add #include file text (C compiler option) 102
address range check, specifying in XLINK 122
Always generate output (XLINK option) 121
applications
examples 22
hardware-dependent aspects 19
profiling. L 178
example 77
EESHNE . v vttt et e e e 21
architecture, 8051. XX Vil
argument variables.o il 162
Arrange Icons (Window menu)
C-SPY . 245
Embedded Workbench 170
assembler directives. i 67
assembler documentation. 8
assembler features L. 14
assembler listfiles 61
assembler options. 107
Case sensitive user symbols 108
Code generationoeuinenenn.. 108
Debug ... 110
Define symbol. 111
Disable warnings.c. ... 109
Disable #IFDEF/#ENDIF matching 108
Generate debug information 110
Include........ 115
Include cross-reference 113
Lines/page. 113
Listfileoooen e 112
Macroquotechars. 109

Index __o

Make a LIBRARY module 109
setting in Embedded Workbench. 107
example 60
Tabspacing 113
Undefine symbol 114
#includedtext i 112
assembler symbols, using in C-SPY expressions. 182
assembler tutorials 59
Assemble... (Controlmenu). 235
assembling a file, example............ 61
Assembly output file (C compiler option) 103
ASSUMPLIONS . vttt et et e e XXvii
auto indent (editor option) 165
Autostep (button) 213
Autostep (Executemenu). 228
a03 (fileextension).t 6
A8051 0ptionsoiuiiii 159
batch files, specifying in Embedded Workbench. 163
Baud (C-SPY ROM-monitor option). 134
bin (subdirectory). 5
binaryeditor. i 147
Binary Editor window 147
Binary Editor... (Tools menu). 164
Bits (C-SPY ROM-monitor option) 134
blocks, in C-SPY macros. 188
bookmarks, showing ineditor 165
brackets, matching (ineditor) 143
breakpoints. i 176
adding 230
characteristicst 231
conditional. oo 231
example 72
COUNL . ottt ettt e e e et 231
defining 230
example ... 44
editing 230
highlight 215

289

inspecting details, example 57
length. 231
location L 231
INACTO. & o\ vttt et e e et e e 232
MEemOry SEgMEeNt NAMEo vvvvv v e e e 231
modifying 230
TEMOVING .« o o vv ettt e et et e e 230
example 45
ROM-monitor 259
toggling 230

1517 51 232
Breakpoints (dialogbox)o oL 230
Build All (Projectmenu)c.coouiuieen.n. 160
build tree, viewingo 39
Build (in Messages window) 147
buildingaprojecto 21

C

C compiler options

Activelinesonly 102
Add #include filetext 102
Assembly outputfile............. 103
’char’ is ’signed char” oL 96
Code segmentveniininnennennenn.. 99
Crossreference i, 103
Disable warnings. 97
Enable language extensions 96
Explain C declarations 104
Flag old-style functions. 98
Form feed after function 103
Generate debug information 100
Global strict type checking 98
Includepaths........ 106
Insert mnemonics 102
Lines/page.t 103
Listfile 102
Make a LIBRARY module 97
Nested commentsc.oouuiunennen... 97
No type info inobjectcode. 98

8051 IAR Embedded Workbench™

290 User Guide

Preprocessor outputfile. 104
SELtING . ..o 95
Stack expansion. L. 97
Tabspacing i 103
Typechecking 98
Writable strings. L L 96
#define. 101
#undef 105
I comments ... 97
C compiler. See compiler
C function information, in C-SPY 178
C Library Reference Guide (Help menu)............. 172
C symbols, using in C-SPY expressions 181
Csyntaxstyles 143
CUSIOMIZING . . . o\ vttt 168
C variables, using in C-SPY expressions. 181
c(fileextension).t 6
Callswindow 217
example. 75
Calls window (button) 213
Calls (Controlmenu)oiuiiinnonn. 238
Cascade (Window menu)
C-SPY . 245
Embedded Workbench 170
Case sensitive user symbols (assembler option) 108
Category . .. oot 159
cfg (fileextension)t 7
“char’ is ’signed char’ (C compiler option) 96
checksum, generating in XLINK 128
Close Session (Filemenu) 224
Close (Filemenu)................ iiou.. 150
COdE COVETAZE. . . oo v e ettt 179
example. 76
Code Coverage windowc.coouinn... 221
Code generation (assembler option) 108
code generation, compiler features 14
code memory, fillingunused 128
Code segment (C compiler option) 99

Code (C-SPY ROM-monitor option). 135
code, teSHNG « .« vttt 21
Colors and Fonts settings, in Embedded Workbench. . . . 168
command line commands, specifying in

Embedded Workbench 163
command line options (C-SPY).................... 247
Common Sources (Zroup)c.ooeuuen.... 20, 32
Compile (button) 140
Compile (Projectmenu).c..o.... 159
compiler documentation. 14
compiler features i 13
compiler list files

example. 34

formatting 103

specifying 102
compiler options

setting in Embedded Workbench. 95

example ... 33,84

compiler tutorials 47
compiler, command line version 12
compiling a file or project 159
conditional breakpoints 231

example. 72
conditional statements, in C-SPY macros 187
Condition, in Breakpoints dialogbox 231
config (subdirectory)c.oiiiiiin.. 5
configuration, of C-SPY. 247
Configure Tools... (Toolsmenu) 161
Contents (Help menu)

C-SPY .o 246

Embedded Workbench 171
contents, product package 3
Controlmenu, 229
Copy (Edit menu)

C-SPY o 225

Embedded Workbench 151
Count

in Breakpoints dialogbox 231

in Profiling window. 77
CRC .. 61

Index __o

Cross reference (C compiler option) 103
cross-reference section, inmap files 39
current position, in C-SPY Source window 215
example. 40
cursor, in C-SPY Source window. 215
Cut (Edit menu)
C-SPY . 225
Embedded Workbench 151
CW 2B XK. o o et e 4,247
C-SPY 16, 175
configuringt 247
exiting from. L L i 224
example 55
TESELHNG . - o vttt e 54
TUNNINGZ « ettt e et e e et e e e e e 4
SEATTING. « vttt et e 160
C-SPY expressions.cvvnvnenennnenenen. 182-183
inC-SPY macros., 187
watching 233
C-SPY features., 16-17
C-SPYmMacrosoovvi i 178, 185
bIOCKS ..o 188
conditional statements. 187
C-SPY expressionsc.covuvenennnnenenen.. 187
defining 185
errorhandling L L. 189
execUserExit().o i 189
example 55
execUserInit() 189
execUserPreload()............. ...t 189
execUserReset() oo, 190
example 54
execUserSetup
example 52
execUserSetup()vvvvini i 190
example 52
CXECULING .« . vttt e et 186
functions 186
loopstatementst 187

