8051 IAR C Compiler

Reference Guide

for the
8051 Family of Microcontrollers

8051 IAR C Compiler
Reference Guide

COPYRIGHT NOTICE
© Copyright 2001 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, AR Systems assumes no responsibility for any
errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or
kind.

TRADEMARKS

IAR and C-SPY are registered trademarks of IAR Systems. IAR Embedded
Workbench, IAR XLINK Linker, and IAR XLIB Librarian are trademarks of AR
Systems. Intel is a registered trademark of Intel Corporation. Microsoft is a registered
trademark, and Windows is a trademark of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: January 2001

Part number: C8051-1

Contents

Tables ix

PrEfAcCe ..o xi

Who should read this guide xi

How to use this guide Xi

What this guide contains Xii

Document conventions xiii
Part |. Using the compiler

Efficient coding techniques 3

Efficient coding 3

Using language extensions 3

Extended keywords 4

#pragma directives 5

Predefined symbols 5

Intrinsic functions 5

CONFIGUIALION .. 7

INEFOAUCLION ...ttt ss s srs s eseees 7

Run-time library 8

Memory models 9

Specifying the memory model 9

Memory location 10

MEINOTY ATCAS ..euvrvvrcuremneunimeseeacesersessensessessesssssesesseessessssssessessessesesssssssecsnase I

Non-volatile RAM 20

Banking 20

Banked memory .21

How to use the banked memory model 24

8051 IAR C Compiler
iv Reference Guide

Assembly language interface

Linker command file

Stack size

Estimating the required stack size

Heap size

Input and output

Putchar and getchar

Printf and sprintf

Scanf and sscanf

Initialization

Variable and I/O initialization

Modifying CSTARTUP
CSTARTUP.S03

Optimization

Customizing the run-time library

Multi-module linking

Target-specific support
80751 Support

80517 Support

80320 Support

Calling convention

Register usage

Parameters and local variables

Limitations

Reentrant parameters

Creating skeleton code

Assembler support directives
$DEFFN

$REFFN

$IFREF

$LOCBD, $LOCBI, $LOCBB, and SLOCBX
$PRMBD, $PRMBI, $PRMBB, and $PRMBX

$BYTE3

27
28
28
28
29
29
30
31
32
32
32
34
37
37
37
38
38
39
40

43

43
44
44
45
46
48
49
49
50
50
50
51
51

Contents __o

Example .51

Reentrant functions 54
Interrupt functions 54
Defining interrupt vectors 55

Part 2: Compiler reference 57
Data representation 59
Data types 59

Enum type 59

Bitfields 60

CRAT LYPE wvrveeererncrrereneseniseeseeeesessesessessessesssssesessetasesssasssessessessesesssssssessesase 60

Floating point 60

Bit variables 60

Special Function Register variables 61

POINLEES ...t csses st s ses s sss s sesineees 61

Code pointers 6l

Data pointers 6l

SEEMENTES ..o 67
Memory maps 67
Descriptions of segments 71
Compiler options . 83
Setting compiler options 83
Specifying options using environment variablesccveecrercueenne 83

Summary of compiler options 84
Descriptions of compiler options 85
Extended keywords 107
Using extended keywords 107
Address control 107

J/O ACCESS .ottt 108

Bit variables 108

Non-volatile RAM 108

vi

8051 IAR C Compiler
Reference Guide

Interrupt routines

Descriptions of extended keywords

#pragma directives

#pragma directives summary

Bitfield orientation

Extension control

Function attribute

Memory usage

Warning message control

Descriptions of #pragma directives

Predefined symbols

Descriptions of predefined symbols

Intrinsic functions

Descriptions of intrinsic functions

K&R and ANSI C language definitions

Introduction

Definitions

entry keyword

const keyword

volatile keyword

signed keyword

void keyword

enum keyword

Data types

Function definition parameters

Function declarations

Hexadecimal string constants

Structure and union assignments

Shared variable objects

108
108

121

121
121
121
121
121
122
122

133
133
135
135
139

139
139
139
139
140
140
140
140
141
141
141
142
142
143

Contents __o

Using C with PL/M 145
Using the object file converter 145
Linking the converter files 146
Compiling PL/M functions 147

Tiny-51 51
Introduction I51

General characteristics 151
Terminology 151
Principles of operation 153
Restrictions on TINY-51 155
Installing TINY-51 155
Configuring TINY-51 156
Task timer 156
Register bank 3 156
Task-switching time 156
Timeout task 156
Building a TINY-51 application 156
Using preemptive multitasking 157
Using non-preemptive multitasking 161
Descriptions of TINY-51 functions 164

Diagnostics 173

Severity levels 173
Command line error messages 173
Compilation error messages 173
Compilation warning messages 173
Compilation fatal error messages 173
Compilation internal error messages 173
Compilation memory overflow message 174

Compilation error messages 174
8051-specific error messages 187
80751-specific error messages 189

Compilation warning messages 190
8051-specific warning messages 196

vii

viii

8051 IAR C Compiler
Reference Guide

Part 3. Library functions

General C library definitions

Introduction

Library definitions summary

Index

Library object files

Header files

Character handling — ctype.h
Low-level routines —icclbutl.h
Mathematics — math.h

Non-local jumps — setjmp.h

Variable arguments — stdarg.h

Input/Output — stdio.h
General utilities — stdlib.h

String handling — string.h

Assertions — assert.h

Miscellaneous header files

197

199

199
199
199
200
200
200
201
202
202
202
202
204
205
205

207

Tables

1: Typographic conventions used in this gUidec..ccceeoeveerierininieninineneneenn xiii
2: Features handled by configurable elementscccccevereereeiierieniinienceneneeneee. 8
3: Run-time library files

4: Memory model CharaCteriStiCsc.ccvirereriniinienenenenieeneeeeeee et 9
5: Command file NAMEScccoiiiiiiiiiiiiice e 27
6: Parameters, types, and lOCAtIONScccceevueeiieriininiiiiiinieneecet e 43
72 RETUIN TEZISIEIS ..euvveueieiiieiieiieitetentete sttt ettt ettt ebe ettt eee e e ene

8: COMPILET OPLIONSeeeuiiriiiieiiietieiert ettt sttt ettt eaes

9: Compiling skeleton code in IAR Embedded Workbench ...

10: Functions used in SDEFFNcccocoiieiririienieeneeriee et
112 DALA EYPLS wenveeeeenieeiieniteeieeite ettt ettt ettt ettt ettt sttt sttt
12: COdE POINLETS ..ceueevienieeiieiieeiierteenteet ettt sttt et sttt et e e seeesbe e e eeesanenee 61
137 MEIMOTY IEA ..cvevieiiiiiinieiieiteieit et sttt ettt ettt e et sbe et be st ese b e enes 62
14: Environment variablesccccooeieoiiiiiiniiniiieeneeeeeceee s 84
15: Command lin€ OPLIONS .c.eeeuiirieeriiiiinieriieieeit ettt 84
16: Reentrant fUnCONSccccoeeirieiiirieieiccte ettt s 88
17: Options for the -h compiler OPtONccecveiiiiiiiiiiiiiceeceeceee e 96
18: Specifying memory model (-1M)c.coceeieriiniininiinieeeeeeeeeee e 98
19: Generating debug information (-I)c..ccceeveverinenieninenene e 101
20: Optimizing for speed (-s)

21: Specifying procesSOr OPLIONScceceereerueerereereerieerieniieseeieestenseesseeseesesaees

22: Disabling warning meSSaZEScceeerueuerreruerenrenerenreseneeseeenseeseseeneeeennes

23: Including cross-references in list file (-x)

24: OptimiZing fOI SIZ& (-Z) vevvevereeierieniesenieeeere sttt

25: ReServed KEYWOIASccccociriiiiiiiiiiiieicietete ettt s

26: Extended keywords general parameters ..

27: Bit Variable tYPEScceecieiriieiiieieieieteteete ettt e 109
28: Memory areas for each register bankc..cc.coceeerieiinieineiineneninne e 113
29: _args$ (Intrinsic fUNCHON) ...occeveeirieieiee et 135
30: _argt$ (intrinsic fUNCHON) ...ocveveeiiieiriee et e 136
31: Function differences between K&R and ANSIccccoeninininininincincne. 141

8051 IAR C Compiler
x Reference Guide

32:
33:
34:
35:
36:
37:
38:
39:

K&R and ANSI function declarationscccceeeeeeiiieeeeiieeeeeiieeeecveee s

Shared variable objects
Matched static and global variables from C to PL/M
Task states in TINY-51

TINY-51 functions SUMMATYceceereereererreeerieneeneneeeeenseesseeeeseeseeeniesseeas

Options that cause the compiler to use more memory

Suggestions for illegally used Keywordsc..cccceeveriinienienicneenieieceeeee

Miscellaneous header files

Preface

Welcome to the 8051 IAR C Compiler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to customize the 8051 IAR C Compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency. The 8051 IAR C
Compiler supports C for the 8051 microcontrollers.

Who should read this guide

You should read this guide if you plan to develop an application using C for the 8051
microcontroller and need to get detailed, reference information on how to use the 8051
IAR C Compiler. In addition, you should have working knowledge of the following:

e The architecture and instruction set of the 8051 microcontroller; refer to the chip
manufacturer’s documentation for information about the 8051 architecture and
instruction set

o The C programming language

e Windows 95/98/2000 or Windows NT, depending on your operating system.

For information about programming with the 8051 IAR Assembler, refer to the 8051
IAR Assembler Reference Guide.

How to use this guide

When you first begin using 8051 IAR C Compiler, you should read Part 1. Using the
compiler in this reference guide.

If you are an intermediate or advanced user and have already configured the compiler,
you can focus more on Part 2: Compiler reference.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the 8051 IAR Embedded Workbench™ User Guide. They include
comprehensive information about the installation of all IAR tools and give product
overviews, as well as tutorials that can help you get started.

Xi

What this guide contains

Xii

What this guide contains

8051 IAR C Compiler
Reference Guide

Below is a brief outline and summary of the chapters in this guide.
Part 1. Using the compiler

o What'’s new in this product highlights and summarizes the new features in this
product.

e Efficient coding techniques provides programming hints and information about
how to fine-tune your application using the IAR toolkit, and how to get the most
use out of 8051 IAR C Compiler’s features.

o Configuration describes how to configure the compiler using the IAR toolkit to
suit the requirements of your application, for example, setting up project options
and customizing the linker command file.

o Assembly language interface describes the interface between a C main program
and the assembly language routines.

Part 2: Compiler reference

e Data representation describes the available data types, pointers, and structure
types.

o Segments lists the segments available, describes the naming convention, and gives
reference information about each segment.

o Compiler options explains how to set compiler options from the command line
and gives detailed reference information about each option.

e Extended keywords describes the non-standard keywords that support specific
features of the 8051 microcontroller for data storage, function execution, function
calling convention, and function storage.

e #pragma directives describes the syntax and provides a description of the
#pragma directives of the 8051 IAR C Compiler.

e Predefined symbols describes the syntax and provides a description of the
predefined preprocessor symbols that are supported in the 8051 IAR C Compiler.

e [ntrinsic functions lists and describes the intrinsic functions provided in the 8051
IAR C Compiler.

e Diagnostics contains information about the severity levels and lists the
8051-specific warning and error messages.

Part 3. Library functions

o General C library definitions gives an introduction to the C library functions and
summarizes them according to the header file.

Preface __o

Document conventions

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within or to another part of this guide.

Identifies instructions specific to the versions of the IAR Systems tools
for the IAR Embedded Workbench interface.

Identifies instructions specific to the command line versions of IAR
Systems development tools.

Table 1: Typographic conventions used in this guide

Document conventions

8051 IAR C Compiler
xiv Reference Guide

!I!I!I!I!IW[!I

Part |. Using the compiler

This part of the 8051 IAR C Compiler Reference Guide contains the
following chapters:

e Efficient coding techniques

e Configuration

e Assembly language interface.

Efficient coding techniques

This chapter provides programming hints that help you write more efficient
code and gives information about how to fine-tune your application using the
IAR toolkit so that you can fully take advantage of the 8051 IAR C Compiler’s
features.

Efficient coding

It is important to appreciate the limitations of the 8051 architecture in order to avoid
the use of inefficient language constructs. The following is a list of recommendations
on how best to use the 8051 IAR C Compiler.

e Use 16-bit data types and char whenever possible. long integers have no direct
support in the 8051 architecture. Also note that, according to the ANSI C
standard, all data types that are shorter than int should undergo integral
promotion, that is, implicit type conversions, when used in arithmetic expressions.

e Use unsigned data types whenever possible. The 8051 IAR C Compiler
generally performs unsigned operations more efficiently than the signed
counterparts. Especially this applies to type conversions, comparison, array
indexing and some arithmetic operations, such as >> and /.

e Use ANSI prototypes. Function calls to ANSI functions are performed more
efficiently than K&R-style functions; see K&R and ANSI C language definitions,
page 139.

o Use the smallest memory model possible.

e Sensible use of the memory attributes can enhance both speed and code size in
critical applications; see Extended keywords, page 107, for detailed information.

e Bitfield types should be used only to conserve data memory space as they execute
slowly on the 8051 microcontroller. Use a bit mask on unsigned char or
unsigned int instead of bitfields. If you must use bitfields, use unsigned for
efficiency.

Using language extensions

The IAR C Compiler provides a number of powerful extensions that support specific
features of the 8051 family of microcontrollers.

The 8051-specific extensions are provided as extended keywords, #pragma
directives, predefined symbols, and intrinsic functions.

Part |. Using the compiler

Using language extensions

8051 IAR C Compiler
4 Reference Guide

EXTENDED KEYWORDS

By default, the compiler conforms to the ANSI specifications and 8051-specific
extensions are not available. The compiler option -e makes the extended keywords
available, and hence reserves them so that they cannot be used as variable names. See
-e, page 89.

The extended keywords provide the following facilities:

Addressing control

By default the address range in which the compiler places a variable is determined by
the selected memory configuration. The program may achieve additional efficiency
for special cases by overriding the default storage by using the data, idata, bdata,
pdata, xdata, code extended keywords.

1/O access

The program may access the 1/O system of the 8051 microcontroller using the sfr
data types.

Bit variables

The program may take advantage of the 8051 bit-addressing modes by using the bit
data type.

Non-volatile RAM

Variables may be placed in non-volatile RAM by using the no_init data type
modifier.

Calling mechanisms

By default the mechanism by which the compiler calls a function is determined by the
memory model chosen. The program may achieve additional efficiency for special
cases by overriding the default using one of the function modifiers:

reentrant

idata_reentrant

non_banked

plm

interrupt

monitor

For complete information about the available extended keywords, see the chapter
Extended keywords.

Efficient coding techniques __4

#PRAGMA DIRECTIVES

The #pragma directives control how the compiler allocates memory, whether the
compiler allows extended keywords, and whether the compiler outputs warning
messages.

#pragma directives provide control of extension features while remaining within the
standard language syntax.

Notice that #pragma directives are available regardless of the -e option.

For complete information about the #pragma directives, see the chapter #pragma
directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example the time and date of compilation.

For detailed descriptions of the predefined symbols, see the chapter Predefined
symbols.
INTRINSIC FUNCTIONS

Intrinsic functions allow low-level control of the 8051 microcontroller. The intrinsic
functions compile into in-line code, either as a single instruction or as a short sequence
of instructions.

To use the intrinsic functions in a C application, include the header file special .h.

For complete information about the available intrinsic functions, see the chapter
Intrinsic functions.

For details concerning the effects of the intrinsic functions, see the documentation of
the 8051 microcontroller.

Part |. Using the compiler 5

Using language extensions

8051 IAR C Compiler
6 Reference Guide

Configuration

This chapter describes how to configure the compiler using the IAR toolkit to
suit the requirements of your application. This includes setting up project
options used for specifying the 8051 derivative and memory model for your
project, memory location, linker command file, run-time libraries, initialization
of variables and I/O, input and output operations, module consistency, and
optimization.

Introduction

The IAR toolkit for the 8051 microcontroller contains a number of components that
you can modify according to the requirements of your application, as well as your
preferences regarding the run-time situation. There can be considerable variations in
the configuration of an 8051 microcontroller system’s use of internal and external
ROM and RAM. There are also differing requirements for stack size, the need for
reentrancy, large libraries, or time-critical functions. This chapter provides
information about the configuration and use of:

e Run-time libraries.

e The options used for specifying the memory model for your application. This
requires selecting memory models and link options to match the ROM
(non-bankable functions, bankable functions, constants, and initial values) and
RAM (directly addressable internal memory, indirectly addressable internal
memory, external memory, and external non-volatile memory).

e Banking.

e The linker command file which is used for specifying segments, address ranges,

stack size, and heap size. The compiler and linker identify different types of

memory by giving them different segment names (RCODE, CODE, CSTR,

D_IDATA, and NO INIT, for example).

I/0 operations.

Initialization procedure.

Optimization.

Customizing the C library.

Note: Some of the configuration procedures involve editing the standard files, and we
recommend that you make copies of the originals before beginning.

The chapter Efficient coding techniques gives some hints about how to write efficient
code.

For information about how to configure the hardware or peripheral devices, refer to
the hardware documentation.

Part |. Using the compiler 7

Run-time library

The size and location of the segments and the function characteristics are determined
by the command line options or control files used with the 8051 IAR C Compiler and
XLINK. Each feature of the environment or usage is handled by one or more of the

following configurable elements:

Feature

Configurable element

Memory model

Memory location

Non-volatile RAM

Stack size

putchar and getchar functions
printf/scanf facilities

Heap size

Initialization of hardware and memory

Compiler option, linker option

Linker command file

Compiler keyword, linker command file.

Linker command file.

Run-time library module

Linker command file
Heap library module

CSTARTUP module

Table 2: Features handled by configurable elements

Run-time library

8051 IAR C Compiler
8 Reference Guide

Library files are provided for the different memory models, processor types and
reentrant code. The library file to use is selected according to the following table:

Memory model Default a (80751) Reentrant

Tiny cl8051t.r03 cl8051ta.r03 cl8051tr.r03
Small cl8051s.r03 cl8051sa.r03 cl8051sr.r03
Compact cl8051c.r03 cl8051cr.r03
Medium cl8051m.r03 cl8051mr.xr03
Large cl80511.r03 cl80511r.x03
Banked cl8051b.r03 cl8051br.xr03

Table 3: Run-time library files

By default, the library files are provided in the directory path:

\ew23\8051\1ib\

For information about how to modify the run-time library, see Customizing the

run-time library, page 37.