291

MAacro Statements.uueenneenn..
printing messagest
TEEISTETING « o v oo e e et
TESUIME . . o ettt ee e et e e e ee e

_ _autoStep (system macro)
_ _calls (system macro).
_ _cancelAllInterrupts (system macro).
_ _cancellnterrupt (system macro)
_ _clearAllBreaks (system macro)
_ _clearAllMaps (system macro)
_ _clearBreak (system macro).
_ _clearMap (system macro).
_ _closeFile (system macro)
_ _disablelnterrupts (system macro)..........
_ _enablelnterrupts (system macro)
_ _getLastMacroError (system macro)
_ _gO(SyStemmacro)c.c.oeuen...
_ _multiStep (system macro)
_ _openFile (system macro)
_ _orderInterrupt (system macro)
example i

_ _printLastMacroError (system macro).
_ _readFile (system macro).
_ _readFileGuarded (system macro)..........
_ _readMemoryByte (system macro)
_ _realtime (system macro).
_ _registerMacroFile (system macro)
_ _reset (system macro)
_ _rewindFile (system macro).
_ _setBreak (system macro)
example i

_ _setMap (system macro)
_ _Step (SysStem macro)c.enen...
_ _writeFile (system macro)
_ _writeMemoryByte (system macro)
C-SPYoptions,

8051 IAR Embedded Workbench™
292 User Guide

commandline 247

Device descriptionfile 132

Driver 133

Processor variant. 132

setting from the command line 247

setting in Embedded Workbench. 131

Setupfile....... ... 132

PP 249

S (PP 249

D e e 249

BV e 251

K e e e e 251
C-SPY reference information. 211
C-SPY ROM-monitor options

Baud 134

Bits .o 134

Code ..o 135

Databits 134

Fastdownload 135

Handshaking 134

Port ..o 134

Serial communication 133

StOpbits. . oo 134

Suppressload, 135

Verifyall 135

Verify boundaries 135

o PP 248

S0 248

e (PP 249

STZ e 250

D e e e e e 250

LS 250
C-SPY system macros. See C-SPY macros
C-SPY Versionsc.uuiuiininennenenann. 18

ROM-monitor and simulator,

COMPATISOMN .« vttt et et e e ee e e 256
C-SPY Warningoeuvennunnennenenn.n. 64
C-SPY Windows.oiuiiii i 212

Calls. ..o 75,217

Code COVerageuvuviunennennennennn 221

Locals 219
MAIN. .o 211
Memory.oovii 216
example 78
Register....... ... 215
example 80
Report 220
SER .o 216
Source ... 175,214
example 40
Terminal /O 220
example 45
Watch. 218
Data bits (C-SPY ROM-monitor option) 134
datatip, in C-SPY i 215
DDE, calling external editor 166
ddf (file extension)., 6, 132,207
debugbar 213
Debug Bar (Viewmenu) 226
Debug info with terminal I/O (XLINK option) 119
Debug info (XLINK option) 119
Debugtarget. i 141
Debug (assembler option) 110
Debugger (button) 140
Debugger (Projectmenu). 160
debugger. See C-SPY
debugging projects
indisassemblymode. 175
example 77
in ROM-monitor 260-261
insourcemode i, 175
example 40
Define symbol (assembler option). 111
Define symbol (XLINK option). 120
demo.d03 (tutorial file) 87
development projects, examples 22
Device description file (C-SPY simulator option). 132

Index __o

device description files. 5, 207
specifying in Embedded Workbench. 132
specifying on C-SPY command line. 249

Diagnostics (XLINK option) 121

directives, assembler 67

directories
Din ... 5
config. .. oot 5
dOC. oo 5
INC .« et e 5
Iib. e 5
Bicense .. .ov e 6
STC + e e e e e e 6
11010 6

directory StruCturec.vueueunnnenenenenn 4

Disable warnings (assembler option). 109

Disable warnings (C compiler option). 97

Disable #IFDEF/#ENDIF matching (assembler option) . 108

disassembly mode debugging 175
example. 77

do (macro statement)i.ina... 187

doc (subdirectory) 5

document conventionsc..ieno... XXx1

documentation
assembler. 15
compiler. 14
online. ..ottt e 5
Product.ot 7
XLIB .o 16
XLINK o 16

Driver (C-SPY option) 133

Dynamic Data Exchange (DDE), calling external

editor 166

dO3 (fileextension)c.veiriirenennannn. 6

editbar........ ... oo i i 138-139

EditBar (Viewmenu) 155

Edit Breakpoints... (Controlmenu) 230

293

example. 72

Edit menu
C-SPY .o 225
Embedded Workbench 151
editing source files. 142
editor
binary. 147
external, specifying........... 166
features 12
keyboard commands 144
USING MACTOS. « .« v vt ee e et e e e eee e 164
OPLIONS . . vt et ettt e e 164
editor window. 142
OPENING AMNEW .+« v e v e ettt e e e e e 148
splitting into panes 145, 170
Editor (Settings panel), 164
EM ROM-monitorboard 279
Embedded Workbench.............. 137
CUSOMIZING . « . v v vt i e ettt e e 164
exiting from. L 150
features 12
reference information 137
TUNDINGZ © o e vttt e et e e e e e e e e a e 3
tutorial 27
version number, displaying 172
Embedded Workbench Guide (Help menu)
C-SPY .o 246
Embedded Workbench 171
Embedded Workbench windows
Binary Editor. i 147
Editor. 142
MAIN. ¢ .ottt et e e 137
MeSSages . . oo e 146
Project.. 140
emulators, third-party., 11
Enable language extension (C compiler option) 96
Enable Virtual Space (editor option) 165
environment variables
XLINK DFLTDIR . ..o 6

8051 IAR Embedded Workbench™
294 User Guide

error handling, during macro execution. 189
W23 K. o . ot 3
examples
assemblingafile 61
breakpoints, removing. ool 45
changing assembler statements in C-SPY........... 81
compiling files. 34,85
Creating a project. ovvv e 27
creating virtual registers 49
defining conditional breakpoints. 72
defining interrupts i 50
disassembly mode debugging 77
displaying code coverage information 76
displaying function calls in C-SPY................ 75
displaying Terminal /O 45
editing the memory contents in C-SPY............. 80
executing until a conditionistrue................. 74
executing up to a breakpoint........... 45
executinguptothecursor....................... 74
generating interruptso ovv vttt 53
linking
a compiler program 37,86
an assembler program 63
MONItOTING MEMOTY. « .« ottt et e e et e eeeen . 78
MONItOring re@istersc.ouvuvrnenenenen .. 80
running a compiler projectin C-SPY 40, 87
running an assembler program in C-SPY 64
setting breakpoints L. 53
simulating interruptst 50
specifying ROM-monitor settings. 83
specifying targetoptions 28
SEEPPING -« o vt eee 41
using C-SPY macros. 50, 52
using libraries 65, 68
using the Embedded Workbench. 27
using the profilingtool 77
using XLIBo 68
execUserExit() (C-SPY setup macro) 189
example. 55

execUserInit() (C-SPY setup macro)................ 189
execUserPreload() (C-SPY setup macro). 189
execUserReset() (C-SPY setup macro) 190
example. 54
execUserSetup() (C-SPY setup macro) 190
example. 52
Executables (output directory)...................... 93
Executemenu.............. ..ot 228
EXECUtING A PrOZraml. . o« v v v vt e e e et eae e 228
execution, up to a breakpoint., 45
Exit label missing (C-SPY warning) 64
Exit (File menu)
C-SPY o 224
Embedded Workbench 150
EXIT (XLIBoption)covuiuinineunenenen.. 69
Explain C declarations (C compiler option) 104

expressions. See C-SPY expressions
extended keywords

CANEeTTUPE & v v et e e 51
extended linker command line file. See linker command file

extensions. See filename extensions or language
extensions

External Editor (Settings panel)
specifying 165

=

factory settings

assembler. 107
compiler. 95
XLINK .o 118
FAQ ..o 9
Fast download (C-SPY ROM-monitor option) 135
features
assembler. 14
compiler. 13
C-SPY . 17
edItOr . . oot 12
Embedded Workbench 12
XLIB .o 16

Index __o

XLINK .. 15
FETCH-MODULES (XLIB option) 68
file eXtenSIONS. . . .o v vt e 6

03 . . 6

Gt e e e e 6

g 7

ddf . ..o 6

dO3. . 6

S 6

T T 7

1 1 7

S 7

TNAC o et ettt e et e e e e e 7

INAD .« ottt e e e e e e e 7

2 o N 7

103 . 7

SO . 7

XCl o 7

XID 7
File menu

C-SPY .o 224

Embedded Workbench 148
file types

device description 5,207,216

specifying in Embedded Workbench 132
specifying on the command line 249

documentation.iiii i 5

header 5

et e e e 104

include. 5

library 5

linkercommand. 5

10 T3 (o J 132

TOAD &ttt e e e e e 123

read Mettt 5
files

addingtoaproject.ouiii i 31

adding to group oot 157

assembling. L i 159

295

example 61

compiling. 159
example 34, 85
editingo 142
linking o 160
removing from group, 157
Files... (Projectmenu) 142, 156
Fill unused code memory (XLINK option) 128
Filler byte (XLINK option) 128
filtering messages, in Embedded Workbench 169
Find in Files (in Messages window) 147
Find in Files... (Editmenu) 153
Find (button)
C-SPY .o 213
Embedded Workbench 139
Find... (Editmenu)............. 151,225
first.s03 (assembler tutorial file) 59
Flag old-style functions (C compiler option). 98
Flat Time (profiling). 77
for (macro statement). 187
Form feed after function (C compiler option) 103
format specifiers, in C-SPY 182
Format variant (XLINK option). 119
Format (XLINK option)., 118
formats
assembler listfile. 61
compiler listfile 34
C-SPYinput ... 17
XLINKoutput. . .o ove et 15
default, overriding 119
specifying. ... 118
frequently asked questions (FAQ) 9
function calls
displayingin C-SPYo ... 217
example 75

See also Calls window

G

general Options.c.ooii i 91, 159

8051 IAR Embedded Workbench™

296 User Guide

Generate checksum (XLINK option). 128
Generate debug information (assembler option) 110
Generate debug information (C compiler option) 100
Generate linker listing (XLINK option). 123
Global strict type checking (C compiler option) 98
GoOut(button)ovveiiii i 213
GoOut (Executemenu)covuuvneennn.. 229
GotoCursor (button). i 213
Go to Cursor (Executemenu) 229
example. 75
Go (button). 213
example. 74
Go(Executemenu)ouuuiniiinnnrann.. 229
example. 74
Goto Line... (Viewmenu) 155
Goto (button)t e 139
Goto... (VIeWmeNnu).ot it 227
GEOUPS. « ettt et et e e e e e 20, 141
adding filesto L i 157
removing files from. 157
h (fileextension)ouiiuiiininennonn. 6
Handshaking (C-SPY ROM-monitor option) 134
headerfiles. i 5
Help menu
C-SPY ... 246
Embedded Workbench 171
help,online. 8
How to use help (Help menu)
C-SPY ... 246
Embedded Workbench 171
T(fletype) « oo e 104
IAR Assembler Reference Guide. 8
accessing from Embedded Workbench............ 172
IAR C Compiler Reference Guide. 8

accessing from Embedded Workbench............ 171
IAR C-SPY Debugger. See C-SPY
IAR on the Web (Helpmenu) 172
IARwebsite 9
TAR XLINK Linker™ and IAR XLIB Librarian™
Reference Guide. i, 8
accessing from Embedded Workbench............ 172
ICC8051 0ptionscovvniiniiiin e 159
IDE. See Integrated Development Environment
if else (macro statement)ouuo... 187
if (macro statement) ivuin.... 187
inc (file eXtension)ovuvrnt e, 7
inc (subdirectory) 5
Include cross-reference (assembler option) 113
includefiles i i 5
XLINK, specifyingpath 124
Include options (assembler) 115
Include options (XLINK). 124
Include paths (C compiler option) 106
Include paths (XLINK option). 124
Include (assembler option). 115
Indent Size (editoroption) 165
information, product. i 7
Inherent (XLINK option). 125
Inherent, no object code (XLINK option) 125
ini (fileextension)c.ciiiiiiiiiian... 7
input formats, C-SPY.......o 17
input modules, specifying status in XLINK. 125
Input options (XLINK) 125
Insert mnemonics (C compiler option) 102
installed files i 4
documentation. 5
executables 4
include. 5
library ... 5
instruction set, 8051. oL XXVii
Integrated Development Environment IDE). 11-12
Intel RISM ROM-monitor 135
INTEL-EXTENDED, C-SPY input format............ 17
Internet. o 9