Configuration __4

(R Specifying the run-time library in the IAR Embedded Workbench
In the IAR Embedded Workbench, the library file is selected automatically depending

on the linker command file in use. You can, however, override the default library and
specify your choice of run-time library in the Library page in the XLINK category
when setting project options. Note that the system library filename should not be

included in the linker command file.

Specifying the run-time library using the command line

For the command line version, you can specify the system library filename in the
linker command file or on the command line.

Memory models

Command

The 8051 IAR C Compiler supports six memory models. These offer a choice of
default placement for local and global variables within the ROM (CODE) and RAM

(DAT2) memory.

The following table gives details of the different memory models:

Run-time Linker

Memory) Global Local External i Typical Run-time |
line Code size . . library command
model data data RAM chip library
option 80751 file
Tiny -mt DATA DATA no 64K 8051 cl8051t cl805ta Ink805 | .xcl,
Ink805 la.xcl
Small -ms IDATA IDATA no 64K 8052 cl8051s cl8051sa Ink8051.xcl,
Ink805 la.xcl
(with the
-v| option)
Compact -mc XDATA DATA yes 64K 8031 cl8051c - Ink805 | .xcl
Medium -mm XDATA IDATA yes 64K 8032 cl805Im - Ink805 | .xcl
Large -ml XDATA XDATA yes 64K 8032 cl80511 - Ink805 I .xcl
Banked -mb XDATA XDATA yes >64K 8032 cl8o51b - Ink805 I b.xc

Table 4: Memory model characteristics

SPECIFYING THE MEMORY MODEL

Your project may use only one memory model at a time, and the same model must be

used by all user modules and all library modules.

Part I. Using the compiler 9

Memory models

8051 IAR C Compiler
|0 Reference Guide

N Specifying the memory model using the IAR Embedded Workbench

The memory model is specified in the Options dialog box under the General category
in the Target tab; see the 8051 IAR Embedded Workbench™ User Guide.

Specifying the memory model using the command line

When using the command line you specify the memory model to the 8051 IAR C
Compiler using the -m command line option, as shown in the above table.

Note: If the -v1 (80751) option is selected then only -mt and -ms are available.

For example, to compile myprog with optimization in the medium memory model,
use the command:

icc8051 myprog -mm -z9
If no memory model options are included, the compiler uses the tiny memory model.

To specify the memory model to the linker, select an appropriate normal or reentrant
version of the library file and change it in the corresponding linker command file.

For example, to link the module myprog (previously compiled for the medium
memory model) for the medium memory model, use the following command:

xlink myprog -f 1nk8051
The - £ option specifies a command filename (the extension .xc1 is assumed).

In addition to these six standard library files, there are alternatives that provide support
for reentrant code (c18051*r.r03) and 80751 (c18051*a.r03). This means that
the precise filename to use will depend not just on the memory model, but also on
which of these other options chosen. See Run-time library, page 8, for a complete list
of library filenames.

MEMORY LOCATION

You need to specity to XLINK your hardware environment’s address ranges for ROM
and RAM. Do this in your copy of the linker command file template.

For details of specifying the memory address ranges, see the contents of the linker
command file template and the IAR XLINK Linker in the JAR XLINK Linker™ and
IAR XLIB Librarian™ Reference Guide.

Configuration °

MEMORY AREAS

This section describes each of the seven memory areas individually—CODE, DATA,
IDATA, XDATA, BDATA, PDATA, and SFR—and the relationship between the 8051
hardware and the 8051 IAR C Compiler memory models.

0xFFFF 0xFFFF
POATA

FF

SFR [DATA,
a0
7F

DATA/NDATA,

0x0 0x0 0

CODE HDATA DATAIDATA

Part |. Using the compiler | |

Memory models

8051 IAR C Compiler
|2 Reference Guide

CODE memory

The CODE memory address area extends from address 0h to 0FFFFh. Depending on
the particular type of chip, anywhere from none to 16 Kbytes or more may be on-chip.
Off-chip ROM begins at the address following the end of internal ROM and is
accessed using the same addressing mode as the internal ROM. If only a part of the
full 64 Kbytes CODE address space is used, that part may be located anywhere within
the 64 Kbyte area. Usually CODE memory will begin at 0000, because that is where
the first instruction is fetched by the processor after a power-on or reset.

The CODE memory area contains the IVT (Interrupt Vector Table), initialization code,
compiler run-time library routines, variable initializers, constant data, and user code.

OxFFFF OxFFFF
PDATA
FF
SFR |DATA,
a0
7F
DATANDATA
00 00 0
CODE KOATA, DATANDATA

The banked memory model allows up to 256 banks of ROM to be accessed by the
compiler. In bank mode, a function is addressed by a 16-bit address plus a bank
number. The bank number is sent to the hardware via one of the user ports. In bank
mode, all of the C runtime library code, ISRs (Interrupt Service Routines), constant
data, and variable initial values must remain in a root bank because they are always
accessed non-banked functions. See Banking, page 20.

Configuration __4

IDATA memory

The 256 bytes of the IDATA section of the 8051’s internal RAM memory begin at
address 00 and continue up to FF hex. Certain 8051-family chips, such as the original
8051, have only 128 bytes of internal RAM, and so IDATA user RAM is available only
up to 7Fh, and between 80h and FFh is SFR space only.

Data objects in the program which are defined to reside in IDATA memory are placed
in this memory area and are always accessed by the compiler using the indirect
addressing mode of the 8051 MOV instruction.

The direct form of the MOV instruction looks like this:
MOV 35, #AA

This will move the value A2 into address 35, whereas the indirect MOV to accomplish
the same thing in a two step process:

MOV RO, #35

MOV @RO, #AA.

0xFFFF 0xFFFF
POATA
FF
SFR [DATA

a0
7F

DATAJIDATA
0x0 0x0 0

CODE HDATA DATAJIDATA

Part I. Using the compiler |3

Memory models

8051 IAR C Compiler
|4 Reference Guide

DATA memory

The DATA memory area of internal RAM, residing between the addresses 00h and
7Fh, is an area of IDATA memory which can be accessed using either the indirect or
the faster direct addressing mode of the 8051 MOV instruction. (For chips such as the
original 8051 that have only 128 bytes of internal RAM, this is all the internal user
RAM there is.)

Data objects which are defined to reside in the DATA memory are placed in this
memory area, and are always accessed by the compiler using the direct addressing
mode of the 8051 MOV instruction.

From the C source level, variables which require the fastest available access time can
be assigned to reside in DATA space by using the extended language keyword data.

If the program attempts to place more objects in DATA memory than there is physical
room, the linker will issue an ‘out of range’ error for the objects which would
require addresses above 7Fh. Those objects would then require reassigning.

The segments listed in the DATA memory area are used by the compiler to contain
variables defined by your C program to reside in the DATA memory area.

The segment D_IDATA is shown in the diagram in Memory areas, page 11, as the last
segment in the DATA memory area. If there is still memory available in the DATA area
after the contents of the five DATA segments have been linked, the linker will by
default continue assigning the remaining DATA addresses to the contents of the IDATA
segments beginning with the C_ARGI segment.

IDATA objects located in the DATA memory area will still be accessed by the compiler
using the indirect addressing mode.

Once all addresses for the contents of the IDATA segments have been assigned, the
next available address is used as the start of the stack.

As noted in the chart, DATA memory contains the four general purpose register banks
and a bit-addressable area. These areas are discussed in the following paragraphs.

The four general purpose memory mapped register banks are located between address
00h and 1Fh. One of these register banks is used as the default register bank by
ICC8051. This bank is specified in the linker command file via the symbol _R.

An interrupt service routine written in C may specify which register bank it will use.
See the using keyword in Extended keywords, page 107, for details of specifying a
register bank for an interrupt service routine.

The memory area occupied by unused register banks may be added to the pool of free
memory used by the compiler. See the IJAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide.

Configuration __4

From the C source level, the extended language keyword bit is used to define a bit
variable in the bit addressable memory. The compiler will then use the 8051’s fast bit
instructions to operate on bit variables.

The C bit-field data type (defined using the ANSI C struct keyword) allocates a
minimum of a full byte of storage. Bit-fields do not allocate memory in bit addressable
area and do not generate code using the bit instructions. Thus when speed is important,
use the bit data type rather than bit-fields. More information on the difference between
bit-fields and bit variables is presented in Data representation, page 59.

0xFFFF 0xFFFF
POATA
FF
SFR [DATA

a0
7F

DATAJIDATA
0x0 0x0 0

CODE HDATA DATAJIDATA

Part |. Using the compiler |5

Memory models

8051 IAR C Compiler
|6 Reference Guide

BDATA memory

Data memory also contains 16 bytes of bit addressable memory, located between
address 20h and 2Fh. ‘Bit addressable’ means that the 8051 instruction set includes
instructions specifically designed to do fast set, clear, and other Boolean operations on
individual bits without the need for byte access and then masking to isolate a particular
bit.

Note: BDATA cannot use the static overlay model when declared inside a function.

OxFFFF OxFFFF
PDATA
FF
SFR | IDATA
a0
7F
DATA/IDATA
BDATA A28
0x0 0x0 i
CODE XDATA DATA/IDATA

Configuration __4

PDATA memory

The PDATA memory provides direct access to a defined page (256 bytes) of the
external memory. This means that moving data to/from the PDATA segment can be
done more efficiently. When PDATA is in use, CSTARTUP sets up port 2 (P2) to the
base-page of the PDATA memory. See the diagram in Memory areas, page 11.

Note: PDATA cannot use the static overlay model when declared inside a function.

0xFFFF 0xFFFF
POATA
FF
SFR | IDATA
a0
7F
DATAJIDATA
0x0 0x0 0
CODE HDATA DATAJIDATA

Part |. Using the compiler |7

Memory models

8051 IAR C Compiler
|8 Reference Guide

SFR space

SFR (Special Function Register) space contains the DPTR, PC, and other memory
mapped ports and registers which control the function of the microcontroller.

SFR’s can be accessed from the C source level by their symbolic names once they
have been declared using the sfr extended language keyword. The IAR Systems C
development kit includes a set of C language header files that define the SFR’s for a
number of common 8051 family proliferation microcontrollers. These files are called
I0*.H, where the * stands for the last digits of the microcontroller number. For
example the file 051 . H includes the definitions for a basic 8051 microcontroller.

Some of the SFR’s are bit-addressable. From both assembly and C, the 8051 IAR
Assembler’s SFR.bit notation may be used to access a particular bit of an SFR. For
example,

P1.7 = 0

assigns the value 0 to the most significant bit of port 1 (P1).

0xFFFF 0xFFFF
POATA
FF
SFR [DATA

a0
7F

DATAJIDATA
0x0 0x0 0

CODE HDATA DATAJIDATA

Configuration __4

XDATA memory

External DATA memory is optional, off-chip RAM, addressable anywhere within the
0000h to OFFFFh range. This may include a section which is non-volatile (battery
backed) if desired, and memory mapped I/O devices.

0xFFFF 0xFFFF
POATA

FF

SFR | IDATA
a0
7F

DATAJIDATA
0x0 0x0 0

CODE HDATA DATAJIDATA

Segments and memory

The compiler places the program instructions and data into the appropriate areas of
physical memory by using segments.

At compile time, program instructions from each of the program modules are placed
in the segment named CODE, uninitialized data objects defined to reside in the DATA
memory area are placed in the D_UDATA segment, data objects declared using const
are placed in the CONST segment, and so on.

At link time, the physical addresses for each of these segments are assigned by the
linker command file.

The exact addresses where a segment is to be mapped can be specified by the -2z
(define segment) lines in the linker command file. Details of locating segments is
available in the IJAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

Part I. Using the compiler 19

Banking

Note that there is a distinction between segment types and segment names. The
segment type refers to which memory area the segment will be linked to and is used
to provide this information to emulators and other debuggers via a symbolic linker
output file such as AOMF8051.

For example, in the following -z line, the segments INTVEC and RCODE are assigned
to begin at CODE memory address Oh:

-Z (CODE) INTVEC, RCODE. . .=0

INTVEC and RCODE are segment names, and CODE is the segment type. The ellipses
(...) indicate the other CODE segments that are found in the complete -z (CODE) line.

A functional description of the various segments is provided in Segments, page 67.

For general information about segments, including the creation of your own segments,
see the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

NON-VOLATILE RAM

The compiler supports the declaration of variables that are to reside in non-volatile
RAM through the no_init type modifier and the #pragma memory directive. The
compiler places such variables in the separate segment NO_INIT, which you should
assign to the address range of the non-volatile RAM of the hardware environment. The
run-time system does not initialize these variables.

To assign the NO_INIT segment to the address of the non-volatile RAM, you need to
modify the linker command file. For details of assigning a segment to a given address,
see XLINK Linker in the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference
Guide.

Banking

8051 IAR C Compiler
20 Reference Guide

Banking is a technique for extending the amount of memory that can be addressed by
the processor beyond the limit set by the size of the natural addressing scheme of the
processor.

Configuration __4

BANKED MEMORY

The following memory map shows 8051°s CODE memory area.

FFFF Foooooooes
Bank 0 Bank 1 1 Bank 2,
. ete
Bank hase address [E
Root bank
o000

The upper section of the CODE address space is duplicated for the first 3 banks
(numbered 0 to 2) of a banked system.

To access code residing in one of these banks, the compiler/linker generates banked
addresses. A banked address has the form ‘16-bit-address-plus-bank-number’. The
‘16-bit-address’ part of the banked address is presented onto the address bus, and the
‘bank number’ part of the banked address is presented via user port P1 (or another
specified port). The hardware then decodes that bank number to select the appropriate
ROM bank.

In the diagram above, the lower part of CODE space (labeled ‘root bank’) is not banked.
This is because the compiler/linker only generates banked addresses for function calls,
not for other code space objects such as const objects. Thus every object in ROM
memory except for executable function code must reside in the root bank. Stated
another way, all code space objects except for executable function code must reside at
the same 16-bit address no matter which bank the currently executing function is in.

The root bank area thus contains all non-bankable code required by the program.
Non-bankable code includes low-level run time library modules called in by the
compiler, all const-type data objects, all variable initializers, interrupt service routine
code, and the CSTARTUP code. The compiler always accesses all of these types of
objects with non-banked addresses or function calls.

The size of the banked address range (and thus the bank size) is limited to the address
area between the top of the root bank and address FFFFh. The root bank typically
takes between 16 Kbytes and 48 Kbytes, allowing the bank size to be between

16 Kbytes and 48 Kbytes long.

Part I. Using the compiler 21

Banking

8051 IAR C Compiler
22 Reference Guide

The compiler keeps track of the bank number of a banked function by maintaining a
three-byte pointer to it. The high byte of the pointer is the bank number, and the low
bytes are the 16-bit-address. The format of a banked function pointer is shown in the
following illustration:

Byte 2 Byte 1-0
Banknumber Offset (16-bit address)
ToP1 To P2:P0
{bank decode circuit) {address/data bus)

Writing source code for banked mode

Writing code to be used in a banked mode system is not much different from writing
code for the large memory model, but there are a few issues to be aware of. These
primarily concern partitioning the code into source modules so that they can be placed
into banks by the linker in the most efficient way and the distinction between banked
and non-banked function calls.

Bank size and code segment size

Each C source module compiled contains a segment named CODE which contains the
executable instructions defined in the source code of that module. The code contained
in that segment is an indivisible unit. That is, the linker can not break up a module’s
code segment and place part of it in one bank and part of it in another. Thus, the size
of each module’s code segment must always be smaller than the bank size.

This means that the source code must be broken down into source files that will
produce code segments small enough to fit into the banks, since each C source file will
generate exactly one code segment.

For more specifics of assigning segments to banks, see the entry for the -b (banked
segment definition) XLINK option in the IJAR XLINK Linker™ and IAR XLIB
Librarian™ Reference Guide and the use of the -b option in the examples below.

Banked versus non-banked function calls

The following discussion defines banked versus non-banked function calls, lists types
of function declaration results in non-banked function calls, and gives an example of
the definition and declaration of a function using the non_banked extended keyword.

Configuration __4

In any memory model except for banked mode, the return address and new execution
address are 16-bit (2 byte) values. A function call sequence using only 2-byte
addresses is referred to as a ‘non-banked’ or ‘local’ function call. The local function
call sequence generated by the compiler in bank mode is identical to the function call
sequence used by the compiler in the large memory model.

A local function call can be used in bank mode when it is known by the compiler that
both the calling and the called function reside in the same physical bank, so that the
bank number does not need to be changed for that function call.

If the calling and the called function do not reside in the same bank, saving and
restoring an execution address also requires specifying a bank number via a third byte.
A function call sequence requiring saving all three bytes of the currently executing
function, and then placing all three bytes of the new function execution address onto
the ports is referred to as a ‘banked’ function call.

Differentiating between a ‘banked’ versus ‘non-banked’ function call is important
because non-banked function calls are faster and take up less code space than banked
function calls. This is because it takes a longer sequence of machine language
instructions to make a banked call than a non-banked call. Also, the time required to
make a function call will be inconsistent if banked and non-banked calls are arbitrarily
interspersed. This can be undesirable in cases where the difference might be
noticeable such as in timing applications.

In bank mode the compiler generates banked function calls whenever it does not know
for certain that both the calling and the called functions reside in the same physical
bank.

The compiler can be forced to generate a non-banked call to a function by declaring it
non-banked. It is up to the programmer to place the non-banked function either in the
same module as the callers or on the root-area. To place it in the root-area, the name
of the code segment must be changed to preferably RCODE, by -RRCODE.

For example, £1 () isto call £2 (). They are each defined in separate source modules
but will ultimately be linked to reside in the same physical bank. Then the definition
of £2 () would be of the form:

non_banked void f£2(void) /* simple void function example */

{

/* code here... */

}

The function prototype for £2 () in the module where £1 () will call £2 () would be:

extern non_banked void f2(void) ;

Part I. Using the compiler 23

Banking

8051 IAR C Compiler
24 Reference Guide

Then the actual call to £2 () from within £1 () would be exactly as any other function,
for example:

void f1 (void)

{

£2();

}

Calls to interrupt handlers in banked mode

Calls to interrupt handlers are always non-banked. Thus in the banked memory model
interrupt handler code must be linked to reside in the root bank. To do this, we
recommend placing the interrupt handlers in a separate file and then compiling this file
with the -R compiler option, renaming the code segment to RCODE. The contents of
the RCODE segment are always linked to reside in the root bank.

For example, the following compiler command line could be used to compile the file
isr.c:

ICC8051 -mb -RRCODE isr

HOW TO USE THE BANKED MEMORY MODEL

This section describes how to implement bank mode, including the associated
compiler, linker, and file configuration items.