Index __o

Interrupt (dialog box). o 236
interrupt (extended keyword). L. 51
interrupts
debugging in ROM-monitor 261
defining i 237
editing . ..o oo 237
example. 50
GeNeratingt 197
example ... 53
simulationof L o 177
Interrupt... (Control menu). 236
key bindings
C-SPY ... 242
Embedded Workbench 167
key summary, editor. il 144
keystrokes, recording in editor. 164
KitCON-5xxC ROM-monitor boards. 283

L

language extensions

example. 47
language facilities, in compiler 13
Latency (in Interrupt dialog box). 237
LCALL inStructions.ooveneenonn .. 259
Length (in Breakpoints dialogbox)................. 231
lib (subdirectory) 5
Librarian (Projectmenu) 160
librarian. See XLIB
library files. 5
library modules

CrEAtING . . ottt ettt e 65

example. 66

loading in XLINK o at. 126

usedby compiler............. 5
Library (XLINK option), 126
license (subdirectory).ovuiiiinenenan .. 6

297

Lines/page (assembler option) 113

Lines/page (C compileroption) 103
Lines/page (XLINK option).o 123
line, moving to in Editor window. 155
Link (Projectmenu) oiion... 160
linker command file............................... 5
path, specifying........... 124
specifying in XLINK.o ... 124
linker. See XLINK
List file (assembler option) 112
List file (C compiler option) 102
listfiles. ... 93
assembler. 61
compiler
example 34
formatting. 103
XLINK
GENETAtING. . . v\ vttt et 123
including segment map. 123
specifying lines perpage 123
List (assembler options)., 112
List (XLINK options). vovii i 122
listings, formatting 103
LIST-MODULES (XLIB option).ovuveu.... 69
Load as LIBRARY (XLINK option) 126
Load as PROGRAM (XLINK option) 125
Load Macro... (Options menu). 243
Locals Bar (Viewmenu) 226
Localswindow, 219
location (breakpoint) 231
Log to File (Controlmenu) 238
loop statements, in C-SPY macros. 187
Ist (file extension).ooviit e .. 7
mac (fileextension)cciiiii.. 7
machine-code programs. See assembler tutorials
macro files, specifying. 132
macro message specifiers. 182

8051 IAR Embedded Workbench™

298 User Guide

Macro quote chars (assembler option). 109
MAacro StatemMeNtsovv v ee e eeee e, 187
10 T3 (0 1 178
See also C-SPY macros
usingineditor i 164
using in Embedded Workbench. 164
Macro, in Breakpoints dialogbox 232
main.sO3 (assembler tutorial file). 66
Make a LIBRARY module (assembler option) 109
Make a LIBRARY module (C compiler option) 97
Make (button).t 140
Make (Projectmenu) 21, 160
mapfiles.......... ... 123
example........ L i 38, 86
VIBWING . ..o 39
map (file extension) 7
Match Brackets (Editmenu) 143, 154
Match Case (in Findin Files). 153
Match Case (in Find)
C-SPY .o 225
Embedded Workbench 152
Match Whole Word Only (in Find)
C-SPY . 225
Embedded Workbench 152
Match Whole Word (in Findin Files) 153
MCB-517 ROM-monitorboard 282
memory
editingo 178, 217
fillingunused. i 128
MONITOTING . .« v v ettt e 216
example 78
VIBWING .ot e et e 178
Memory Bar (Viewmenu) 226
Memory Fill... (Control menu). 234
Memory Map... (Control menu). 233
Memory model (target option). 92
example....... 29
Memory window i 216
example. 78

POP-UPMENU .« . e ovet et et et et e e eeee e 217
Memory window (button) 213
menu bar

C-SPY . 212

Embedded Workbench 138
Message Window (Window menu) 171
message (C-SPY macro statement) 188
messages

filtering in Embedded Workbench 169

printing during macro execution. 188
Messages windowc.. ... 146
module map, inmap files............ 39
Module status (XLINK option) 125
module types

library, loading in XLINK. 126

program, loading in XLINK 125
MODULE (assembler directive) 67
modules

Maintainingottt 65

specifying status in XLINK 125
Motorola, C-SPY input format. 17
Move to Current PC (Viewmenu) 227
Multi Step... (Executemenu)t 228
Nested comments (C compiler option) 97
New Group... (Projectmenu). 157
New Project (dialogbox), 27
New Window (Window menu). 170
New...(Filemenu), 148
No global type checking (XLINK option)............ 121
No type info in object code (C compiler option). 98
object files, specifying output directory............... 93
online documentation

GUIAES .ottt 5

help ... 8

Index __o

Open... (File menu)

C-SPY .o 224
Embedded Workbench 150
Optimization (C compiler option) 99
options
assembler. 107, 159
ABOST .o 107, 159
compiler. 95, 159
C-SPY ..o 131, 159
commandline............ 247
dItOr . . oot 164
filelevel. 20
general......... 91, 159
ICCBOST ... 95, 159
output directories. 93
targetlevel....... L L 20, 28
XLINK .o 117, 159
Options menu
C-SPY .o 239
Embedded Workbench 164
Options (dialogbox) oL, 158
Options... (Projectmenu). 158
Output Directories (general option). 93
Output file (XLINK option).coen... 118
Output format (XLINK option) 119
output formats
debug (ubrof). 119
XLINK e 15
overridingdefault. 119
specifying. ... i 118
Output options (XLINK) 118
output, from XLINK
GENETALING .« . o vttt ettt e e 121
specifying filename.............. 118
override inherited settings 95, 107
overview, product. 11
package Contentsoeuniiriineeneenann.. 3

299

Paste (Edit menu)

C-SPY .o 225
Embedded Workbench 151
paths
relative, in Embedded Workbench 157
XLINK includefiles, 124
peripherals, using with compiler 47
Pinbutton.......... ... i 141, 146
Play Macro (Toolsmenu)., 164
Port (C-SPY ROM-monitor option). 134
Preprocessor output file (C compiler option). 104
Print Setup... (Filemenu). 150
Print... (Filemenu).............................. 150
pyj (fileextension) i 7
Probability, in Interrupt dialogbox 237
Processing options (XLINK) 128
Processor variant (C-SPY option) 132
Processor variant (target option) 92
example. 29, 59
ProduCt OVEIVIEW . ..o vvi ettt e e 11
documentation. 7
package 3
profiling 178
example. 77
profilingbar 223
Profiling Bar (View menu). 226
Profiling window oL 222
POP-UPMENU . . ettt ettt et e ee e 222
Profiling (Control menu) 239
program counter (PC). 227
program execution, in C-SPY 176
program modules, loading in XLINK 125
projectbar 138, 140
Project Bar (Viewmenu) 140, 155
Projectmenu L. 156
projectmodel 19
Projectwindow. i 140
example. 28
GEOUPS .« e ettt e e ettt et e e 141

8051 IAR Embedded Workbench™

300 User Guide

NEW .« ettt e e e e 149
source files i 141
BATGELS .« oo e et e 141
Project (menu) i 21
projects
adding filesto i 156
example 31
assembling. L il 159
example 60
building 21, 160
compiling. L 159
example L 34, 85
CrEAtING . . o vttt et e 27
example L 27,67
debugging 175
developing........... 19
linking 160
mixed C and assembly, example 81
moving files. L 142
OIgaNiZation.ottt 19
FEMOVING ItemS oottt 142
EBSHNE . v ve et 21
updating.o et 160
PUBLIC (assembler directive)...................... 67
Quick Watch... (Controlmenu) 233
QuickStart Card i 3
QUIT (XLIBoption)c.vvuvennineeenenn .. 69
Range checks (XLINK option) 122
readmefiles 5
readme.htm. L 8
Real Time (Controlmenu) 238
Recent files (Filemenu). 224
Record Macro (Toolsmenu) 164
Redo(Editmenu).................. 151

Index __o

reference guides 7 TOOL dITECLOTY .« v v vttt ettt et e 4
reference information rO3 (file extension)ot it 7
C-SPY .. 211
Embedded Workbench 137 S
Register Setup settings., 240
Register Window.oooiiiiiii .. 215, 240 sample applicationso 22
example 80 Save All (Filemenu)t 150
Register window (button). 213 Save As...(Filemenu) 150
registers Save (Filemenu) oo 150
defining virtual i, 240 Scan for Changed Files (editor option) 165
displayingt 215, 240 Search for help on... (Helpmenu) 171, 246
OAItING . . oot 178 searchtoolbar. 139
VIWING .o oo 178 Segment map (XLINK option). 123
relative paths 157 Segment overlap warnings (XLINK option) 121
Release target.oooveeeeeeeeeee ... 141 segments
repeatinterval.oiiiiiiii 237 overlap errors, reducing.l 121
Replace (DULtON).o v et 139 range checks, controlling 122
Replace... (Editmenu) 152 sectioninmapfiles o 39
Report window. i, 220 Segment, in Breakpoints dialog box 231
FEqUIrEMENtS, SYSLEM . ..\ttt e e ieee e e e enn s 3 Select Log File... (Options menu) 244
Reset (DUttON).o et e e e e 213 Serial communication (C-SPY ROM-monitor option) . . 133
Reset (Execute menu)oeeuun... 46, 229 settings, factoryl 95,107, 118
resume statement, in C-SPY macros 189 settings, inherited L L 117
return (MAacro StAtement)vvueeoe .. 187 settings, override inherited. 95, 107
revision control system 0ii ... 11 Settings... (Options menu)
RISM ROM-MONItOr ooteaie e, 135 CSPY ..o 239
ROM-monitor Embedded Workbench 164
DOATAS .o\t 279 Setup file (C-SPY option) 132
breakpoints i 259 setup macros, in C-SPY L 189
Control Cfeature. 259 See also C-SPY macros
debugging 260 SFR Bar (Viewmenu)t 227
EM ROM-monitor board. oo oo 279 SFR headerfiles. 5
KitCON-5xxC boards v oo oo 283 SFRSetup . ..o e 241
LCALL inStructionso vv oo 259 SFRwWIndow.oiii i 216
MCB-517board oo oo 282 shifts.s03 (assembler tutorial file) 66
modifying the linker command file. 272 shortcut keys
resolving debugging problems 262 C-SPY .o 242
ROM-monitor and simulator versions of C-SPY, Embedded Workbench 167
COMPATISON . « .« vttt ettt et e e e e e 256 Show Bookmarks (editor option). 165
ROM-monitor (C-SPY version)..................... 18 Show Line Number (editor option) 165

301

simulation

simulator and ROM-monitor versions of C-SPY,

COMPATISON . « .« . vttt et e e e
simulator (C-SPY version)...................
single stepping i
example......... i
ROM-monitorcoovun...
Source Bar (Viewmenu)
source filepaths
sourcefiles
adding toaproject.
editing
moving between groups
source mode debugging
example......... i
Source window.o
example......... i
special function registers (SFR), header files.
Split (Window menu).c......
src (subdirectory)
Stack expansion (C compiler option).

status bar

StepInto (button)
Step Into (Execute menu).
Step (button).ot
Step (Executemenu)
Stop bits (C-SPY ROM-monitor option)
Stop Build (Projectmenu)
Stop building (button)
Stop Record Macro (Tools menu)
Stop (button).

8051 IAR Embedded Workbench™

302 User Guide

Stop (Executemenu), 229
support, technical L il 9
Suppress load (C-SPY ROM-monitor option) 135
Symbol properties 182
Symbol Properties (dialogbox).................... 219
symbols
definingin XLINK 120
undefining in compiler, 105
using in C-SPY expressions 181
Syntax Highlighting (editor option). 165
syntax highlighting, in Editor window. 142
system macros. See C-SPY macros
SYSteM TeqUITeMEeNtS. « . ..o v ettt e e e et 3
sO3 (file extension).o vv i 7
Tab Key Function (editor option). 165
Tab Size (editoroption), 165
Tab spacing (assembler option) 113
Tab spacing (C compiler option) 103
Target consistency check (C-SPY ROM-monitor option) 135
Target CPU Family. 28
Target Options.covv vt 92, 159
example. 28
Memorymodel i 92
Processor variant. oL 92
target PrOCESSOTS. . .. vttt vttt et et e e 19
target support, compiler........... 14
BATOES . . vttt 19, 141
changing groupsin 158
CIEALNG . . ottt ettt 158
debug. 22
release 22
Targets... (Projectmenu) 158
technical support i 9
templates
linker command file 5
ROM-monitor projectc.ccoveneon.. 273
Terminal /O window 220

example. 45
terminal I/O, simulating. 119, 178
testing,of code. i 21
Tile Horizontal (Window menu)

C-SPY . e 245

Embedded Workbench 170
Tile Vertical (Window menu)