Compiler options for banked mode

To compile your modules using the banked memory model, use the -mb (memory
model banked) compiler option to compile each module.

If any of the code segments location needs to be specified individually (this issue is
discussed further below), the code segment for each module may be renamed and
referred to individually.

To rename the code segment of each source module, use the -R (Rename code
segment) compiler option. For example if the first module is called BANK1 . C, its code
segment could be renamed by including the option -Rbank1 on the command line.

The new code segment name used in the -R option is case sensitive.

If -RCoDe? is entered on the compiler command line, the segments must be listed as
CoDe9 in the -b line of your linker command file (described below).

Configuration __4

Linker options for banked mode

In linking a bank mode project, the central concern is placing the code segments into
banks corresponding to the available physical banks in the hardware. The physical
bank size and location, however, are dependent upon the size of the root bank which
in turn is dependent on the source code.

As aresult, it may be necessary to make a few trial passes through the linking process
to determine the optimum hardware configuration.

For example, a “dummy” link can be used to determine the required size of the root
bank. To do this, make a first pass through the link process as described below, taking
a guess at the -b option parameters (described below). Then examine the segment
dump table in the linker list file to determine the combined size of the root segments.
The difference between the combined total size of the root bank segments and the
available 64 Kbytes address range is the available bank size.

Thus if the root segments (details below) use 21 Kbytes, the available bank size is
64 Kbytes - 21 Kbytes = 43 Kbytes. Then the hardware can be set up and the -b
arguments can be recalculated to reflect this organization.

Once the hardware configuration is fixed, the segments can be assigned to banks.
First, link the root segments into the root bank, typically starting at 0 as with any other
memory model. The root segments are all of the segments listed in the - Z (CODE) line
of the example linker command file except for the segment named CODE. These
segments are linked using the -z (Define segment) XLINK option as follows:

-Z (CODE) INTVEC, RCODE,D CDATA,I CDATA,X CDATA,CONST=0

To assign banked addresses to the code segments, use one or more instances of the -b
(define banked segment) linker option.

The full syntax of the -b option is presented in the Linker chapter of the JAR XLINK
Linker™ and IAR XLIB Librarian™ Reference Guide. Please refer to those pages as
you proceed through the next example.

The -Db option is a banked version of the - Z linker option, and involves the same type
of segment type and segment name list. However, in the -b option, the ‘=ADDR’
(address range) part present in the - Z option line is replaced by the following three
parameters: bank start address, bank length, and bank increment.

The bank start address consists of a two-byte value containing the bank number
to start assigning addresses in, followed by a second two byte value containing the
16-bit address to start the banked code at. The bank Iength is the size of the bank.

Part I. Using the compiler 25

Banking

8051 IAR C Compiler
26 Reference Guide

The bank increment consists of a two-byte value containing the value by which the
bank number will be incremented after the previous bank is filled. This value is
followed by another 16-bit value containing an offset from the local address which can
be used to accommodate asymmetrical bank arrangements (otherwise this value must
be zero).

For example, if you have 12 modules with approximate code sizes of 500 (hex) bytes
each, and you have determined that your root bank takes about 5500 (hex) bytes and
for some reason the upper 32 Kbytes of code address space is not available to the

C system. If you then decide to try a bank size of 2000 (hex) bytes starting at
16-bit-address 6000 (hex), you would have about 4 modules worth of code segments
per bank (2000/500 = 4), for a total of three banks (12/4 = 3).

This would be implemented as the following -b line:
-b (CODE) CODE=00006000,2000,00010000

This -b line states that the code segments should be placed into as many
2000-(hex)-byte-long banks (second parameter is 2000) as are required. The first
bank should be assigned bank number 0000 (first part of first parameter is 0000) and
16-bit-address 6000 (second part of first parameter is 6000 hex). Subsequent banks
should be numbered with a bank number increment of 0001 so that banks are
numbered 0, 1, 2, 3... (first part of third parameter is 0001). In addition, there should
be an increment of 0000 (i.e. none) on the 16-bit-address so that all banks start at
16-bit-address 6000 (second half of third parameter is 0000).

The size of an individual module’s code segment must not exceed the bank size, or the
linker will flag you with an Error [21] ‘Segment does not fit bank’.

As many -b lines as required can be created, even one per segment, each with its own
set of parameters if required.

This is very useful if particular code segments need to be assigned to particular banks,
so that non-banked function calls can be used as discussed in the section above. This
also allows assignment of code to asymmetrical physical banks.

If more code segments need to be named than conveniently fit on a single -b line, a
second -b (CODE) without the set of three ending parameters can be used.

For example, to add three more code segments to the first line shown below, a second
line is added so that the whole list is as follows:

-b (CODE) code0, codel, code2, code3=00006000,2000,00010000

-b (CODE) code4, code5, codeé6

Configuration __4

Alternatively, the linker command file will accept a backslash (\) followed by a
carriage return as a line continuation character, as in:

-b (CODE) code0, codel, code2, code3, \
code4,code5, code6=00006000,2000,00010000

The banked hardware may involve several EPROM chips, in which case several
passes through the link process might be needed to generate one EPROM-full of
executable code with each pass. Doing this involves using the -E (Empty load input
file) linker option.

Modifying the default bank port assignment

The default port used to present the bank number to the hardware is P1, but any port
may be specified. To specify a port, the supplied assembly language source file
L18.s03 must be modified. The file 118 . 503 contains the bank-switching routines
used by the compiler. The file is commented where modifications should be made.

If only a small number of banks are used, only certain bits of the port need to be used
for bank-switching and the rest of the port might be used for something else. This
particular refinement is not explicitly supported by IAR Systems, but may be
implemented by further modifying the .18 . s03 file.

After any modification to L18 . 503, reassemble it and replace the object module in
the CL.8051B. r03 library using the XLIB librarian replace-module command; this is
described in the JAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

Linker command file

The linker command file controls many of the configurable features of the system. In
particular, it specifies the different memory segments.

Since the processor option states the addressing capabilities of the target processor, it
is natural to provide individual linker command files for each option. However note
that the supplied files are examples, which should be modified to fit the actual
hardware used.

To create an linker command file for a particular project, you should first copy the
appropriate template, as shown in the following table:

Linker command file Description
1nk8051.xcl Non-banked memory
1nk805la.xcl 80751
1nk8051b.xcl Bank-switched memory

Table 5: Command file names

Part I. Using the compiler 27

Linker command file

8051 IAR C Compiler
28 Reference Guide

You should then modify these files—as described within the files—to specify the
details of the target system’s memory map and the stack size.

In the IAR Embedded Workbench, a linker command file is selected automatically
depending on which memory model you specify. You can, however, override the
default setting and specify your choice of linker command file on the Include page in
the XLINK category when setting project options.

STACK SIZE

The compiler uses a stack for a variety of user program operations, and the required
stack size depends heavily on the details of these operations. If the given stack size is
too small, the stack will normally be allowed to overwrite variable storage resulting in
likely program failure. If the given stack size is too large, RAM will be wasted.

There can be two software stacks in addition to the internal hardware stack.

e A stack maintained for the variables and parameters of re-entrant functions.
e A stack for variables and parameters of recursive functions.

Local variables for non-reentrant functions are not placed on the stack, but use an area
of RAM dedicated to local variables of functions.

Note: If you use reentrant idata functions, they will use the internal stack to
store their parameters and return values.

The memory for several variables can overlap if the functions are not active at the
same time. The compiler and linker will control the allocation and access to the local
variable memory. This is called static overlay.

ESTIMATING THE REQUIRED STACK SIZE

The stack is used for the following:

e Storing temporary results in library routines.

e Saving the return address of function calls (not needed if the compiler stack
expansion -u option is used).

e Saving the processor state during interrupts.

The total required stack size is the worst case total of the required sizes for each of the
above.
HEAP SIZE

If the library functions malloc or calloc are used in the program, the compiler
creates a heap of memory in external RAM from which their allocations are made. The
default heap size is 2000 bytes.

Configuration __4

The procedure for changing the heap size is described in the heap . c file which you
can find in the \ew23\8051\src\1ib\ directory.

Input and output
PUTCHAR AND GETCHAR

The functions putchar and getchar are the fundamental functions through which
C performs all character-based I/O. For any character-based I/O to be available, you
must provide definitions for these two functions using whatever facilities the
hardware environment provides.

The starting-point for creating new I/O routines is the files putchar.c and
getchar.c.

Note: Be sure to save your original c18051* .r03 file before you overwrite the
putchar module.

Customizing putchar
The procedure for creating a customized version of putchar is as follows:

| Make the required additions to the source putchar.c, and save it under the same
name (Or create your own routine using putchar.c as a model). The code below
uses memory-mapped I/O to write to an LCD display.

#include <stdio.h>
int putchar (int outchar)

{

unsigned char *LCD_10;
LCD _IO= (unsigned char *) 0x8000;
*LCD_IO=outchar:

return (outchar) ;

}

2 Compile the modified putchar using the library module -b option.

For example, if your program uses the small memory model, compile putchar. ¢ for
the small memory model.

icc8051 putchar -ms -b -z9
This will create an optimized replacement object module file named putchar.r03.

3 Add the new put char module to the appropriate run-time library module, replacing
the original.

Part I. Using the compiler 29

Input and output

8051 IAR C Compiler
30 Reference Guide

For example, to add the new putchar module to the standard library, use the
command:

x1lib

def-cpu sh

rep-mod putchar c¢l8051
exit

The library module c18051 will now have the modified putchar instead of the
original one.

XLINK allows you to test the modified module before installing it in the library by
using the -A option; see the JAR XLINK Linker™ and IAR XLIB Librarian™
Reference Guide for information about the XLINK options.

Place the following lines into your linker command file:

-A putchar
cl8051

This causes your version of putchar.r03 to load instead of the one in the c18051
library.

Notice that putchar serves as the low-level part of the print£ function.

Customizing getchar
The low-level I/0O function getchar is supplied in the C file getchar.c.

The same procedure can be used as for customizing putchar.

PRINTF AND SPRINTF

The printf and sprintf functions use a common formatter called
_formatted write. The ANSI standard version of formatted write is very
large, and provides facilities not required in many applications. To reduce the memory
consumption the following two alternative smaller versions are also provided in the
standard C library:

_medium_write

As for formatted write, except that floating-point numbers are not supported.
Any attempt to use a $f, g, %G, $e, and %E specifier will produce the error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted write.

Configuration __4

_small_write

As for _medium write, except that it supports only the %%, 4, %0, %c, %s, and $x
specifiers for integer objects, and does not support field width and precision
arguments. The size of small write is 10-15% of the size of
_formatted write.

The default versionis _small write.

Selecting the write formatter version

The selection of a write formatter is made in the XLINK control file. The default
selection, small write, is made by the line:

-e small write= formatted write
To select the full ANSI version, remove this line.
To select _medium write, replace this line with:

-e _medium write= formatted write

Reduced printf

For many applications sprintf is not required, and even printf with
_small_write provides more facilities than are justified by the memory consumed.
Alternatively, a custom output routine may be required to support particular
formatting needs and/or non-standard output devices.

For such applications, a highly reduced version of the entire printf function
(without sprintf) is supplied in source form in the file intwri . c. This file can be
modified to your requirements and the compiled module inserted into the library in
place of the original using the procedure described for putchar above.

SCANF AND SSCANF

In a similar way to the printf and sprintf functions, scanf and sscanf use a
common formatter called formatted read. The ANSI standard version of
_formatted readis very large, and provides facilities that are not required in many
applications. To reduce the memory consumption, an alternative smaller version is
also provided in the standard C library.

_medium_read

As for _formatted_read, except that no floating-point numbers are supported.
_medium_read is considerably smaller than formatted read.

The default version is _medium_ read.

Part I. Using the compiler 3|

Initialization

Selecting read formatter version

The selection of a read formatter is made in the XLINK control file. The default
selection, medium_read, is made by the line:

-e_medium_read=_formatted read

To select the full ANSI version, remove this line.

Initialization

8051 IAR C Compiler
32 Reference Guide

On processor reset, execution passes to a run-time system routine called CSTARTUP,
which normally performs the following:

o [Initializes the stack pointers for data and program.
o [Initializes C file-level and static variables.
o Calls the user program function main.

CSTARTUP is also responsible for receiving and retaining control if the user program
exits, whether through exit or abort.
VARIABLE AND /O INITIALIZATION

In some applications you may want to initialize I/O registers, or omit the default
initialization of data segments performed by CSTARTUP.

You can do this by providing a customized version of the routine

__low _level init, which is called from CSTARTUP before the data segments are
initialized.

The value returned by __low_level_ init determines whether data segments are

initialized. The run-time library includes a dummy version of __low_level init
that simply returns 1, which causes CSTARTUP to initialize data segments.

The source of __low_level_init is provided in the file lowinit.c, by default
located in the src\1ib directory. To perform your own I/O initializations, create a
version of this routine containing the necessary code to do the initializations.

MODIFYING CSTARTUP

If you want to modify CSTARTUP itself you will need to reassemble CSTARTUP with
options which match your selected compiler options.

The overall procedure for assembling an appropriate copy of CSTARTUP is as follows:

Make any required modifications to the assembler include file defmodel. inc and
its include files which describe the memory model used.

Configuration __4

2 Assemble the modified CSTARTUP using the appropriate memory model. For
example, if the user program uses the small memory model, reassemble CSTARTUP
for the small memory model. This will create a replacement object module file
named cstartup.ro03.

3 Add the new CSTARTUP module to the appropriate run-time library module,
replacing the original.

For example, to add the new CSTARTUP module to the simplest small memory model
library, use the XLIB commands:

x1lib

def-cpu 8051

rep-mod cstartup cl8051s

exit

The library module c18051s will now have the modified CSTARTUP instead of the
original.

Note: You can test the modified cstartup before installing it in the library by using
the XLINK -c option; see the IAR XLINK Linker™ and IAR XLIB Librarian™
Reference Guide for details.

Example

For example, the startup code could change the I/O register. It might be desirable to
include initialization routines in CSTARTUP rather than in the main code if your
implementations always use a standard environment.

When a C program is compiled, it is executed after an initialization routine, but before
an exit routine. Normally the exit routine is never called as the code is used in a
dedicated controller which loops continuously. If you want to include special startup
or shutdown code, edit the cstartup file, using the cstartup.s03 assembly
source module as a starting point for modification. The code is commented to indicate
what action is taking place during the execution:

e Stack pointer initialized.
e Data memory initialized.
e Cmain called.
e Jump to exit routine.

Add code at the appropriate point to initialize your hardware, and assemble the
modified source file. After successful assembly, use XLIB to place the new module in
the library file for the processor and memory type (for example, c18051s.r03).

Part I. Using the compiler 33

Initialization

8051 IAR C Compiler
34 Reference Guide

When using the IAR Embedded Workbench, you can simply include the
cstartup.s03 to your project files and in the Library page under the XLINK
category. To make XLINK use your new CSTARTUP instead of the one in the base
library, set the Load library module libraries in the Library page under the XLINK
category. To enable this option, check the Override Default Library box. This makes
the CSTARTUP module in the base library (c18051s.r03) a library module instead
of a program module.

The following section describes several important sections of the startup file.

CSTARTUP.SO03

The cstartup.s03 module contains the entire code executed before the C main
function is called. The code can be tailored to suit special hardware needs and is
designed to run on any processor based on the 8051 architecture.

NAME CSTARTUP
PUBLIC init C

sdefmodel.inc ; Defines memory model
EXTERN ?C_EXIT ; Where to go when program ends
EXTERN R ; Register bank (0, 8, 16 or 24)
EXTERN main ; First C function usually
EXTERN__ low_level init ; Setup low level things

IF banked mode
EXTERN?X CALL_L18
ENDIF

The C stack segment should be mapped into internal data RAM. The C stack is used
for LCALL instructions and temporary storage of code generator help routines such as
math routines. The stack will be located after all other internal RAM variables if the
standard linking procedure is followed. Note that C interrupt routines can double the
stack size demands.

RSEG CSTACK
stack_begin:
DS 30 ; Increase if needed

The stack size can be set here, but it is simpler to use the following declaration in the
linker command file:

-Z (DATA) CSTACK+stack_size
(Using the linker command file avoids having to re-assemble CSTARTUP).
COMMON INTVEC ; Should be at location zero

INTVEC is used by the compiler to set up an interrupt vector table.

Configuration __4

C interrupt routines with defined [vectors] will reserve space in this area. So will
handlers written in assembler if they follow the recommended format.

startup:
IF 1lcall mode
LJMP init_C
ELSE
AJMP init C
ENDIF

RSEGRCODE ; Should be loaded after INTVEC
init C:

MOVSP, #stack begin - 1 ; From low to high addresses

MOVDPTR, #SFB (P_IDATA) ; Initialize high byte of PDATA

MOVP2, DPH ;

If there is no demand that global or static C variables should have a defined value at
startup (required by ANSI), the following section can be removed to conserve code
memory size. Note that this part calls functions at the end of this file, which also can
be removed if initialized values are not needed.

Systems controlled by a watch-dog may require additional code insertions as the
initialization can take several milliseconds (if there are many variables) to complete.
These parts are marked with *** WDG ***.

Zero out sections containing variables without explicit initializers such as:

int i;
xdata double d[10];

Copy initializers into the proper memory segments for declarations such as:
int 1 = 7;
idata char *cp = "STRING";

If hardware must be initiated from assembly code or if interrupts should be on when
reaching main, this is the place to insert such code.

The initialization of the timer as a baud clock for the serial I/O port could be done at
this location. For example, add the assembly code below to start the timer:

MOV SCON, #52H ; set timer mode

MOV TMOD, #20H ; auto reload

MOV TCON, #69H ; start timer 1

MOV TH1, #OF3H ; reload value gives 1200 baud at 12Mhz

If you have any other code you want executed before main starts, insert that here as
well.

IF banked mode

Part I. Using the compiler 35

Initialization

8051 IAR C Compiler
36 Reference Guide

MOV
MOV
LCALL

ELSE

IF
LCALL
ELSE
ACALL
ENDIF
ENDIF

A, #SBYTE3 main
DPTR, #main
?X CALL L18 ; main()

lcall mode
main ; main()

main ; main()

Now when we are ready with our C program (usually 8051 C programs are
continuous) we must perform a system-dependent action. In this simple case we just

stop.

Do not change the next line of cstartup if you want to run your software with the
aid of the IAR C-SPY Debugger. It may, however, be removed if your program is
continuous (no exit).

If itis removed the EXTERN ?C_EXIT line should also be removed to avoid linking of
the exit module.

IF 1lcall mode
LJMP ?C_EXIT

ELSE

AJMP ?C_EXIT

ENDIF

When C-SPY is used this code will automatically be replaced by a debug version of

exit ().
MODULE
PUBLIC
$DEFFN
PUBLIC

RSEG

?C_EXIT:
exit:

exit

exit
exit(0,0,0,0,0,0,0,0)
?C_EXIT

RCODE

The next line could be replaced by user defined code.

SIMP $

ENDMOD

;Forever

Configuration __4

If you want your system to take some action when the C program exits, place your
routines in place of the exit code.

Optimization
The 8051 IAR C Compiler allows you to generate code that is optimized either for size
or for speed, at a selectable optimization level. The chapter Compiler options contains
reference information about the -s [0-9] and -z [0-9] command line options. Refer
to the 8051 IAR Embedded Workbench™ User Guide for information about the
compiler options available in the JAR Embedded Workbench.

The purpose of optimization is either to reduce the code size or to improve the
execution speed. In the 8051 IAR C Compiler, however, most speed optimization
alternatives also reduce the code size.

A high level of optimization will result in increased compile time and may also make
debugging more difficult, since it will be less clear how the generated code relates to
the source code. We therefore recommend that you use a low optimization level
during the development and test phases of your project, and a high optimization level
for the release version.

Customizing the run-time library

Included with this product are ready-made object libraries which can be modified or
customized. It is highly recommended that you make a copy of the original before
modifying these object libraries.

MULTI-MODULE LINKING

You may want to split your program into several C or assembly modules to simplify
maintenance. The entry to your modules should be declared in the C main block:

extern int mymodl (int myintl, int myint2);
int total;
void main (void)

{

total=mymodl (3, 4);

}

A separate file will contain the code for mymod1, for example:

int mymodl (int paral, int para2)

{

return (paral+para2)

}

Part I. Using the compiler 37

Target-specific support

Compile the two modules in the regular way with the same memory model. Place the
objects resulting from the compilations into a library by using XLIB, as follows:

x1lib

def-cpu 8051

fetch-mod main mylib
fetch-mod mymodl mylib
list-mod mylib mylib.lst
exit

Modify a copy of the linker command file to include access to the library and add your
output file specifications. Name the new linker command file mymod . xc1.

-1 link the library module which contains our object modules
-1

mylib

-1 specify the Intel AOMF8051 symbolic output format -!
-FAOMF8051

-1 specify the output file name -!

-0 mulmod.a03

The linker command file can now use the modules in the library and produce an
executable program. Use the linker with the new linker command file file:

xlink -f mymod

Target-specific support

8051 IAR C Compiler
38 Reference Guide

The 8051 IAR C Compiler supports several Siemens and Dallas microcontrollers as
described in the following sections.

80751 SUPPORT

The 8051 IAR C Compiler includes support for the Siemens 80751/752 chip.

Using the 80751 with the IAR Embedded Workbench

Create a new project by choosing New Project... from the Project menu, and select
80751 in the Project Options dialog box.

Using the 80751 with the command line

Specify the -v1 compiler option. The -v1 switch should only be used with either the
tiny memory model -mt or the small memory model -ms.

The libraries supplied for the 80751 are c18051ta and c18051sa. The linker
command file is 1nk8051a.xc1, and the include files are 10751 .h and i0752.h.

Configuration __4

80751 limitations
When using the 80751 the following limitations are imposed:

No recursive functions are allowed.

No calls to 1longjmp or setjmp are allowed.

No reentrant functions are allowed.

No floats are allowed.

No xdata memory or xdata pointer attributes are allowed.

No memory model other than tiny or small is allowed for the 80751.

No function call can be made to an address outside the 2 Kbytes allowed area.

For details of the error messages produced in these cases see 80751-specific error
messages, page 189.
Library routines

The following library routines are not included for the 80751 chip:

Floating-point routines

acos, asin, atan, atan2, atof, ceil, cos, exp, expl0, fabs, floor, fmod,
frexp, 1dexp, 1log, 1ogl0, modf, pow, sin, sqgrt, strtod, tan, cosh, sinh,
tanh (ie no float routines are supplied).

printf

frmwri, mediumwr, smallwri (therefore no printf routines are supplied).

scanf

frmrd, mediumrd, scanf, sscanf (therefore no scanf routines are supplied).

malloc

calloc, free, heap, malloc, realloc (therefore no heap routines are supplied).

80517 SUPPORT

The 8051 IAR C Compiler development kit includes library files c1517.r03 and
c1517i.r03 to support the Siemens 80517 and 80537 microcontrollers. The library
files are provided to support the extended math unit (MDU) on these microcontrollers.

The ¢1517i.r03 calls the MDU with interrupt protection, while the ¢1517.x03
calls the external ALU without interrupt protection. These files must be inserted into
the compile library for your memory model.

Part I. Using the compiler 39

Target-specific support

8051 IAR C Compiler
40 Reference Guide

To insert the 1517 file into the library for the tiny memory model, use XLIB as
follows:

x1lib

def-cpu 8051

repl-mod cl517 cl8051t

quit

Using the 80517 library files will improve long and integer operations that use the
intrinsic routines (for example, multiplication and division). Improvements of 10 to
30% are possible when using the interrupt protected library or 20 to 40% when using
the non-protected library. A small improvement will also occur for floating-point
math operations.

The development kit also includes the c1517str. r03 library file to support the
multiple data pointers (DPTR) in the 8XC517 microcontroller. This means that some
of the library functions such as strcmp and memcmp can take advantage of the
multiple DPTRs and produce more efficient code.

The implementation is that the library uses a pair of DPTRs —that is, it flips the low
bitin sfr DPSEL (0x92) to get hold of the other DPTR. At reset of the microcontroller
the lower 3 bits of DPSEL is set to 0, and this will force the libraries to use DPTR 0
and 1. You can change this by setting the sfr DPSEL to another DPTR pair.

Using multiple DPTRs with interrupt functions

Interrupt functions may destroy the contents of the multiple DPTRs because the
multiple DPTRs are not automatically saved by the interrupt functions. When using
multiple DPTRs together with interrupt functions you have to make sure that the
contents of the DPTRs are not destroyed. This may be done by simply saving the
content of the DPTRs if the interrupt function may use it. In the case of 8XC517, you
can shift to an other pair of DPTRs to avoid saving the contents of the DPTRs.

80320 SUPPORT

The 8051 IAR C Compiler development kit includes the library file CL320STR.x03
to support the dual DPTRs in the Dallas Semiconductor 80C320 microcontroller. The
library takes advantage of the multiple DPTRs for library functions such as strcmp
and memcmp and will produce more efficient code. The CL320STR.xr03 file contains
library functions for string operations that use 8X0517 multiple DPTRs.

Configuration __4

Using multiple DPTRs with interrupt functions

Interrupt functions may destroy the contents of the multiple DPTRs because the
multiple DPTRs are not automatically saved by the interrupt functions. When using
multiple DPTRs together with interrupt functions you have to make sure that the
contents of the DPTRs are not destroyed. This may be done by simply saving the
content of the DPTRs if the interrupt function may use it.

Part I. Using the compiler 41

Target-specific support

8051 IAR C Compiler
42 Reference Guide

Assembly language
interface

This chapter describes the interface between a C main program and the
assembly language routines.

The 8051 IAR C Compiler allows assembly language modules to be combined
with compiled C modules. This is particularly useful for small, time-critical
routines that need to be written in assembly language and then called from a
C main program.

Calling convention

The C compiler uses two areas of memory for administrating function calls:

o The parameter blocks in memory.
o The hardware stack (addressed by the SP register), to hold return addresses.

The interface between the compiler and the assembler selects the parameters that can
be placed in the registers. This table shows the type and location of each parameter:

Parameter | Parameter 2 Parameter 3 Parameter 4
Bit

C (treat as a byte)

Byte Byte Byte Byte
R4 R5 Ré6 R7
Byte Byte Word

R4 R5 Ré, R/

Byte Word

R4 Ré, R/

Byte General pointer

R4 Ré, R/

Word Byte Byte

R4, R5 Ré6 R7

Word Word

R4, R5 Ré, R7

General pointer

R5, R6, R7

Long

R4, R5, R6, R7

Float

R4, R5, R6, R7

Table 6: Parameters, types, and locations

Part I. Using the compiler 43

Parameters and local variables

Even if the parameters are passed in registers, the compiler will always allocate space
in the different memories.

If aroutine in assembler is created directly, it will need to use the calling conventions.
It is much simpler to create a C skeleton with the correct number and type of
parameters and then modify the assembler output.

The return value from a function will be placed into the registers as shown below:

Type Register

bit C

char R4

word R4 and R5
pointer R5, Ré, and R7
long or float R4, R5, Ré, and R7

Table 7: Return registers

Note that in a type larger than a byte the most significant byte is in the highest register
number, for example a word in R4 or R5 has the MSB in R5 and LSB in R4.

REGISTER USAGE

The following rules apply to how the registers should be handled at function calls and
in called functions:

1 The called function must always preserve all used registers except:
Registers used for return values.
Registers used for passing parameters to that function.
2 The calling function must preserve all registers used as:
Return values.
Parameters.

Parameters and local variables

8051 IAR C Compiler
44 Reference Guide

Local variables in other compilers are often placed onto the hardware stack. Because
of limitations of the 8051 stack, the 8051 IAR C Compiler places local variables into
a dedicated memory area.

The local variable area is defined for each function, but the areas for several functions
can overlap if the local variables will not be active at the same time.

When possible, parameters are passed in registers, but a parameter block is always
created for the function.

Assembly language interface __o

There can be up to eight memory areas associated with each function. Four are used
for each of the local variable types, DATA, IDATA, XDATA, and BIT and four for each
of the parameter types.

The memory organization for DATA parameters and local variables in memory is
shown is the figure below.

High memory

First parameter SPRMB” with offsel 0

First auto var $LOCB* with offset 0

Low memory

The lines below from a linker map file indicate the size and location of a local block.

do_foreground_process 00B8 Not referred to
data = 000A (0002 , 0000)

For do_foreground process located at 0x0B8 in CODE memory, there is a local
data block at 0x0002 in DATA memory with two bytes for local variables and no bytes
for parameters.

See Assembly language interface, page 43, for more information on local variable
storage in memory.
LIMITATIONS

Because the 8051 IAR C Compiler uses by default an overlay technique instead of a
stack, there are some restrictions. For example:

e The same function can not be activated in two function trees at the same time.

Part I. Using the compiler 45

Parameters and local variables

8051 IAR C Compiler
46 Reference Guide

e Recursive functions do not work.

If the program contains functions that apply to one or more of the above groups, these
functions should be small or large reentrant functions. Refer to the next section. See
also chapter Assembly language interface, page 43.

REENTRANT PARAMETERS

A reentrant function is one that may, directly or indirectly, call itself. It may also be
called by an interrupt routine. This could occur while the function itself is currently
executing.

Because parameters and local variables are normally stored in a fixed area of memory,
a software stack must be used with reentrant functions. To illustrate, a non-reentrant
function which calls itself will fail at run-time because the second pass through the
function code will overwrite the local variable area of the first pass.

The reentrant code -E option forces all functions and function pointers to be reentrant;
alternatively, the reentrant keyword allows you to define selected functions as
reentrant.

Example
The following program recursive is a simple example of reentrant functions:

void recursive (int value)

{
value-=1;
if (value>10) recursive (value) ;

}

void main (void)

{

}
Compile this with the following ICC8051 options in the Options dialog box:

recursive (50) ;

Page Option

List List file
Insert mnemonics in list file

Code Generation Reentrant code

Table 8: Compiler options

Assembly language interface __

@I Use the command:

icc8051 recur -r -q -L -E

f= Then examine the list file. Some of the lines from the file are listed below:

\ 0000 NAME ex02 (16)

\ 0000 RSEG CODE (0)

\ 0000 PUBLIC main

\ 0000 PUBLIC recursive

\ 0000 EXTERN ?LD AR5 ST A L17

\ 0000 EXTERN ?ST AR5 ST DPTR L17
\ 0000 EXTERN ?STACK ENTER 4 L17
\ 0000 EXTERN ?STACK RET 4 L17

\ 0000 EXTERN ?CL8051T 5 20 L17

\ 0000 RSEG CODE

Several special routines have been included in the listing. These maintain a software
stack to hold parameters and local variables for the reentrant functions.

\

2

0000

recursive:

void recursive (int value)

{

120000

\ 0000 LCALL ?STACK ENTER 4 L17

Set up the stack-block for the function. It holds parameters, auto variables, and the
return address.

3 value-=1;
\ 0003 EC MOV A,R4
\ 0004 24FF ADD A, #255
\ 0006 FC MOV R4,A
\ 0007 ED MOV A,R5
\ 0008 34FF ADDC A, #255
4 if (value>10) recursive (value) ;
\ 000A FD MOV R5,A
\ 000B EC MOV A,R4
\ 000C 900002 MOV DPTR, #2
\ 000F 120000 LCALL ?ST AR5 ST DPTR L17

Calculate the new value.

\ 0015 D3 SETB c

\ 0016 FC MOV R4,A

\ 0017 EC MOV A,R4

\ 0018 940A SUBB A, #10
\ 001A ED MOV A,R5

\ 001B 6480 XRL A, #128
\ 001D 9480 SUBB A, #128
\ 001F 4009 Jc 20001

Part I. Using the compiler 47

Creating skeleton code

Should we recurse one more time?

\ oo0lcC ?20000: ; [IF_TRUE] 2:1
\ 001C 7402 MOV A, #2

\ 001E 120000 LCALL ?LD_AR5_ST A L17

\ 0021 FC MOV R4,A

\ 0022 120000 LCALL recursive

Load argument to register and call.

\ 0025 ?20001: ; [IF FALSE] 3:1
5 }

\ 0025 020000 LJMP ?STACK_RET 4 L17

\ 0028 main:
6 void main (void)

7 {

Set up the stack block for main.

8 recursive (50) ;

\ 0028 E4 CLR A

\ 0029 FD MOV R5,A

\ 0022 7C32 MOV R4, #50

\ 002C 120000 LCALL recursive
9 }

\ 002F 22 RET

\ 0030 END

Deallocate the stack block for the function and return.

See Segments, page 67, for more information on memory segments.

Creating skeleton code

The recommended method of creating an assembly language routine with the correct
interface is to start with an assembly language source created by the compiler. To this
skeleton you can easily add the functional body of the routine.

The skeleton code needs only to declare the variables required and perform simple
accesses to them, for example:
int k;

int foo(int i, int j)

{

char c;

i++; /* Access to 1 */
J++; /* Access to j */
C++; /* Access to ¢ */
k++; /* Access to k */

8051 IAR C Compiler
48 Reference Guide

Assembly language interface __

}

void f (void)

{
}

foo(4,5);/* Call to foo */

Compiling the program using the IAR Embedded Workbench

The program should be compiled with the following ICC8051 options selected in the
Options dialog box:

Category Option
List Assembly output file
List List file

Insert mnemonics

Table 9: Compiling skeleton code in IAR Embedded Workbench

Compiling the program using the command line
@I This program should be compiled as follows:
icc8051 shell -A -g -L

The - A option creates an assembly language output, the -g option includes the C
source lines as assembler comments, and the -L option creates a listing.

The result is the assembler source shell. s03 containing the declarations, function
call, function return, variable accesses, and a listing file shell.lst.

Assembler support directives

There are six types of assembler directive that are used to create addresses for
functions.

$DEFFN
$DEFFN is the define function directive and takes three parameters:

o The function name.
o The eight size specifiers specify the number of bytes of the data area used:
local DATA
local IDATA
local XDATA
local bit variables
DATA parameters
IDATA parameters

Part I. Using the compiler 49

Assembler support directives

8051 IAR C Compiler
50 Reference Guide

XDATA parameters
bit parameters

o The functions which call the defined function.

The high byte of local DATA contains a set of flags to identify how the function is used:

Bit Function use

0 Makes indirect calls
| Interrupt

2 Not able to overlay
3-7 Not used

Table 10: Functions used in SDEFFN

If bit 15 of the DATA parameter is set, the function list contains functions called by the
function defined. For external functions, the local sizes are omitted.

$REFFN

$REFFN is the operator which references the function’s address for expressions using
a sixteen-bit address: LCALL, LJMP, or DW.

$IFREF

$IFREF is the operator which references indirect (pointer) function addresses: MOV,
DPTR, Or DW.

The #1L.0OW and #HIGH assembler operators can be used with $IFREF to provide the
low or high byte of an address. The example below moves the fourth byte of the local
block of func into A.

MOV A, #HIGH($IFREF func +3)
To move the address of the function to DPTR, use:

MOV DPTR, S$IFREF func

$LOCBD, $LOCBI, $LOCBB, AND $LOCBX

$LOCBD, $LOCBI, $LOCBB, and $LOCBX are the operators which give the local
variables (autos and parameters) in the DATA, IDATA, BIT, and XDATA memory area
blocks.

The data types must match the expected values: SLOCBX gives a sixteen-bit XDATA
address for DW or MOV DPTR; $LOCBD, $LOCBI, and $LOCBB produce an eight-bit
address.

Assembly language interface __o

The #L.0OW and #HIGH assembler operators can be used with the $LOCB directives to
provide the low or high byte of an address.

$PRMBD, $PRMBI, $PRMBB, AND $PRMBX

$PRMBD, $PRMBI, $PRMBB, and $PRMBX are the operators which give the start
address of the parameter memory area blocks in the DATA, IDATA, BIT, and XDATA
memory area blocks.

The data types must match the expected values: $PRMBX gives a sixteen-bit XDATA
address for DW or MOV DPTR; $PRMBD, $PRMBI, and $PRMBB produce an eight-bit
address.

The #L0OW and #HIGH assembler operators can be used with the $PRMB directives to
provide the low or high byte of an address.

$BYTE3

$BYTES3 is the operator which references the third byte of a function pointer (for
banked memory).

EXAMPLE

The shell program produces the following assembler source as shell.s03. The
file demonstrates several of the methods of parameter passing.

Assembler head

NAME shell (16)

RSEG CODE (0)

PUBLIC assem

$DEFFN assem(4,0,0,0,32772,0,2,0)
PUBLIC main

SDEFFN main(2,0,0,0,32768,0,0,0) ,assem

The $DEFFN assembler directive is used to declare the two functions in this module.
The three arguments to the directive are:

e The function name:
In this case assem and main.
o The eight size specifiers specify the number of bytes of data area used:
Local DATA (two int for assem, one int for main).
DATA parameters (one int and two char for assem).
XDATA parameters (one int for assem).

e The functions which are called from the defined function (If bit 15 of the DATA
parameter is set, the function list contains functions called by the function defined.
For external functions, the local sizes are omitted).