C-SPY 245

Embedded Workbench 170
time

accumulated, in Profiling window 77

activation, in interrupts 237

flat, in Profiling window 77

variance, in interruptsl 237
timing information. See profiling
Toggle Breakpoint (button) 213
Toggle Breakpoint (Control menu) 230

example. ... 44
Toggle C/Assembler (View menu). 214,227

example. 78
Toggle Source/Disassembly (button)................ 213
Tool Output (in Messages window) 147
Toolbar search textbox 139
Toolbar search (button) 139
Toolbar (Viewmenu)cuuuiunn. .. 226
toolbars. 138

editbar. 139

projectbar....... ... 140

search. 139
Toolsmenu.uuiiriiiiiiinnn, 161
Trace (Controlmenu). 238
tutor (Subdirectory) 6
tutorial files 6

COMIMONLC &+ vt v et e e et e et et e et e eeeens 30

demoO.C. oot e 83

demo.dO3. 87

demo_tWoO.C. o oo 83

first.sO3 59

main.sO3 e 66

Index __o

shifts.s03 66
TUEOL.C. o oo et 29
TUEOT2.C . oottt 47
tUEOI3.C L oot 50
tUtOI3.mac 52
tutorials
assembler. 59
compiler. 47
Embedded Workbench 27
typechecking i 13
disabling at link time. 121
Type checking (C compiler option) 98
type (breakpoint) i 232
typographic conventions XXx1
UART ... 47
UBROF. 17
Undefine symbol (assembler option) 114
Undo (Edit menu)
C-SPY ... 225
Embedded Workbench 151
Universal Asynchronous Receiver/Transmitter
(UART). . oo e 47

Universal Binary Relocatable Object Format (UBROF) . . 17

\'

variables
USING in argumentsc.c.oeuenenennn.. 162
using in C-SPY expressions 181
watchinginC-SPY 233
example 42
Vector (in Interrupt dialogbox) 237
vectors, used in ROM-monitor. 261
Verify all (C-SPY ROM-monitor option). 135
Verify boundaries (C-SPY ROM-monitor option). 135
version number, of Embedded Workbench 172
versions, of C-SPY 18

303

View menu

Virtual Register (dialogbox)
virtual registers.
[0 (. 151 0T

W

Warnings (assembler option)
Warnings (XLINK option).
Watchwindow o,

POP-UP MENU . .+ e ete et et e e ee e e
Watch window (button)
watchpoints, setting
website, IAR.
while (macro statement).
Window menu

Window Settings, in C-SPY.................. ...

windows. See Embedded Workbench windows or
C-SPY windows

Writable strings (C compiler option)
WWW.IALCOM it it

X

XCL filename (XLINK option)
xcl (fileextension)co ...
xlb (fileextension)o ...
XLIB . e

example.

starting in Embedded Workbench..............
XLIB documentationouivinina...
XLIB features.t
XLIB options

8051 IAR Embedded Workbench™
304 User Guide

QUIT . ..o 69
XLINK documentation 16
XLINK features 15
XLINK list files

GENETALING « . oottt ettt e 123

including segmentmapc...i ... 123

specifying lines perpage.......... ..., 123
XLINK Optionsvuuimininenanan.. 117, 159

Always generate output. 121

Debuginfo....... i 119

Debug info with terminal /O 119

Definesymbol.......... 120

factory settingsc.iiiiiiiian.. 118

Fill unused code memory 128

Fillerbyte 128

Format..... L 118

Format variant............. 119

Generate checksum, 128

Generate linker listing. 123

Includepaths......... 124

Inherent....... L. 125

Inherent, no objectcode 125

Library. 126

Lines/page., 123

Loadas LIBRARY 126

Loadas PROGRAM 125

Module status i 125

No global type checking 121

Outputfile... 118

Output format 119

override inherited settings. 117

Rangechecks........... it 122

Segment map.oovitn 123

Segment overlap warnings 121

setting in Embedded Workbench. 117

Warningso 122

XCLfilename 124
XLINK output

formats. 15

Index __o

overriding default format 119 -d(C-SPYoption) 249
specifying format oL 118 -f(C-SPYoption). 249
XLINK symbols, defining 120 -n (C-SPY ROM-monitor option) 249
XLINK_DFLTDIR (environment variable)............. 6 p(C-SPYoption)covneninii i 249
-1z (C-SPY ROM-monitor option). 250

S b -sp (C-SPY ROM-monitor option). 250
ymbpo Is 250

-s1 (C-SPY ROM-monitor option).

#define options (XLINK). 120 -V (C-SPY Option)ovvie i 251
#define (assembler option). 111 X (C-SPY Option)ovvieii e 251
#define (C compiler option)....................... 101 /I comments (C compiler option). 97
#IFDEF/#ENDIF matching (assembler option). 108 _ _autoStep (C-SPY system macro). 190
#included text (assembler option) 112 _ _calls (C-SPY system macro)............ 190-191, 205
#pragma language (directive)., 47 _ _cancelAlllnterrupts (C-SPY system macro) 191
#undef (assembleroption) 114 _ _clearAllBreaks (C-SPY system macro). 192
#undef (C compileroption) 105 _ _clearAllMaps (C-SPY system macro)............. 192
$CUR_DIRS (argument variable) 162 _ _clearBreak (C-SPY system macro)............... 192
CUR_LINES (argument variable) 162 _ _clearMap (C-SPY system macro) 193
$EW_DIRS (argument variable) 162 _ _closeFile (C-SPY system macro) 194
$EXE_DIRS (argument variable). 162 _ _disableInterrupts (C-SPY system macro) 194
$FILE_DIR$ (argument variable) 162 _ _enablelnterrupts (C-SPY system macro). 195
$FILE_FNAMES (argument variable). 162 _ _getLastMacroError (C-SPY system macro) 195
$FILE_PATHS$ (argument variable)................. 162 _ _20 (C-SPY SyStem macro). 196
$LIST_DIRS$ (argument variable) 162 _ _multiStep (C-SPY system macro)................ 196
OBJ_DIRS (argument variable) 162 _ _openFile (C-SPY system macro). 196
$PROJ_DIRS$ (argument variable).................. 162 _ _orderInterrupt (C-SPY system macro) 197
$PROJ_FNAMES (argument variable) 162 eXamPple. 53
$PROJ_PATHS (argument variable) 162 _ _printLastMacroError (C-SPY system macro). 198
$TARGET_DIRS (argument variable). 162 _ _processorOption (C-SPY system macro) 198
$TARGET_FNAMES (argument variable) 162 _ _readFile (C-SPY system macro) 199
$TARGET_PATHS (argument variable) 162 _ _readFileGuarded (C-SPY system macro) 199
$TOOLKIT_DIRS (argument variable).............. 162 _ _readMemoryByte (C-SPY system macro) 200
b (format specifier) 182 _ _realtime (C-SPY system macro) 200
9oc (format specifier) 182 _ _registerMacroFile (C-SPY system macro) 201
o0 (format specifier) 182 _ _reset (C-SPY system macro). 201
%os (format specifier) 182 _ _rewindFile (C-SPY system macro)............... 202
Jou (format specifier) 182 _ _setBreak (C-SPY system macro). 202
%X (format specifier)L. 182 eXAMPle. 53
Fasterisk) 78 _ _setMap (C-SPY system macro). 203
-c1 (C-SPY ROM-monitor option) 248 _ _step (C-SPY system macro) 204
-c2 (C-SPY ROM-monitor option) 248