Part |. Using the compiler 51

Assembler support directives

8051 IAR C Compiler
52 Reference Guide

In this case assem is called by main.

Body
EXTERN ?CL8051C_5_20_L17

This declaration indicates the compiler (8051 version 5.20, compact memory model)
and run-time source (117.s03).

RSEG CODE

;1. char assem (char pcl, char pc2, xdata int pil,
int pi2)

2. |

assem:

i 3. int my a;

; 4. int my b;

; 5. my_a=pcl;

MOV SLOCBD assem+4,R4

MOV A,R4
MOV R3, #0

The two character parameters are passed in R4 and R5.

MOV SLOCBD assem+1,A
MOV SLOCBD assem,R3
; 6. my_b=pc2;

MOV SLOCBD assem+5,R5
MOV A,R5
MOV R5, #0
MOV SLOCBD assem+3,A
MOV SLOCBD assem+2,R5

The assembler directive $LOCBD is used to create the address of the local variable.
Note that the compiler and linker have produced the correct offsets for each of the
parameters.

These data tables seem to refer to static variables, but the compiler and linker will keep
track of which local function variables need to be maintained.

If a function’s local variable is not needed (the function has not been entered or has
already exited), the variable area will be reused by another function for its local
variables.

Assembly language interface __

Assembler return

;7. return(pil+pi2) ;
MOV A,R6

MOV R4,A

MOV A,R6

MOV DPTR, #SLOCBX assem
XCH A,R7

MOVX @DPTR, A

INC DPTR

XCH A,R7

MOVX @DPTR, A

MOV A,R4

When there are too many parameters to pass in the registers, the parameter data area
is used to hold the additional parameters. In this case the XDATA storage was specified
explicitly.

ADD A, SLOCBD assem+7
MOV R4,A

; 8. }

RET

Register R4 is used to hold the return char value. If more bytes were needed R4 to R7
would be used (R4 as the low byte).

;9. void main (void)

; 10, |

main:

; 11. int main x=255;
CLR A

MOV SLOCBD main,A

DEC A

MOV SLOCBD main+l1,A

Routine main has its own local data area.

; 12. assem(’'x’, 'y’, main_x, 2);
CLR A

MOV SPRMBD assem+2,A

MOV SPRMBD assem+3, #2

Two bytes for the constant value 2 are placed into the parameter area since R4, R5, R6,
and R7 will be used for other values.

MOV R6, SLOCBD main+1
MOV R7,SLOCBD main

Part I. Using the compiler 53

Reentrant functions

The local variable main_x is accessed and copied to R6 and R7.

MOV R5,#121
MOV R4,#120

Constant values are loaded into R4 and R5.

LCALL SREFFN assem
The REFFN directive supplies the address of the assem function.

;13)
RET
END

Reentrant functions

Large reentrant functions use the reentrant stack in external RAM for their parameters.
Small reentrant functions use the reentrant stack in internal RAM for their parameters.
To call the function, push the parameters onto the stack and call the function address.
If you need space for local variables, you must allocate them yourself. The compiler
cannot create multiple local data blocks for reentrant functions.

Compile the example above with the C compiler reentrant code - E option to get a
reentrant skeleton.

There are two styles of reentrant functions: K&R and ANSI.

e For K&R functions, when the function returns, pop the parameters off the stack
(or restore the stack in some other way to deallocate the variables).
e For ANSI functions, deallocate the parameters before exiting the function.

Interrupt functions

8051 IAR C Compiler
54 Reference Guide

The calling convention cannot be used for assembler interrupt functions since the
interrupt may occur during the calling of a foreground function. Therefore, the
requirements for interrupt function routine are different from those of a normal
function routine, as follows:

o The routine cannot accept or return values.

o The routine must preserve all registers. The 8051 automatically saves PC on the
hardware stack.

e The routine must exit using RETI. This automatically restores PC from the
hardware stack

e The routine must treat all flags as undefined.

Assembly language interface __o

DEFINING INTERRUPT VECTORS

See the microcontroller include files for the interrupt templates. The simplest way to
create an assembler interrupt is to use the #pragma function=interrupt
statement from within the C compiler to create a skeleton interrupt program which
can then be extended in assembler.

If you are writing an interrupt handler from assembler, use the RCODE and INTVEC
segments to control the location for the code and interrupt vector table.

The RCODE segment is not banked (interrupt functions cannot be in banked memory).

The code for the interrupt handler can be in any module, but all interrupt handler
addresses must be placed into the common INTVEC area.

The data registers present when the interrupt occurs must be preserved. You can either
push all registers onto the stack or change the register bank to one dedicated to
handling the interrupt (The SFR Processor Status Word contains bits which select the
register bank). This can be done with the using keyword for the 8051 IAR C
Compiler. For more information, see using, page 119.

Interrupts must restore the registers before returning with a RETT instruction.

Part |. Using the compiler 55

Interrupt functions

8051 IAR C Compiler
56 Reference Guide

!I!I!I!I!IW[!I

Part 2: Compiler
reference

This part of the 8051 IAR C Compiler Reference Guide contains the
following chapters:

e Data representation

e Segments

e Compiler options

e Extended keywords

e #tpragma directives

e Predefined symbols

e Intrinsic functions

e K&R and ANSI C language definitions
e Using C with PL/M.

e Tiny-5I

e Diagnostics

57

58

Data representation

This chapter describes the C data types and pointers supported in the 8051
IAR C Compiler and shows how data is being represented. See the Efficient
coding techniques chapter for information about which data types and pointers
provide the most efficient code.

Data types

The 8051 IAR C Compiler supports all ANSI C basic elements. Variables are stored
with the least significant part located at high memory address.

The following table gives the size and range of each C data type:

Data type Bytes Range Notes
bit I bit Oorl Single bit
sfr | 0 to 255 Equivalent to unsigned char
char (by default) | 0 to 255 Equivalent to unsigned char
char (using - c option) | -128 to 127 Equivalent to signed char
signed char | -128 to 127
unsigned char | 0 to 255
short, int 2 21510215 -32768 to 32767
unsigned short, 2 0to2'6] 0 to 65535
unsigned int
long 4 23023 2147483648 to 2147483647
unsigned long 4 0 to 2°2.| 0 to 4294967295
pointer 1,20r3 See the chapter Extended
keywords
float 4 +1.18E-38 to
+3.39E+38
double, long double 4 +1.18E-38 to
+3.39E+38

Table 11: Data types

ENUM TYPE

The enum keyword creates each object with the shortest integer type (char, short,
int, or long) required to contain its value.

Part 2. Compiler reference

59

Data types

8051 IAR C Compiler
60 Reference Guide

BITFIELDS
Bitfield unions and structures are extensions to ANSI C integer bitfields.

Bitfields in expressions will have the same data type as the base type (signed or
unsigned char, short, int, or long).

Bitfield variables are packed in elements of the specified type starting at the LSB
position. For reversed packed bitfields, see #pragma bitfields=reversed
directive page 122.

CHAR TYPE

The char type is, by default, unsigned in the compiler, but the -c option allows you
to make it signed. Note: The library is compiled with char types as unsigned.

FLOATING POINT

Floating-point values are represented by 4-byte numbers in standard IEEE format;
float and double values have the same representation. Floating-point values below the
smallest limit will be regarded as zero, and overflow gives undefined results.

4-byte floating-point format

The memory layout of 4-byte floating-point numbers is:
3130 23 22 0

S| Exponent Mantissa

The value of the number is:
(-1)S * 2(Exponent-127) , | Mantissa

Zero is represented by the two most significant bytes which are zero. The two least
significant bytes are then ignored.

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

BIT VARIABLES

Bit variables are stored as a single bit in the bit addressable area of the 8051 direct
internal memory (0x20 to 0x2F). Bit variables are treated as 1-bit unsigned chars in
expressions. The BITVAR segment is used for static bit variables and must be linked
to a location in the bit-addressable memory (typically beginning at bit address 0). Bit
address 0 is the least significant bit of internal RAM location 0x20.

Data representation __o

Bit variables should not be confused with the C bitfields type, which does not
have to be placed into the bit-addressable memory.

SPECIAL FUNCTION REGISTER VARIABLES

Special Function Register (sfr) variables are located in direct internal RAM locations
0x80 to 0xFF. The sfr type allows a symbolic name to be associated with a byte in
this range. The register at that address can be addressed symbolically, but no memory
space is allocated. To define and use an sfr variable, see sfr, page 118.

Pointers

This section describes the 8051 IAR C Compiler’s use of code pointers, data pointers,
and constant pointers.

CODE POINTERS

The following code pointers are available:

Keyword Storage Restrictions
non-banked 2 bytes May only point into the non-banked code area.
banked 3 bytes No restrictions.

Table 12: Code pointers

The non-banked pointer is used to reference only functions that are in the
non-banked code area. Non-banked code gives more efficient access than
bank-switched code.

The banked pointer can reference any function and is less efficient.

DATA POINTERS

A generic pointer can point to any of the 8051 memory areas. A specific pointer points
to one memory area.

General pointers are stored in three bytes of memory. The first byte of a data pointer
identifies the memory area (DATA, XDATA, etc.), while the second and third byte
specify the offset from the start of the memory area:

MEMTYPE M= of offzet LSE of offzet

Part 2. Compiler reference 61

Pointers

8051 IAR C Compiler
62 Reference Guide

The memory area is identified by a value from 0-3.

Area MEMTYPE Description

DATA, IDATA 0 Internal RAM
XDATA I External RAM

CODE 2 ROM

PDATA 3 Used with MOVX @R0O

Table 13: Memory area

A specific pointer is declared as:

memory segment data type {idata|xdata|code} * pointer name;
or

data type {idata|xdata|code} * memory segment pointer name;

Examples

To create a pointer to idata located in the XDATA segment, use:

xdata int idata *px;

To declare a pointer to code located in the IDATA segment, use:

long code * idata pc;

A constant specific pointer uses a def ine with:

#define pointer name (* (data_type segment *) constant value
For example,

#define CODE_AREA(* (char code *) 0x0)
#define XDATA IO(* (char xdata *) 0x4444)
#define MY IDATA(* (char idata *) 0x10)

The code below shows how to create a three-byte pointer for an address in memory by
specifying all three bytes.

#define CODE_AREA (* (char *) 0x020000)
#define XDATA IO (* (char *) 0x014444)
#define PDATA AREA (* (char *) 0x030000)
#define MY IDATA (* (char *) 0x000010)

For example, CODE_AREA MEMTYPE is 02, MSB is 00, and LSB is 00.
The C program below contains several examples of pointer use:

#pragma language=extended
char mychar; /* global variable to */

/*
/*
char *gp; /*
/*
idata char xdata * pcixl; /*
/*
/*
xdata char * pexxl, * pcoxx2;/*
/*
/*
#define my xdata (* (char xdata *)
/*
/*
data char * pcd; /*
/*
/*
data char text[10];
void main (void)
{
char *1p; /*
pcd="abcd"; /*
/*
pcxxl=(char *) Ox01DEEE;
mychar=my xdata;
pcxx2=(char xdata *) OxDEED;
/*
/*
text [0]= * pcxxl;
putchar (text [0]) ;
pcixl=(char xdata *) pcxxl;
mychar=* pcxx2;
pcxxl=(char idata *) text;

mychar=* pcxx2;

text [1]=* 1p;
putchar (* (text+1));
* pcxx2= mychar;

* pcixl='a’;

* gp= 'a’;

}

Data representation __o

hold char data from */
pointers */

global generic */
pointer to character */
pointer to xdata */
character allocated */
in idata */

global generic */
pointer allocated in */
xdata */

0xD000)

constant pointer to */
D000 in xdata */

global generic */
pointer to char */
allocated in datax/

local pointer to char */
pointer to string in */
ROM */

constant pointer to */
char in xdata */

/* generic ptr is cast */
/* to specific pointer */

Notice how the code for the pointers differs between the types by examining the list
file. The exact listing depends on the compile options used; the file below has been
simplified to emphasize the code related to each C statement. Some lines of the list are

reproduced below:

23
\ 0000

pcd="abcd";

750600 MOV

pcd+2, #LOW (?20000)

Part 2. Compiler reference 63

Pointers

\ 0003 750500 MOV pcd+1, #HIGH(?20000)
\ 0006 750402 MOV pcd, #2

The pointer pcd is given the address of the constant string. The 20000 will be
replaced by the actual address by the XLINK Linker.

25 pcxxl=(char *) Ox01DEEE;
\ 0009 900000 MOV DPTR, #pcxxl
\ 000C 7401 MOV A, #1
\ 000E FO MOVX @DPTR, A
\ 000F A3 INC DPTR
\ 0010 74DE MOV A, #222
\ 0012 FO MOVX @DPTR, A
\ 0013 A3 INC DPTR
\ 0014 74EE MOV A, #238
\ 0016 FO MOVX @DPTR, A
26 mychar=my xdata;
\ 0017 90D000 MOV DPTR, #53248
\ 001A EO MOVX A, @DPTR
27 pcxx2=(char xdata *) OxDEED;
\ 001B FC MOV R4,A
\ 001C 900003 MOV DPTR, #pcxx2
\ 001F 7401 MOV A, #1
\ 0021 FO MOVX @DPTR, A
\ 0022 A3 INC DPTR
\ 0023 74DE MOV A, #222
\ 0025 FO MOVX @DPTR, A
\ 0026 A3 INC DPTR
\ 0027 74ED MOV A, #237
\ 0029 FO MOVX @DPTR, A

The pointers pcxx1 and pcxx2 are given constant values (note that the memory
specifier is 1 for xdata). The constant specific pointer my xdata is used to access a
char from memory location 0xD000.

29 text [0]= * pcxxl;
\ 002A 900000 MOV DPTR, #pcxxl
\ 002D EO MOVX A, @DPTR
\ 002E FF MOV R7,A
\ 002F A3 INC DPTR
\ 0030 EO MOVX A, @DPTR
\ 0031 FE MOV R6,A
\ 0032 A3 INC DPTR
\ 0033 EO MOVX A, @DPTR
\ 0034 FD MOV R5,A
\ 0035 120000 LCALL ?LD_A R567_L17
\ 0038 F507 MOV text,A

The character at pointer pcxx1 is copied to the first position of the text string text.

8051 IAR C Compiler
64 Reference Guide

31 pcixl=(char xdata *)
\ 0044 900001 MOV
\ 0047 EO MOVX
\ 0048 FD MOV
\ 0049 A3 INC
\ 004A EO MOVX

Data representation __o

pcxxl;

DPTR, #ipcxx1+1
A, @DPTR

R5,A

DPTR

A, @DPTR

The content of pcxx1 is converted to an xdata pointer and left in registers A and R5
in preparation for storing it at location pcix1.

34 pcxxl=(char idata *)
\ 005A 7907 MOV
\ 005C 7A00 MOV
\ 005E 7B00O MOV
\ 0060 FE MOV
\ 0061 900000 MOV
\ 0064 EB MOV
\ 0065 FO MOVX
\ 0066 A3 INC
\ 0067 EA MOV
\ 0068 FO MOVX
\ 0069 A3 INC
\ 006A E9 MOV
\ 006B FO MOVX

text;
R1, #itext
R2, #0
R3,#0
R6,A
DPTR, #pcxx1
A,R3
@DPTR, A
DPTR
A,R2
@DPTR, A
DPTR
A,R1
@DPTR, A

The ‘pointer’ text is cast to be a pointer to an area in IDATA. The generic pointer,
pcxx1, is assigned the value of text. Since IDATA is in page zero (0x0000 to
0x00FF) byte 1 is set to zero. Byte 2 is set to zero to identify the type of memory.

36 text [1]=* lp;
\ 007C A900 MOV
\ 007E AAOO MOV
\ 0080 ABOO MOV
\ 0082 FE MOV
\ 0083 120000 LCALL
\ 0086 F508 MOV

R1,$LOCBD main+2
R2, SLOCBD main+l
R3, SLOCBD main

R6,A
?LD A R123 L17
text+1l,A

The contents of the indirection offset pointer are then copied to the second position of

the text array.

38 * pcxx2= mychar;
\ 0099 E500 MOV
\ 009B FC MOV
\ 009C 900003 MOV
\ 009F EO MOVX
\ 00A0 FF MOV
\ 00A1 A3 INC
\ 00A2 EO MOVX
\ 00A3 FE MOV

A,mychar
R4,A

DPTR, #pcxx2
A, @DPTR
R7,A

DPTR

A, @DPTR
R6,A

Part 2. Compiler reference

65

Pointers

\ 00A4 A3 INC DPTR

\ 00A5 EO MOVX A, @PTR

\ 00A6 FD MOV R5,A

\ 00A7 EC MOV A,R4

\ 00A8 120000 LCALL ?ST_A R567_L17
The contents of the location pointed to by pcxx2 is set to the contents of the variable
mychar.

\ 0000 RSEG CSTR

\ 0000 20000: ; [UNKNOWN]

\ 0000 61626364 DB ‘abcd’, 0

\ 0004 00

\ 0000 RSEG D_UDATA

\ 0000 mychar:

\ o001 DS 1

\ 0001 gp:

\ 0004 DS 3

\ 0004 pcd:

\ 0007 DS 3

\ 0007 text:

\ 0011 DS 10

\ 0000 RSEG I_UDATA

\ 0000 peixl:

\ 0002 DS 2

\ 0000 RSEG X_UDATA

\ 0000 pcxxl:

\ 0003 DS 3

\ 0003 pPCXX2:

\ 0006 DS 3

\ 0006 END

Space is reserved in the data segments for the variables and pointers.

Note: The amount of memory reserved matches the data type. In addition, a generic
pointer takes more time and size to use than a specific pointer.

8051 IAR C Compiler
66 Reference Guide

Segments

The 8051 IAR C Compiler places code and data into named segments which
are referred to by XLINK. Details of the segments are required for
programming assembly language modules and are also useful when
interpreting the assembly language output of the compiler.

This chapter covers information about the segments used in this product and
includes detailed reference information. Many of the extended keywords are
also mentioned in this chapter. For additional information, see Memory areas,

page 1.

Memory maps

The diagrams on the following pages show the 8051 memory map, and the allocation
of segments within each memory area.

Part 2. Compiler reference 67

Memory maps

8051 IAR C Compiler
68 Reference Guide

FF

g0

30

QAT A memory

SRF Space
Special function recisters

The stack. Uses|DATA memory and the rest
ofthe DATA memory

Il 1_DaTa

Initi dized varisbles in IDATAmemory, |ritis
values are copied over from [_CDATA st artup

Il 1_UDaTa

Uninitislized varighles declared in [DATA
memory. &l 52t to Zero o Sartup

C_ARGI

|DAT A portion of function local Hocks loce
vars snd parameters

DPL

D_IDATA,

Initi slized varishles declared in DATA
memory. Initil vaues sre copied over from
D_DATAINROM & startup

PG

FF

99

g2

D_LIDATA,

Uniniti lized varisbles dedlared in DATA
memory. &l =2t to 0 Sarun

C_tRGD

DAT A portion of fundion loca blocks. Locs
vatiables and parameters

B_LIDATA,

Uniniti lized varisbles dedared in HTVAR
memory. &l =2t to 0 Sarun

B_IDATA,

Initi dlized varighles declared in BITYAR
memory. Initil vaues sre copied over from
B_CDATAINROM at startup

20
181F

1017

&F

o7

BTWAR

Globa bit variables. bud be linked between
20end F

C_ARGE

Bit ackiressable portion of fundion loce
blocks, icuding |ocl variakles and
parameters. Must be linked bebween 20-2F

Register bank 3

Register bank 2

Register bank 1

Register bark 0

DATA, IDAT A and SRF space ininternd RAM

g0

FFFJ/

ooann

Segments __4

J/ Banko

1L 2

Optional banked -

GODE Executable code (atmain). axecuiable code
GONST Data declared using const ar code
CCSTR In nlallze_rsforC_ string literals when
-y com pileroption is used
GSTR Gonstant G strings
¢_RECFN Used by linker for recursive function
calls
¢ AL Used by linker for indirect function
calls
Intial values for initia liz ed
H.GDATA variables in XDATA memory
Initial values for initia iz ed
P.GDATA variables in PDATA mem ory
Initial values for initia iz ed
LGDATA variables in D ATA men ory
Intial values for initialized
B_GDATA
- variables in BDATA mem ary
Intial values for initia liz ed
D_GDATA variables in DATA memary
G runtin e library code.
Interrupt service routine code.
Exit code.
RCODE —
Start-up code (atinit_C)
Sets up the stacks and register bank,
initializes variables, and calls m ainf).
WTVEC Interrupt Vector Table

Jum p atreset to init_C

GODEmemoryin ROM

Part 2. Compiler reference 69

Memory maps

8051 IAR C Compiler
70 Reference Guide

FFFj/

nooo

Memory mapped IO

KSTAGK

Reentrant stack

RF_XDATA

Recursive stack

WO _INIT

Won-volatle ROM may be optionally mapped
into XDATA mem ory. Data declared using the
no_init extended keyword is placed here.

EGSTR

Modifiable G string literals when -y
compileropton is used

1 _IDATA

Initialized variables in XDATA mem ory.
Initial values are copied over from X_GDATA
seqmentin ROM by the startup code

N_UDATA

U ninitialized variables declared in X_DATA
moem ory. Allare setto zeroatstartup

G_ARGH

KDATA portion of function local blocks,
including logal variables, param eters
passed to function and heap space.

Also function return addresses if -u
compiler option is used.

P_IDATA

Initialized variablesin PDATA mem ory.
Initial values are copied over from P_GCDATA
seqmentin ROM by the start up code

P_UDATA

U ninitialized variables declared in P_DATA
moem ory. Allare setto zeroatstartup

KDATA memoaryinexternal RAM

Segments __4

Descriptions of segments

This section provides an alphabetical list of the segments. For each segment, it shows

The name of the segment.

A brief description of the contents.

Whether the segment is read/write or read-only.

A fuller description of the segment contents and use.

Whether the segment is * Assembly-accessible’. This means that the user can add
contents to any segment if the user follows the rules for the applicable segment(s).
Certain segments come in pairs, data-places and constant initializers. For instance,
others come alone or with constant data. Note that to use any segment that is not

*assembly-accessible' will probably induce a crash at the startup of the program.

BITVAR Bit variables with addresses between 20h and 2Fh (32 and 47) in DATA memory.

Type

Read/write.

Description
Assembly-accessible.

Holds bit variables and can also hold user-written relocatable bit-variables.

B_CDATA Initialized constants in CODE memory.

Type

Read-only.
Description
Assembly-accessible.

CSTARTUP copies initialized values from segments to the B_ IDATA segment.

B_1paTA Initialized static data.

Type
Assembly-accessible.

Read/write.

Part 2. Compiler reference 7|

Descriptions of segments

8051 IAR C Compiler
72 Reference Guide

B UDATA

C_ARGB

C_ARGD

Description

Initialized variables in BDATA memory. Initialized values are copied over B_ CDATA
segments in ROM by the startup code. Must be linked between 20h and 2Fh.

Uninitialized static data.

Type

Read/write.
Description

Assembly-accessible.

Holds static variables in BDATA memory that are not explicitly initialized; these are
implicitly initialized all to zero, which is performed by CSTARTUP.

Local bit variables or parameters with addresses between 20h and 2Fh (32 and 47) in
DATA memory.
Type

Read/write.

Description
Assembly-accessible.

Holds dynamically allocated bit variables such as local variables and parameters.

Local variables and parameters.

Type

Read/write.
Description

Assembly-accessible.

Holds dynamically allocated data such as local variables and parameters. These will
be placed in DATA memory.

Segments __4

C_ARGI Local variables and parameters.

Type

Read/write.

Description
Assembly-accessible.

Holds dynamically allocated data such as local variables and parameters. These will
be placed in IDATA memory.

C_ARGX Local variables and parameters.

Type

Read/write.

Description
Assembly-accessible.

Holds dynamically allocated data such as local variables and parameters. These will
be placed in XDATA memory. If the Stack expansion -u option is selected, then
function return addresses will also be stored in this segment.

CCSTR String literals.

Type
Read-only.

Description

Holds C string literal initializers when the -y C compiler option is active. For
additional information, refer to the C compiler Writable strings (-y) option; see -y,
page 105. See also CSTR, and ECSTR.

C_ICALL Indirect function call memory (CODE).

Type
Read-only.

Part 2. Compiler reference 73

Descriptions of segments

8051 IAR C Compiler
74 Reference Guide

CODE

CONST

C_RECFN

Description
Assembly-accessible.

Used by the compiler when functions are called indirectly. The final address
assignment is made by the linker.

Code.

Type
Read-only.

Description

Holds user program code and various library routines that can run in alteranative
banks, and code from assembly language modules.

Notice that any assembly language routines included in the CODE segment must meet
the calling convention of the memory model in use. For more information see
Assembler support directives, page 49.

Constants.

Type
Read-only.

Description

Used for storing const and code objects when the Writable strings (-y) option is
not active. Can be used in assembly language routines for declaring constant data.

Recursive function memory (CODE).

Type
Read-only.

Description

Used by the compiler and linker to support recursive functions.

Segments __4

CSTACK Data stack.

Type

Read/write.

Description
Assembly-accessible.

Holds the internal stack in DATA/IDATA memory.

CSTR String literals.

Type
Read-only.

Description

Holds C string literals when the C compiler Writable strings (-y) option is not
active, which is the default. For additional information see -y, page 105. See also
CCSTR, and ECSTR.

D_CDATA Initialization constants in CODE memory.

Type

Read-only.
Description
Assembly-accessible.

CSTARTUP copies initialization values from this segment to the D_IDATA segment.

D_IDATA Initialized static data.

Type

Read/write.

Description

Assembly-accessible.

Part 2. Compiler reference 75

Descriptions of segments

8051 IAR C Compiler
76 Reference Guide

D UDATA

ECSTR

I CDATA

Holds static variables in DATA memory that are automatically initialized. See also
D CDATA.

Uninitialized static data.

Type

Read/write.

Description
Assembly-accessible.

Holds static variables in DATA memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.

Writable copies of string literals.

Type

Read/write.

Description

Holds writable copies of C string literals when the -y C compiler option is active. For
more information, refer to the C compiler Writable strings (-y) option; see -y, page
105. See also CCSTR and CSTR.

Initialization constants placed in CODE memory.

Type

Read-only.
Description
Assembly-accessible.

CSTARTUP copies initialization values from this segment to the I IDATA segment.

Segments __4

I_IDATA Initialized static data.

Type

Read/write.

Description
Assembly-accessible.

Holds static variables in indirect internal data (IDATA) memory that are automatically
initialized. See also C_CDATA.

I_UDATA Uninitialized static data.

Type

Read/write.
Description

Assembly-accessible.

Holds static variables in IDATA memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.

INTVEC Interrupt vectors.

Type
Read-only.

Description
Assembly-accessible.

Holds the interrupt vector table generated by the use of the interrupt extended
keyword (which can also be used for user-written interrupt vector table entries). The
start of this segment should have address zero so that it may contain the reset and
power-on vectors.

Part 2. Compiler reference 77

Descriptions of segments

NO_INIT Non-volatile variables in external (XDATA) memory.

Type

Read/write.

Description
Assembly-accessible.

Holds variables to be placed in non-volatile memory. These will have been allocated
by the compiler, declared no_init or created no_init by use of the memory
#pragma, or created manually from assembly language source.

P_CDATA Initialized constants in CODE memory.

Type
Read-only.

Description
Assembly-accessible.

CSTARTUP copies initialized values from segments to the P_IDATA segment.

P_IDATA Initialized static data.

Type

Read/write.

Description
Assembly-accessible.

Holds static variables in PDATA memory that are automatically initialized. See also
P_CDATA.

P_UDATA Uninitialized static data.

Type

Read/write.

8051 IAR C Compiler
78 Reference Guide

Segments __4

Description
Assembly-accessible.

Holds static variables in PDATA memory that are not explicitly initialized; these are
implicitly initialized all to zero, which is performed by CSTARTUP.

RCODE Vector or library handling code.

Type
Read-only.

Description
Assembly-accessible.

Used for start-up code, libraries, and interrupt handlers that must reside in non-banked
code memory.

RF_XDATA External recursion stack.

Type

Read/write.
Description
Assembly-accessible.

Used by the linker to allocate a recursion stack in external data memory.

X_CDATA Initialization constants in CODE memory.

Type
Read-only.

Description
Assembly-accessible.

CSTARTUP copies initialization values from this segment to the X_IDATA segment.

Part 2. Compiler reference 79

Descriptions of segments

X CONST XDATA constants.

Type
Read-only.

Description
Assembly-accessible.

Holds constant data that should be stored in XDATA PROMs.

X_CSTR Constant strings in XDATA memory.

Type
Read-only.

Description
Assembly-accessible.

Holds constant strings that should be stored in XDATA PROMs.

X_IDATA Initialized static data.

Type

Read/write.

Description
Assembly-accessible.

Holds static variables in XDATA memory that are automatically initialized. See also
X_CDATA.

X_UDATA Uninitialized static data.

Type

Read/write.

Description

Assembly-accessible.

8051 IAR C Compiler
80 Reference Guide

Segments __4

Holds static variables in XDATA memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.

XSTACK External stack.

Type

Read/write.

Description
Assembly-accessible.

Holds a simulated stack, including the stack-pointer, in XDATA memory. This stack is
used for reentrant functions.

Part 2. Compiler reference 81

Descriptions of segments

8051 IAR C Compiler
82 Reference Guide

Compiler options

This chapter explains how to set the compiler options from the command line
and gives reference information about each option so that you can run the
compiler according to the application’s requirements.

Refer to the 8051 IAR Embedded Workbench™ User Guide for information
about the compiler options available in the IAR Embedded Workbench and
how to set them.

Setting compiler options
To set compiler options from the command line, include them on the command line
after the icc8051 command, either before or after the source filename. For example,
when you compile the source prog to generate a listing to the default listing filename
(prog.lst),itis entered as
icc8051 prog -L
Some options accept a filename, included after the option letter with a separating
space. For example, to generate a listing to the file 1ist.1st, enter itas
icc8051 prog -1 list.lst

Some other options accept a string that is not a filename. This is included after the
option letter, but without a space. For example, to generate a listing to the default
filename but in the subdirectory 1ist, it is entered as

icc8051 prog -Llist\

Generally, the order of options on the command line, both relative to each other and
to the source filename, is not significant. The exception to that is the order in which
two or more - I options are used. In that case, it is significant.

SPECIFYING OPTIONS USING ENVIRONMENT VARIABLES

Options can also be specified in the QCC8051 environment variable. The compiler
automatically appends the value of this variable to every command line, so it provides
a convenient method of specifying options that are required for every compilation.

Part 2. Compiler reference 83

Summary of compiler options

The following environment variables can be used by the 8051 IAR C Compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:

C_INCLUDE=\iar systems\ew23\8051\inc

QCC8051 Specifies command line options; for example:
QCC8051=-g -L -z9

Table 14: Environment variables

Summary of compiler options

8051 IAR C Compiler
84 Reference Guide

The following table summarizes the command line compiler options.

Option

Description

-A[prefix]

-a filename

-b Make a LIBRARY module

-C Nested comments

-c char is signed char
-Dsymb Defined symbols

-e Enable language extensions
-E[L | S] Reentrant code generation

-F Form feed after function
-ffilename Extend the command line

-G Open standard input as source
-g Global strict type checking
-gA Flag old-style functions

-go No type info in object code
-Hname Set object module name
-H[0]1]2]3] Generate register dependent code.
-1 Add #include file text
-I[prefix] Include paths

-K // comments

-1 filename

-L[prefix]

Assembly output to prefixed filename

Assembly output to named file

List to named file

List to prefixed source name

Table 15: Command line options

Compiler options __o

Option Description
-m[tsmclb] Memory model

-n filename Preprocessor to named file
-N[prefix] Preprocessor to prefixed filename
-o filename Set object filename
-Oprefix Set object filename prefix
-P Generate PROMable code
-pnn Lines/page

-q Insert mnemonics
-r[012] [i] [n] [r] [e] Generate debug information
-Rname Set code segment name
-s[0-9] Optimize for speed

-S Set silent operation

-T Active lines only

-tn Tab spacing

-Usymb Undefine symbol

-u Stack expansion

-v[0]1] Processor variant

-wl[sl] Warnings

-X Explain C declarations

-x [DFT2] Cross reference

-y Writable strings

-z[0-9] Optimize for size

Table 15: Command line options (continued)

Descriptions of compiler options

The following sections give reference information about each compiler option.

-A -Aprefix
Use this option to generate assembler source to the file prefix source.s03.

By default the compiler does not generate an assembler source. To send assembler
source to the file with the same name as the source leafname but with the extension
503, use -A without an argument.

Part 2. Compiler reference 85

Descriptions of compiler options

8051 IAR C Compiler
86 Reference Guide

For example:
icc8051 prog -A
generates an assembly source to the file prog. s03.

To send assembler source to the same filename but in a different directory, use the -2A
option with the directory as the argument. For example:

icc8051 prog -Aasm\
generates an assembly source in the file asm\prog.s03.
The assembler source may be assembled by the appropriate IAR assembler.

If the -1 or -L and -g options are also used, the C source lines are included in the
assembly source file as comments.

The -A option may not be used at the same time as the -a option.

-a filename
Use this option to generate assembler source to the file £ilename.s03.

By default the compiler does not generate an assembler source. This option generates
an assembler source to the named file.

The filename consists of a leafname optionally preceded by a pathname and optionally
followed by an extension. If no extension is given, the target-specific assembler
source extension is used.

The assembler source may be assembled by the appropriate IAR Assembler.

If the -1 or -L and -g options are also specified, the C source lines are included in the
assembly source file as comments.

The -a option may not be used at the same time as -A.

-b

By default the compiler produces a program module ready for linking with the IAR
XLINK Linker.

Use this option if you instead want a library module for inclusion in a library with the
TIAR XLIB Librarian.

-C

Compiler options __o

-C

By default the compiler treats nested comments as a fault and issues a warning when
it encounters one, resulting for example from a failure to close a comment. If you want
to use nested comments, for example to comment-out sections of code that include
comments, use the -C option to disable this warning.

-C

By default the compiler interprets the char type as unsigned char. To make the
compiler interpret the char type as signed char instead, for example for
compatibility with a different compiler, use this option.

Note: The run-time library is compiled without the - ¢ option, so if you use this option
for your program and enable type checking with the -g or - r options, you may get
type mismatch warnings from the linker.

-Dsymb [=value]

This option defines a symbol with the name symb and the value value. If no value is
specified, 1 is used.

The -D option has the same effect as a #define statement at the top of the source file.
-Dsymb

is equivalent to:

#define symb

The option -D is useful for specifying a value or choice that would otherwise be
specified in the source file more conveniently on the command line.

There is no limit to the number of -D options that can be used on a single command
line.

Command lines can become very long when using the -D option, in which case it may
be useful to use a command file; see -f, page 89.
Example

For example, you could arrange your source to produce either the test or production
version of your program depending on whether the symbol testver was defined. To
do this you would use include sections such as:

#ifdef testver
. ; additional code lines for test version only
#endif

Part 2. Compiler reference

87

Descriptions of compiler options

8051 IAR C Compiler
88 Reference Guide

-E[L]S]

Then, you would select the version required in the command line as follows:
Production version: icc8051 prog
Test version: icc8051 prog -Dtestver

To include spaces in the expression, surround the entire option with double quotes. For
example:

"-DEXPR=F + g"
is equivalent to:
#define EXPR F + g

To include double quote characters, use a backslash immediately in front of each
double quote character. For example:

-DSTRING=\"microproc\"
is equivalent to:

#define STRING "microproc"

-E[L]|S]
This option enables generation of reentrant code.

Use the -E option when functions must be able to be called by interrupt functions
(reentrant) or when a function calls itself (recursion).

The -E option will force the compiler to store parameters and local variables on a
stack.

Without this option, simple recursive functions will work correctly but mutual
recursion may not function as expected because speed local variables may be stored
in fixed locations rather than on a stack.

Syntax Description

-E, -EL Large reentrant. Forces the compiler to use a simulated stack in XDATA
for parameters and locals.

-ES Small reentrant. Forces the compiler to use the hardware stack located
in IDATA memory.

Table 16: Reentrant functions

Compiler options __o

-e -e
Enables target-dependent extensions to the C language.

By default language extensions are disabled in order to preserve portability. If you are
using language extensions in the source, you must enable them by including this
option.

For additional information, see Using language extensions, page 3.

Notice that in the IAR Embedded Workbench, this option is enabled by default.

-F -F
Generates a form-feed after each listed function in the listing.

By default the listing simply starts each function on the next line. To cause each
function to appear at the top of a new page, you would include this option.

Form-feeds are never generated for functions that are not listed, for example, as in
#include files.