305

_ _writeMemoryByte (C-SPY system macro)......... 205

Numerics

8051 (direCtory) . ..ottt e 5

8051 IAR Embedded Workbench™
306 User Guide

	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Part 1: The IAR development tools
	Introduction
	Included in this package
	System requirements
	Running the program
	Running the IAR Embedded Workbench
	Running the IAR C-SPY Debugger
	Upgrading to a new version
	Uninstalling the products

	Directory structure
	The root directory
	The bin directory
	The config directory
	The doc directory
	The inc directory
	The lib directory
	The license directory
	The src directory
	The tutor directory

	File types
	Documentation
	User and reference guides
	8051 IAR Embedded Workbench™ User Guide
	8051 IAR C Compiler Reference Guide
	8051 IAR Assembler Reference Guide
	IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide
	IAR C Library Functions Reference Guide

	Online help
	Recent information
	IAR on the web

	The IAR Embedded Workbench
	The framework
	Integrated tools

	IAR Embedded Workbench
	Features
	General features
	The IAR Embedded Workbench editor
	Compiler and assembler projects
	Documentation

	IAR C Compiler
	Features
	Language facilities
	Type checking
	Code generation
	Target support
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR�XLIB�Librarian
	Features
	Documentation

	IAR C-SPY Debugger
	Features
	General
	High-level-language debugging
	Assembler-level debugging
	Documentation

	Versions
	Simulator version
	ROM-monitor version

	The project model
	Developing projects
	How projects are organized
	Targets
	Groups
	Source files

	Setting options
	Building a project
	Testing the code
	Sample applications
	A basic application
	A more complex project

	Part 2: Tutorials
	IAR Embedded Workbench tutorial
	Tutorial 1
	Creating a new project
	The source files
	The tutor.c program
	The common.c program

	Adding files to the project
	Setting compiler options
	Compiling the tutor.c and common.c files
	Viewing the list file
	Linking the tutor.c program
	Viewing the map file
	Viewing the build tree

	Running the program
	Watching variables
	Setting a watchpoint

	Setting breakpoints
	Executing up to a breakpoint
	Continuing execution
	Exiting from C-SPY

	Compiler tutorials
	Tutorial 2
	The tutor2.c serial program
	Compiling and linking the tutor2.c serial program
	Running the tutor2.c serial program
	Defining virtual registers

	Tutorial 3
	The tutor3.c program
	The C-SPY tutor3.mac macro file
	Initializing the system
	Generating interrupts
	Using breakpoints to simulate incoming values
	Resetting the system
	Exiting the system

	Compiling and linking the tutor3.c program
	Running the tutor3.c interrupt program

	Assembler tutorials
	Tutorial 4
	Creating a new project
	The first.s03 program
	Assembling the program
	Viewing the first.lst list file
	Linking the program
	Running the program

	Tutorial 5
	Using libraries
	The main.s03 program
	The library routines
	Creating a new project
	Assembling and linking the source files
	Using the IAR XLINK Librarian
	Giving XLIB options

	Advanced tutorials
	Tutorial 6
	Creating project4
	Defining complex breakpoints
	Executing until a condition is true
	Executing up to the cursor
	Displaying function calls
	Displaying code coverage information
	Profiling the application

	Tutorial 7
	Monitoring memory
	Changing memory
	Monitoring registers
	Changing assembler values

	Tutorial 8
	Creating a combined compiler and assembler project

	ROM-monitor tutorial
	Tutorial 9
	Getting started
	The demo.c program
	The demo_two.c program

	Setting target and compiler options
	Compiling the demo.c and demo_two.c files
	Setting XLINK options
	Linking the project
	Setting C-SPY options
	Running the program

	Part 3: The IAR Embedded Workbench
	General options
	Setting general options
	Target
	Processor variant
	Memory model

	Output directories
	Executables
	Object files
	List files

	Compiler options
	Setting compiler options
	Code generation
	Enable language extensions
	‘Char’ is ‘signed char’
	Writable strings
	‘//’ comments
	Nested comments
	Disable warnings
	Make a library module
	Stack expansion
	Function
	Type checking
	Global strict type checking
	Flag old-style functions
	No type info in object code

	Optimization
	Register bank
	Code segment

	Debug
	Generate debug information

	#define
	Defined symbols

	List
	List file
	Insert mnemonics
	Add #include file text
	Active lines only
	Form feed after function
	Lines/page

	Tab spacing
	Cross reference
	Assembly output file
	Preprocessor output file
	Explain C declarations

	#undef
	Undefine symbol

	Include
	Include paths

	Assembler options
	Setting assembler options
	Code generation
	Case sensitive user symbols
	Disable #ifdef/#endif matching (-d)
	Warnings
	Make a library module
	Macro quote chars

	Debug
	Generate debug information

	#define
	#define

	List
	List file
	Include cross-reference
	Lines/page
	Tab spacing

	#undef
	#undef

	Include
	Include

	XLINK options
	Setting XLINK options
	Output
	Output file
	Override default

	Format
	Debug info
	Debug info with terminal I/O
	Output format
	Format variant

	#define
	Define symbol

	Diagnostics
	Always generate output
	Segment overlap warnings
	No global type checking
	Range checks
	Warnings/errors

	List
	Generate linker listing
	Segment map
	Symbols
	Lines/page

	Include
	Include paths
	XCL filename

	Input
	Module status
	Inherent
	Inherent, no object code
	Load as PROGRAM
	Load as LIBRARY

	Library
	Use multiple DPTRs
	Use MDU library
	Reentrant
	Override default library

	Processing
	Fill unused code memory
	Filler byte
	Generate checksum

	C-SPY options
	Setting C-SPY options
	Setup
	Processor variant
	Setup file
	Device description file
	Make code writable
	Driver

	Serial Communication
	ROM monitor
	Code
	Suppress load
	Fast download

	Target consistency check
	None
	Verify boundaries
	Verify all

	Intel RISM

	IAR Embedded Workbench reference
	The IAR Embedded Workbench window
	Menu bar
	Toolbars
	Edit bar
	Toolbar search
	Project bar