-f -f filename

Extends the command line by reading command line options from the named file, with
the default extension xc1.

By default the compiler accepts command parameters only from the command line
itself and the QcCcg 051 environment variable. To make long command lines more
manageable, and to avoid any operating system command line length limit, you use
the - £ option to specify a command file, from which the compiler reads command line
items as if they had been entered at the position of the option.

Note: Make sure that there is a space between the - £ and filename.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines since the newline character acts just as a
space or tab character.

Example

For example, you could replace the command line:

icc8051 prog -re -L -Dtestver "-Dusername=John Smith"
-Duserid=463760

with

icc8051 prog -re -L -Dtestver -f userinfo

Part 2. Compiler reference 89

Descriptions of compiler options

8051 IAR C Compiler
90 Reference Guide

and the file userinfo.xcl containing:

"-Dusername=John Smith"
-Duserid=463760

-G
Opens the standard input as source, instead of reading source from a file.

By default the compiler reads source from the file named on the command line. If you
wish it to read source instead from the standard input (normally the keyboard), you
use the -G option and omit the source filename.

The source filename is set to stdin.c.

-g[al [0]
Enables checking of type information throughout the source.

There may be conditions in the source that indicate possible programming faults but
which for compatibility the compiler and linker normally ignore. To cause the
compiler and linker to issue a warning each time they encounter such a condition, use
the -g option.

The conditions checked by the -g option are:

Calls to undeclared functions.

Undeclared K&R formal parameters.

Missing return values in non-void functions.
Unreferenced local or formal parameters.
Unreferenced goto labels.

Unreachable code.

Unmatching or varying parameters to K&R functions.
#undef on unknown symbols.

Valid but ambiguous initializers.

Constant array indexing out of range.

Flag old-style functions
Syntax: -ga

By default the -g option does not warn of old-style K&R functions. To enable such
warnings, use the -gA option.

Compiler options __4

No type info in object code
Syntax: -go

By default the -g option includes type information in the object module, increasing
its size and link time, allowing the linker to issue type check warnings. To exclude this
information, avoiding this increase in size and link time but inhibiting linker type
check warnings, use the -g0 option.

When linking multiple modules, notice that objects in a module compiled without type
information, i.e. without any -g option or with a -g option without a modifier, are
considered typeless. Hence there will never be any warning of a type mismatch from
a declaration from a module compiled without type information, even if the module
with a corresponding declaration has been compiled with type information.

Examples

The following examples illustrate each type of error.

Callis to undeclared functions
Program:

void my fun(void) { }

int main(void)

{
my func();/* mis-spelt my fun gives undeclared
return 0; function warning */

}

Error:

my func(); /* mis-spelt my fun gives undeclared

———————— * function warning */

"undecfn.c",5 Warning[23]: Undeclared function ’‘my func’;
assumed "extern" "int"

Undeclared K&R formal parameters
Program:

int my fun(parameter)/* type of parameter not declared */

{
}

Error:

return parameter+l;

int my fun(parameter) /* type of parameter not declared */

Part 2. Compiler reference 91

Descriptions of compiler options

"undecfp.c",1l Warning[9]: Undeclared function parameter
'parameter’; assumed "int"

Missing return values in non-void functions

Program:

int my fun(void)

{

/* ... function body ... */

"noreturn.c",4 Warning[22]: Non-void function: explicit
"return" <expression>; expected

Unreferenced local or formal parameters
Program:

void my fun(int parameter)/* unreferenced formal
parameter */
{

int localvar;/* unreferenced local variable */
/* exit without reference to either variable */

}

Error:

}

A

"unrefpar.c",6 Warning[33]: Local or formal ’‘localvar’ was
never referenced

"unrefpar.c",6 Warning[33]: Local or formal ’‘parameter’ was
never referenced

Unreferenced goto labels
Program:

int main(void)

{
/* ... function body ... */
exit: /* unreferenced label */
return O;

8051 IAR C Compiler
92 Reference Guide

Error:

"unreflab.c",7 Warning[13]:

Unreachable code
Program:

#include <stdio.h>
int main(void)

{

goto exit;

Unreferenced label

puts ("This code is unreachable") ;

exit:
return 0O;

}

Error:

puts ("This code is unreachable") ;

A

Compiler options __o

fexit’

"unreach.c",7 Warning[20]: Unreachable statement (s)

Unmatching or varying parameters to K&R functions

Program:

int my fun(len,str)

int len;

char *str;

{
str[0]l="a’ ;
return len;

}

char buffer[99] ;

int main(void)

{
my fun (buffer,99)
my fun(99) ;
return 0 ;

}

Error:

;/* wrong order of parameters */
/* missing parameter */

my fun(buffer,99) ;/* wrong order of parameters */

Part 2. Compiler reference 93

Descriptions of compiler options

8051 IAR C Compiler
94 Reference Guide

"varyparm.c",14 Warning[26]: Inconsistent use of K&R function
- changing type of parameter

my fun(buffer,99) ;/* wrong order of parameters */
A

"varyparm.c",14 Warning[26]: Inconsistent use of K&R function
- changing type of parameter

my fun(99) ; /* missing parameter */

"varyparm.c",15 Warning[25]: Inconsistent use of K&R function
- varying number of parameters

#undef on unknown symbols
Program:

#define my macro 99

/* Misspelt name gives a warning that the symbol is unknown */
#undef my_ macor

int main(void)

{

return O;

}

Error:

#undef my macor

"hundef.c",4 Warning[2]: Macro ’'my macor’ is already #undef

Valid but ambiguous initializers
Program:

typedef struct tl {int £1; int £2;} typel;

typedef struct t2 {int £3; typel f4; typel £5;} type2;
typedef struct t3 {int f6; type2 £7; int £8;} type3;
type3 example = {99, {42,1,2}, 37};

Error:

"ambigini.c",4 Warning[12]: Incompletely bracketed
initializer

Compiler options __o

Constant array indexing out of range
Program:

char buffer[99] ;
int main(void)

{

buffer[500] = ’'a’ ;/* Constant index out of range */
return O;

}

Error:

buffer[500] = ’a’ ;/* Constant index out of range */

"arrindex.c",5 Warning[28]: Constant [index] outside array
bounds

-Hname
Use this option to set the object module name.

By default the internal name of the object module is the name of the source file,
without directory name or extension. To set the object module name explicitly, you
use the -H option, for example:

icc8051 prog -Hmain

This is particularly useful when several modules have the same filename, since
normally the resulting duplicate module name would cause a linker error, for instance
when the source file is a temporary file generated by the preprocessor.

Example

The following example—in which %1 is an operating system variable containing the
name of the source file—will give duplicate name errors from the linker:

preproc %$l.c temp.c; preprocess source, generating
temp.c
icc8051 temp.c ; module name is always 'temp’

To avoid this, use -H to retain the original name:

preproc %$l.c temp.c; preprocess source, generating
temp.c

icc8051 temp.c -H%$1l; use original source name as module
name

Part 2. Compiler reference

95

Descriptions of compiler options

8051 IAR C Compiler
96 Reference Guide

-h

-hlo]1]|2]3]

This option allows generation of register-bank-dependent code. The parameter
specifies the register bank 0 to 3; the default is 0.

The options are as follows:

Syntax Description

-h0 (default) Register bank 0
-h1l Register bank |
-h2 Register bank 2
-h3 Register bank 3

Table 17: Options for the -h compiler option

-Iprefix
Adds a prefix to the list of #include file prefixes.

By default the compiler searches for include files only in the source directory (if the
filename is enclosed in quotes as opposed to angle brackets), the C_ INCLUDE paths,
and finally the current directory. If you have placed #include files in some other
directory, you must use the - I option to inform the compiler of that directory.

For example:
icc8051 prog -I\mylib\

Notice that the compiler simply adds the - I prefix onto the start of the include
filename, so it is important to include the final backslash if necessary.

There is no limit to the number of - I options allowed on a single command line. When
many - I options are used, to avoid the command line exceeding the operating
system’s limit, you would use a command file; see the - £ option, page 89.

Note: The full description of the compiler’s #include file search procedure is as
follows:

When the compiler encounters an #include file name in angle brackets such as:
#include <stdio.h>
it performs the following search sequence:

1 The filename prefixed by each successive - I prefix.

2 The filename prefixed by each successive path in the C_INCLUDE environment
variable if any.

3 The filename alone.

Compiler options __o

When the compiler encounters an #include file name in double quotes such as:
#include "vars.h"

it searches the filename prefixed by the source file path, and then performs the
sequence as for angle-bracketed filenames.

-1

Use this option to make the compiler include #include files in the list file.
Normally the listing does not include #include files, since they usually contain only
header information that would waste space in the listing. To include #include files,

for example because they include function definitions or preprocessed lines, you
include the - i option.

-K
Enables comments in C++ style, i.e. comments introduced by ‘//’ and extending to
the end of the line.

For compatibility reasons, the compiler normally does not accept C++ style
comments. If your source includes C++ style comments, you must use the - K option
for them to be accepted.

-L[prefix]

Generates a listing for the file with the same name as the source but with extension
1st, prefixed by the argument, if any.

By default the compiler does not generate a listing. To simply generate a listing, you
use the -L option without a prefix.

-L may not be used at the same time as -1.

Example
To generate a listing in the file prog. 1st, you use:
icc8051 prog -L

To generate a listing to a different directory, you use the -L option followed by the
directory name. For example, to generate a listing on the corresponding filename in
the directory \1ist:

icc8051 prog -Llist\

This sends the file to 1ist\prog.lst rather than the default prog.1lst.

Part 2. Compiler reference

97

Descriptions of compiler options

8051 IAR C Compiler
98 Reference Guide

-1

-1 filename
Generates a listing to the named file with the default extension 1st.

By default the compiler does not generate a listing. To generate a listing to a named
file, you use the -1 option.

More often you do not need to specify a particular filename, in which case you can use
the -L option instead.

This option may not be used at the same time as the -L option.

Example
To generate a listing to the file 1ist.1st, use:

icc8051 prog -1 list

-m[t]s|c|m|1l]|b]

The memory model determines the maximum size of code and maximum size of data
normally available.

Use this option to specify the memory model for which the code is to be generated, as
follows:

Option Memory model Default C library a (80751) Reentrant

-mt Tiny cl8051t.r03 cl8051ta.r03 cl8051tr.r03
-ms Small cl8051s.r03 cl8051sa.r03 cl8051sr.xr03
-mc Compact cl8051c.r03 — cl8051cr.r03
-mm Medium cl8051m.r03 — cl8051mr.r03
-ml Large cl80511.r03 — cl80511r.r03
-mb Banked cl8051b.r03 — cl8051br.r03

Table 18: Specifying memory model (-m)

Note: The memory model option can only be set as a global option. All modules of a
program must use the same memory model and must be linked with a library file for
that model.

-Nprefix

Use this option to generate preprocessor output to the file prefix source.i.

Compiler options __o

By default the compiler does not generate preprocessor output. To send preprocessor
output to the file with the same name as the source leafname but with the extension i,
use the -N without an argument.

The -N option may not be used at the same time as the -n option.

Example
To generate preprocessor output to the file prog. i, use the command:
icc8051 prog -N

To send preprocessor output to the same filename but in a different directory, use the
-N option with the directory as the argument:

icc8051 prog -Npreproc\

generates a preprocessed source in the file preproc\prog.i.

-n filename
Generates preprocessor output to £ilename.i.

By default the compiler does not generate preprocessor output. This option generates
preprocessor output to the named file.

The filename consists of a leafname optionally preceded by a pathname and optionally
followed by an extension. If no extension is given, the extension i is used.

This option may not be used at the same time as -N.

-Oprefix
Sets the prefix to be used on the filename of the object.

By default the object is stored with the filename corresponding to the source filename,
but with the extension r03. To store the object in a different directory, you use the -0
option.

The -0 option may not be used at the same time as the -o option.

Example
To store the object in the \obj directory, use:

icc8051 prog -0\obj\

Part 2. Compiler reference

99

Descriptions of compiler options

8051 IAR C Compiler
100 Reference Guide

-0

-o filename

Sets the £ilename in which the object module will be stored. The filename consists
of an optional pathname, obligatory leafname, and optional extension (default r03).

By default the compiler stores the object code in a file whose name is

o The prefix specified by -o, plus
e The leatname of the source, plus
e The extension r03.

To store the object in a different filename, you use the -o option. For example, to store
it in the file obj . 03, you would use:

icc8051 prog -o obj

If instead you want to store the object with the corresponding filename but in a
different directory, use the -0 option.

The -o option may not be used at the same time as the -0 option.

-P

This option causes the compiler to generate code suitable for running in read-only
memory (PROM).

This option is included for compatibility with other IAR compilers; in the 8051 IAR
C Compiler, it is always active.

-pnn

This option causes the listing to be formatted into pages, and specifies the number of
lines per page in the range 10 to 150.

By default the listing is not formatted into pages. To format it into pages with a form
feed at every page, you use the -p option.

Example

To print a listing with 50 lines per page:

icc8051 prog -p50

-

Includes generated assembly lines in the listing.

Compiler options __o

By default the compiler does not include the generated assembly lines in the listing. If
you want these to be included, for example to be able to check the efficiency of code
generated by a particular statement, you use the -g option.

Note: This option is only available if -1 or -L is specified. For additional information,
see also the options -A, page 85, -a, page 86, -L, page 97, and -/, page 98.

-Rname
Sets the name of the code segment.

By default the compiler places executable code in the segment named CODE which, by
default, the linker places at a variable address. If you want to be able to specify an
explicit address for the code, you use the -R option to specify a special code segment
name which you can then assign to a fixed address in the linker command file.

-r[012] [i] [n] [r] [e]

Causes the compiler to include additional information required by C-SPY and other
symbolic debuggers in the object modules.

By default, the compiler does not include debugging information, for code efficiency.
To make code debuggable with C-SPY, you simply include the option with no
modifiers. This gives source file references in object code. Using the e modifier
includes the full source file into object code.

To make code debuggable with other debuggers, you select one or more options, as
follows:

Command line modifier Description

e Embed C source into object file

i Embed with include files

n Embed but suppress source in object file
0,1,2 Source statement trace

r Suppress temporary register variables

Table 19: Generating debug information (-r)

The - option alone adds C source file references, symbol debug information, and
other debug information to the object file. This makes it possible for the debugger to
show source code in C source files as well as include files, track variables etc.

Part 2. Compiler reference

101

Descriptions of compiler options

8051 IAR C Compiler
102 Reference Guide

The modifiers e, i, and n are there for compatibility reasons, i.e. to be able to generate
the UBROF 5 object file format from the linker at a later stage. This format is
sometimes demanded by other debuggers. The modifier e is automatically chosen if
i or n is chosen.

The -re option will copy the C source file into the object file using source references
into the copied source.

The option -ri (same as -rei) will insert include files into the copied source as well,

giving the possibility to debug code statements inside include files. A side effect is that
the source line number is the global (=total) line count so far in the copied source. The
option -rn (same as -ren) will give the same line count as the -re option but will not
embed the source files into the object file.

By default the compiler tries to put locals as register variables. However, some
debuggers cannot handle register variables; to suppress the use of register variables
use the -rr option.

The source statement trace (-r0, -r1) will for -r0 make sure that every C statement
is at least one byte of code, by adding a NOP. For the -r1 it will add a NOP in front of
every C statement. Only use one of these options if your debugging tools specifically
require you to do so.

The -r2 option is provided for backward compatibility. It is normally not used.

-S
Sets silent operation by causing the compiler to operate without sending unnecessary

messages to standard output (normally the screen).

By default, the compiler issues introductory messages and a final statistics report. To
inhibit this output, you use the - S option. This does not affect the display of error and
warning messages.

-s[0-9]
Causes the compiler to optimize the code for maximum execution speed.

By default the compiler optimizes for maximum execution speed at level 3 (see
below). You can change the level of optimization for maximum execution speed using
the - s option as follows:

Modifier Level
0 No optimization.
1-3 Fully debuggable.

Table 20: Optimizing for speed (-s)

Compiler options __o

Modifier Level
4-6 Some constructs not debuggable.
7-9 Full optimization.

Table 20: Optimizing for speed (-s) (continued)

Notice that the -z and - s options cannot be used at the same time.

-T
Causes the compiler to list only active source lines.

By default, the compiler lists all source lines. To save listing space by eliminating
inactive lines, such as those in false #1if structures, you use the - T option.

-tn
Sets tab spacing.

Set the number of character positions per tab stop to n, which must be in the range 2
to 9.

By default the listing is formatted with a tab spacing of 8 characters. If you want a
different tab spacing, you set it with the -t option.

-Usymb
Removes the definition of the named symbol.

By default the compiler provides various predefined symbols. If you want to remove
one of these, for example to avoid a conflict with a symbol of your own with the same
name, you use the -U option.

For a list of the predefined symbols, see the chapter Predefined symbols.

Example
For example, to remove the symbol __VER__, use:

icc8051 prog -U__VER_

-u
Use this option to enable the function return stack expansion.

The -u option will force the compiler to store function return addresses in external
(XDATA) memory.

Part 2. Compiler reference 103

Descriptions of compiler options

8051 IAR C Compiler
104 Reference Guide

-V

-vio]1]
Use this option to specify the processor variant:

Command line option Description

-vO0 Selects the 8051 processor option (default).

-vl Selects the 80751 processor option. The 80751 is sufficiently similar to
the 8051 when sharing a common compiler; however a few of the
features of the 8051 are missing in the 80751. The -v1 option causes
the compiler to avoid these incompatibilities.

Table 21: Specifying processor options

-wWs
Disables warnings.

By default the compiler issues standard warning messages, and any additional
warning messages enabled with the -g option.

To disable all warning messages, use the -w option. To make warnings give exit code
1, use the -ws option.

Exit codes Description

0 No errors, warnings may appear.
1 Warnings

2 Errors

Table 22: Disabling warning messages

-X

Use this option to obtain descriptions in English of the C declarations, for example to
aid the investigation of error messages.

Example

For example, the declaration:

void (* signal(int _ sig, void (* func) ())) (int);

gives the description:

Identifier: signal
storage class: extern
prototyped near func function returning
near - near func code pointer to

-X

Compiler options __o

prototyped near func function returning
near - void
and having following parameter(s) :
storage class: auto
near - int
and having following parameter (s) :
storage class: auto
near - int
storage class: auto
near - near func code pointer to
near func function returning
near - void

-x [DFT2]
Includes a cross-reference section in the listing.

By default the compiler does not include global symbols in the listing. To include at
the end of the listing a list of all variable objects, and all functions, #define
statements, enum statements, and typedef statements that are referenced, you use
the -x option with no modifiers.