	Project window
	Pin button
	Targets
	Groups
	Source files
	Editing a file
	Moving a source file between groups
	Removing items from a project

	Editor window
	Auto indent
	Matching brackets
	Read-only and modification indicators
	Editor options
	Editor key summary
	Splitting the Editor window into panes

	Status bar
	Messages window
	Pin button
	Build
	Find in Files
	Tool Output

	Binary Editor window

	File menu
	New…
	Open…
	Close
	Save
	Save As…
	Save all
	Print…
	Print Setup…
	Exit

	Edit menu
	Undo
	Redo
	Cut, Copy, Paste
	Find…
	Replace…
	Find in Files…
	Match brackets

	View menu
	Edit Bar
	Project Bar
	Status bar
	Goto Line…

	Project menu
	Files…
	Adding files to a group
	Removing files from a group
	Source file paths

	New Group…
	Targets…
	Options…
	Compile
	Make
	Link
	Build all
	Stop build
	Librarian
	Debugger

	Tools menu
	Configure tools…
	Specifying command line commands or batch files

	Binary Editor…
	Record Macro
	Stop Record Macro
	Play Macro

	Options menu
	Settings…
	Editor
	External Editor
	Key Bindings
	Colors and Fonts
	Make Control

	Window menu
	New Window
	Cascade, Tile Horizontal, Tile Vertical
	Arrange icons
	Close all
	Split
	Message window

	Help menu
	Contents
	Search for help on…
	How to use help
	Embedded Workbench Guide
	C Compiler Reference Guide
	Assembler Guide
	XLINK and XLIB guide
	C Library Reference Guide
	IAR on the Web
	About…

	Part 4: The C-SPY simulator
	Introduction to C-SPY
	Debugging projects
	Disassembly and source mode debugging
	Source window

	Program execution
	Single stepping
	Breakpoints
	Interrupt simulation
	C function information
	Viewing and editing memory and registers
	Terminal I/O
	Macro language
	Profiling
	Code coverage

	C-SPY expressions
	Expression syntax
	C symbols
	Assembler symbols
	Format specifiers

	C-SPY macros
	Using C-SPY macros
	Defining macros
	Executing C-SPY macros
	Macro variables
	Macro functions
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks
	Printing messages
	Displaying contents of complex objects
	Resume statement
	Error handling in macros

	C-SPY setup macros
	Descriptions of system macros
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Return value
	Description
	Parameters
	Return value
	Description
	Return value
	Description
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Return value
	Description
	Return value
	Description
	Return value
	Description
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description
	Parameters
	Return value
	Description

	Device description file
	SFR window setup
	Syntax
	Restrictions
	SFR groups
	Syntax

	Interrupt system simulation
	Loading the device description file
	Interrupt system syntax
	Syntax

	C-SPY reference
	The C-SPY window
	Types of C-SPY windows
	Menu bar
	Toolbar and debug bar
	Toolbar
	Debug bar

	Source window
	Source file and function
	Current position
	Cursor
	Breakpoint
	Data tip

	Register window
	SFR window
	Memory window
	Calls window
	Status bar
	Watch window
	Viewing the contents of an expression
	Adding an expression to the Watch window
	Inspecting expression properties
	Removing an expression

	Locals window
	Editing the value of a local variable

	Terminal I/O window
	Report window
	Code coverage window
	Profiling window
	Profiling On/Off
	New Measurement
	Graph On/Off
	Save List
	Current Cycle Count

	File menu
	Open…
	Close session
	Recent files
	Exit

	Edit menu
	Undo, Cut, Copy, Paste
	Find…

	View menu
	Toolbar
	Debug Bar
	Source Bar
	Memory Bar
	Locals Bar
	Profiling bar
	SFR Bar
	Status Bar
	Goto…
	Move to PC
	Toggle Source/Disassembly

	Execute menu
	Step
	Step into
	Autostep...
	Multi Step…
	Go
	Go to cursor
	Go out
	Reset
	Stop

	Control menu
	Toggle breakpoint
	Edit Breakpoints…
	Location
	Segment
	Length
	Count
	Condition
	Type
	Macro

	Quick watch…
	Memory Map…
	Memory Fill…
	Assemble…
	Interrupt…
	Vector
	Activation Time
	Repeat Interval
	Latency
	Probability
	Time Variance
	Simulation On/Off

	Trace
	Calls
	Realtime
	Log to file
	Profiling

	Options menu
	Settings…
	Window Settings
	Register Setup
	SFR Setup
	Key Bindings

	Load Macro…
	Select log file...

	Window menu
	Cascade
	Tile horizontal
	Tile vertical
	Arrange icons

	Help menu
	Contents
	Search for help on…
	How to use help
	Embedded Workbench Guide
	About…

	C-SPY command line options
	Setting C-SPY options from the command line
	Using macro files for options

	Summary of command line options
	Descriptions of C-SPY command line options

	Part 5: C-SPY for the 8051 ROM-monitor
	Introduction to the ROM-monitor
	The C-SPY ROM-monitor
	Differences between the ROM-monitor and simulator versions of C-SPY

	The ROM-monitor program
	Communication
	Execution of user code

	Controlling user applications
	Breakpoints
	The Control C feature
	Single stepping
	Debugging in real time
	Debug options
	CPU halt
	Processor sharing

	Debugging interrupts
	Resolving problems with the ROM-monitor
	Verifying the download
	Checking for problems
	Possible problems
	STOP only works from time to time
	Warnings about write failure during load
	No progress in normal code when a periodic interrupt is running
	Terminal I/O window cannot be opened
	Monitor works, but application won't run
	Monitor crashes when running application
	No contact with the monitor

	Advanced topics
	Executing transparent commands
	How to execute a transparent command

	Writing transparent commands
	void init_transparent(boolean_R20 cold_start)
	void transparent(unsigned char leave)
	Protected memory
	Using address masks

	Adapting the ROM-monitor
	ROM-monitor memory use
	Hardware reset
	Serial communication
	Writing your own serial port driver
	Setting the interrupt vector
	Switched memory layout
	Building a new ROM-monitor
	Modifying the linker command file
	Compiling from the command line
	Compiling in the IAR Embedded Workbench

	Testing the modified serial communications

	The ROM-monitor boards
	EM ROM-monitor
	Memory maps in RUN mode
	Memory maps in monitor mode
	MCB-517 ROM-monitor
	KITCON-504C, 505C and 515C ROM-monitor
	Internal CPU memory

	Diagnostic messages
	Warning messages
	Error messages
	Fatal error messages
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

	Index