The following table describes the available modifiers:

Command line option Description

-xD Include unreferenced #defines.

-xF Include unreferenced functions.

-xT Include unreferenced enum and typedefs constants.
-x2 Dual line spacing.

Table 23: Including cross-references in list file (-x)

4
Causes the compiler to compile string literals and other constants as initialized
variables.

By default string literals and constants are compiled as read-only. If you want to be
able to write to them, use the -y option, causing them to be compiled as writable
variables.

Note: Arrays initialized with strings (i.e. char c[] = string)are always compiled
as initialized variables, and are not affected by the -y option.

Part 2. Compiler reference 105

Descriptions of compiler options

8051 IAR C Compiler
106 Reference Guide

-z

-z[0-9]
Causes the compiler to optimize the code for minimum size.

By default the compiler optimizes for minimum size at level 3 (see below). You can
change the level of optimization for minimum size using the -z option as follows:

Modifier Level

0 No optimization.

1-3 Fully debuggable.

4-6 Some constructs not debuggable.
7-9 Full optimization.

Table 24: Optimizing for size (-z)

Notice that -z and -s cannot be used at the same time.

Extended keywords

This chapter describes the non-standard keywords that support specific
features of the 8051 microcontroller for data storage, function execution,
function calling convention and function storage.

Using extended keywords

You can use keywords and the sfr keyword only if language extensions are enabled
in the 8051 IAR C Compiler. Use the -e compiler option to enable language
extensions. See -e, page 89, for additional information.

In the JAR Embedded Workbench, language extensions are enabled by default.

The extended keywords provide the following facilities:

ADDRESS CONTROL

By default the address range in which the compiler places a variable or function is
determined by the memory model chosen. The program may achieve additional
efficiency for special cases by overriding the default by using the #pragma
memory=data keyword area extended language statement:

Data keyword Description

bdata Bit addressable memory (address 20H-2FH)

bit Bit variables

code Constants in CODE memory

data Data addressable directly (address 00H-7FH)
default Resets compiler memory selector to use its default segments
idata Indirectly accessed data (normally in internal RAM)
no_init Data in non-volatile external RAM

pdata Paged memory segment in external RAM

xdata Data in external RAM

xdataconst Constant in external RAM

Table 25: Reserved keywords

Initialized variables use two memory segments per memory area in the chip. The
modifiable variable is in RAM and the value used to initialize the variable is in ROM.

For example, the X_CDATA segment is the initialized data segment in ROM for data
in the X_IDATA segment in external RAM.

Part 2. Compiler reference 107

Descriptions of extended keywords

You can also create your own code segment by using the RSEG relocatable segment
directive in assembler. Code segments may be renamed at compile time using the -R
compiler option; for more information, see -R, page 101.

Use the pragma memory=dataseg (segment name) to force the compiler to use
a particular data segment. For more information, see memory=dataseg, page 129.

You can also specify to the compiler how functions use memory. For example the
function types banked and non-banked determine whether the function is placed
into the bank switched area of ROM or the non-banked area.

The pdata memory provides direct addressing access to a defined page (256 bytes)
of the external memory.

/0 ACCESS

The program may access the 8051 I/O system using the sfr data types or absolute bit
addressing.

BIT VARIABLES

The program may take advantage of the 8051 bit-addressing modes by using the bit
data type.

NON-VOLATILE RAM

Variables may be placed in external non-volatile RAM by using the no_init data
type modifier.

INTERRUPT ROUTINES
Interrupt routines may be written in C using the following keywords:

interrupt The function is an interrupt function

monitor The function cannot be interrupted.

Descriptions of extended keywords

8051 IAR C Compiler
108 Reference Guide

The following general parameters are used in several of the definitions:

Parameter Description
storage-class Denotes an optional keyword extern or static
declarator Denotes a standard C variable or function declarator

Table 26: Extended keywords general parameters

Extended keywords __o

bdata storage-class bdata function-declarator

storage-class type decl-list

where decl-1ist is a list of: <bdata> name.

Description

Places a variable of type char in the bit-addressable memory 0020h to 002Fh
allowing the variable to be bit-addressable.

Note: The type has to be char.

Examples

bdata char my bit data;

static char chl, bdata ch2, ch3;
if(my bit data.2 == my bit_data.3)

my bit data.2 = 0;

bit Relocatable address:
storage-class bit identifier
Fixed address:
bit identifier = constant-expression.bit-selector

SFR:

bit identifier = sfr-identifier.bit-selector

Description
Declares a bit variable.

The bit variable is a variable whose storage is a single bit. It may have values 0 and
1 only. Bit variables should not be confused with the standard C bitfields.

A bit variable can be one of the following kinds:

Bit variable type Description
Relocatable address The variable is one bit allocated in the bit memory of the 8051
Fixed address The variable is one bit in either the bit memory or in a bit sfr

Table 27: Bit variable types

Part 2. Compiler reference 109

Descriptions of extended keywords

code

8051 IAR C Compiler
|10 Reference Guide

code

(pointer)

Bit variables can be used in all places where it is allowed to use other integral types,
except:

As operand to the unary & (address) operator

As struct/union elements

As a parameter in an indirectly-called function

As a parameter in a recursive or reentrant function
As a parameter in a K&R function type

Bit arrays are not allowed

Bit casts are not allowed.

Examples
bit bit _addr 27=0x23.7;

bit pl 1=P1.2;

storage-class code declarator

Description
Places an object in code (ROM) memory.

The code memory type attribute is used to place an object in code (ROM) memory.
It overrides the default memory area of the memory model currently in effect.

The code attribute cannot be used in the following situations:

e With parameters and auto variables

e As struct/union elements

e In cast expressions.

Examples

extern code char *myarray[10] ;

See also the const keyword, page 139.

memory storage pointer to type code * pointer name

Description

Defines a pointer as a pointer to code memory.

data

idata

Parameters

memory storage Location of pointer.
pointer to_ type Type of data pointed to.
pointer name Name of the pointer.
Examples

xdata char code *myptr;
extern xdata int code *mycptr;

See also the keywords idata, page 111, and xdata, page 119.

Extended keywords __o

storage-class data declarator

Description

Places an object in internal RAM.

The data memory type attribute is used to place an object in the directly-addressable
internal RAM memory of the 8051 microcontroller (0x00 to 0x7F). It overrides the

default memory area of the memory model currently in effect.

The data attribute can be used in any standard C variable declaration, except:

e In parameters of indirectly called functions.
e In cast expressions.
o As struct/union elements.

Examples
data char *myarray[10] ;

void f(data int myint) ;

See also the keywords idata, page 111, and xdata, page 119.

storage-class idata declarator

Description

Places an object in the indirectly-addressable internal RAM.

Part 2. Compiler reference |1 1|

Descriptions of extended keywords

idata

8051 IAR C Compiler
|12 Reference Guide

(pointer)

interrupt

The idata memory type attribute is used to place an object in the
indirectly-addressable internal RAM memory of the 8051 (0x00 to 0x7F or 0x00 to
0xFF, depending on the microcontroller version). It overrides the default memory area
of the memory model currently in effect.

The idata attribute can be used in any standard C variable declaration, except:

e In parameters of indirectly called functions.
e In cast expressions.
e As struct/union elements.

Examples
idata char *myarray[10] ;
void f(idata int myint) ;

See also the keywords data, page 111, and xdata, page 119.

memory storage pointer to type idata * pointer name

Description

Defines a pointer as a pointer to idata memory.

Parameters

memory storage Location of pointer.
pointer to_ type Type of data pointed to.
pointer name Name of the pointer.
Examples

idata char idata *myptr;
extern xdata int idata *mycptr;

See also the keywords code, page 110, and xdata, page 119.

storage-class interrupt function-declarator
storage-class interrupt [vector] function-declarator

storage-class interrupt [vector] using [reg-bank]
function-declarator

Extended keywords __o

Description
Declares an interrupt function.

The interrupt keyword declares a function that is called upon a processor interrupt.
The function must be void and have no arguments.

If a vector is specified, the address of the function is inserted in that vector. If no vector
is specified, an appropriate entry must be provided in the vector table (preferably
placed in the cstartup module) for the interrupt function.

The run-time interrupt handler takes care of saving and restoring processor registers,
and returning via the RETT instruction.

The compiler disallows calls to interrupt functions from the program itself. It does
allow interrupt function addresses to be passed to function pointers which do not have
the interrupt attribute. This is useful for installing interrupt handlers in conjunction
with operating systems.

The using keyword defines which register bank to use for the default register bank.
Switching the register banks allows faster interrupt processing and eliminates the need
to stack the current register contents. When switching register banks, it must be
ensured that the area of memory for the interrupt register bank is not used by the linker
options for data area. If the using keyword is omitted, the default register bank will
be used. The memory area for each register bank is listed below.

Bank Internal RAM location
0 00H-07H
1 08H-O0FH
2 10H-17H
3 18H-1FH

Table 28: Memory areas for each register bank

Parameters

function-declarator A void function declarator having no arguments.

[vector] A square-bracketed constant expression yielding the
vector address.

[reg-bank] The register bank to use for the interrupt.

Part 2. Compiler reference |13

Descriptions of extended keywords

monitor storage-class monitor function-declarator

storage-class monitor [enable-point] function-declarator

Description
Makes function atomic.

The monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. After execution the
monitor function will re-enable interrupts.

A function declared with monitor is equivalent to a normal function in all other
respects.

Parameters

function-declarator A function declarator

enable-point A value in the range to 2, as follows:

In default mode (no enable-point set), the
monitor function saves the interrupt status
and then disables interrupts by clearing bit 7
of register |E when entering the function and
restoring status on exiting.

| Disables interrupts and then passes the
parameters to the monitor function.
Interrupts are enabled on exiting.

2 Saves the interrupt status and then disables
interrupts and passes the parameters to the
monitor function. Interrupt status is restored
on exiting.

Examples
The example below disables interrupts while the flag is modified.

char printer free;/* printer-free */
/* semaphore */

monitor int got flag(char *flag)/* With no danger of */
/* interruption ... */
{

if (!*flag)/* test if available */

{

8051 IAR C Compiler
|14 Reference Guide

Extended keywords __o

return (*flag = 1);/* yes - take */

}
}

void f (void)

{

return (0);/* no - do not take */

if (got flag(&printer free))/* act only if */
/* printer is free */
action code

non_banked storage-class non_banked declarator

Description
Function or function pointer modifier.

By default, in the banked memory model, all functions are callable from any bank. The
non_banked keyword indicates that the function is always in the same bank as the
caller, and so can be called by the faster non-banked method.

Examples

Function test is local to one file, and is only called by functions within the same file.
It is therefore always in the same bank as the caller:

static non banked void test (void)

{
}

void testcaller(void)

{

test();/* call test by faster */
/* non-banked method */

no_init storage-class no_init declarator

Description
Type modifier for non-volatile variables.

By default, the compiler places variables in main, volatile RAM and initializes them
on start-up. The no_init type modifier causes the compiler to place the variable in
non-volatile RAM and not to initialize it on start-up.

Part 2. Compiler reference |15

Descriptions of extended keywords

8051 IAR C Compiler
|16 Reference Guide

pdata

no_init variables are assumed to reside in external RAM. no_init variable
declarations may not include initializers.

If non-volatile variables are used, it is essential for the program to be linked to refer
to the non-volatile RAM area. For details, see Non-volatile RAM, page 20.

Examples
The example below shows valid and invalid methods of using the no_init keyword.
no_init int settings[50];/* array of non-volatile */
/* settings */
no init int idata i ;/* conflicting type */
/* modifiers - invalid */
no init int i = 1 ;/* initializer included */

/* - invalid */

storage-class pdata declarator
storage-class type decl-list
where decl-1ist is alist of: <pdata> name

memory storage base type pdata * pointer name

Description

Sets one PDATA segment (256 bytes) on the microcontroller. This means that moving
data to/from this PDATA segment can be done more efficient. The pdata memory type
attribute is used to place an object in an external memory area 0000h to FFFFh. It
overrides the default memory area of the memory model currently in effect. All
pdata objects are static. If you use the first syntax rule, all declarations in
declaratorare pdata. If you use the second rule, only the declarations prefixed by
pdata are pdata.

When pdata is in use, CSTARTUP sets up the base-page (P2).

Examples
pdata char mychar([10];
int i, pdata j, k;

xdata char pdata * my pointer;

Extended keywords __o

As another example, if we want to load A-reg some data that is not located in a PDATA
segment, then the compiler generates the following code:

\ 0000 900000 MOV DPTR, #20000
\ 0003 EO MOVX A,@DPTR

The corresponding code putting the data in the PDATA segment would be:

\ 0000 7800 MOV RO, #LOW(?0000)
\ 0002 E2 MOVX A,@RO

plm storage-class plm function declarator

Description

The plm keyword enables functions to call p1m functions or to be callable from plm
functions (or functions that use the PL/M-51 interface). For more information, see the
Using C with PL/M chapter.

Examples

extern plm void plm F();
plm void myfun/()

{
}

/* C code here */

reentrant storage-class reentrant function declarator

Description

Places function stack in XDATA memory.

Use the reentrant keyword to give the function a simulated stack in XDATA
memory. This enables it to be called from main and from interrupt functions.
Examples

The example below declares myfun as reentrant:

extern reentrant void allagazam F () ;
reentrant void myfun ()

{
/* C code here */

}

Part 2. Compiler reference |17

Descriptions of extended keywords

reentrant idata storage-class reentrant idata function declarator

Description

Makes a small reentrant function that uses the internal stack for its local variables.
This means that the software stack is placed in idata memory.

Examples

extern re entrant idata void my_ func();
reentrant idata void my func ()

{
}

/* C code here */

sfr sfr identifier = constant-expression

Description
Declares an object of one-byte I/O data type.
sfr denotes an 8051 SFR register which:

e Isequivalent to unsigned char
e Can only be directly addressable
e Resides at a fixed location in the range 0x80 to 0xFF.

The value of an sfr variable is the contents of the SFR register at the address
constant-expression. All operators that apply to integral types except the unary
& (address) operator may be applied to sfr variables.

In expressions, sfr variables may also be appended by a period followed by a
bit-selector.

Predefined sfr declarations for popular members of the 8051 family are supplied; see
the directory \ew23\8051\inc\io51.h

Examples
The example below uses sfr to access the port at 0x80.

sfr PO = 0x80;/* Defines PO */
void func ()

{

PO = 4;/* Set entire variable */
/* PO = 00000100 */

P0.2 = 1;/* Only affects one bit */

8051 IAR C Compiler
|18 Reference Guide

Extended keywords __o

/* PO = XXXXX1XX */

if (PO & 4) printf ("ON");/* Read entire PO and */
/* mask bit 2 */

if (P0.2) printf ("ON");/* Same but does bit */
/* access only */

using The using keyword allows an interrupt service routine declaration to specify a
register bank for that routine to use.

Interrupt Service Routines defined (or declared) with the using keyword are subject
to more stringent reentrancy requirements than those which use the default register
bank; not even C run-time library routines calls are permitted.

Because the using keyword is only used with the interrupt keyword, see
interrupt, page 112 and using, page 119 for syntax and further details.

xdata storage-class xdata declarator

Description
Places an object in external memory.

The xdata memory type attribute is used to place an object in the external memory
area (0x0000 to OXFFFF). It overrides the default memory area of the memory
model currently in effect.

The xdata attribute can be used in any standard C variable declaration, except:

e In parameters of indirectly called functions.
o In cast expressions.

e As struct/union elements.

Examples

xdata char *myarray[10] ;
void f (xdata int myint);

See also keywords““idata” on page 111 and “data” on page 111.

Part 2. Compiler reference |19

Descriptions of extended keywords

xdata (pointer) memory storage pointer to type xdata * pointer name

Description

Defines a pointer as a pointer to XDATA memory.

Parameters

memory storage Location of pointer
pointer to type Type of data pointed to
pointer name Name of the pointer
Examples

idata char xdata *myptr;
extern xdata int xdata *mycptr;

See also the keywords code, page 110, and idata, page 111.

8051 IAR C Compiler
120 Reference Guide

H#pragma directives

#pragma directives control how the compiler allocates memory, whether the
compiler allows extended keywords, and whether the compiler outputs
warning messages.

The use of #pragma directives is always enabled in the 8051 IAR C Compiler.
They are consistent with the ISO/ANSI C and are very useful when you want
to make sure that the source code is portable.

This chapter describes the syntax and gives a description of the #pragma
directives of the 8051 IAR C Compiler.

#pragma directives summary

#pragma directives provide control of extension features while remaining within the
standard language syntax.

The following categories of #pragma functions are available:

BITFIELD ORIENTATION

#pragma bitfields=default
#pragma bitfields=reversed

EXTENSION CONTROL

#pragma language=default
#pragma language=extended

FUNCTION ATTRIBUTE

#pragma codeseg (seg_name)
#pragma function=default
#pragma function=interrupt
#pragma maxargs number of bytes
#pragma function=monitor
#pragma function=non banked
#pragma function=plm

#pragma function=reentrant
#pragma function=reentrant idata
#pragma overlay=default

#pragma overlay=off

MEMORY USAGE

#pragma memory=code
#pragma memory=constseg (seg_name)
#pragma memory=data

Part 2. Compiler reference 121

Descriptions of #pragma directives

#pragma memory=dataseg (seg_name)
#pragma memory=default

#pragma memory=idata

#pragma memory=no_ init

#pragma memory=pdata

#pragma stringalloc=default
#pragma stringalloc=xdata
#pragma memory=xdata

#pragma memory=xdataconst

WARNING MESSAGE CONTROL

#pragma warnings=default
#pragma warnings=off
#pragma warnings=on

Descriptions of #pragma directives

bitfields=default

bitfields=reversed

8051 IAR C Compiler
122 Reference Guide

This section describes the #pragma directives in alphabetical order. The #pragma
directives are available regardless of the -e option.

Note: The #pragma function=intrinsic, which can be seen in the IAR C library
files, is for IAR internal use only. You should not use it in your code since this could
result in unexpected behavior.

#pragma bitfields=default

Description
Restores default order of storage of bitfields.

This directive causes the compiler to allocate bitfields in its normal order. See
bitfields=reversed.

#pragma bitfields=reversed

Description
Reverses order of storage of bitfields.

This directive causes the compiler to allocate bitfields starting at the most significant
bit of the field, instead of at the least significant bit. The ANSI standard allows the
storage order to be implementation-dependent; you may run into portability problems,
which can be avoided by use of this keyword.

codeseg

#pragma directives __o

Example
The default layout of

struct

{
short a:3;/* a is 3 bits */
short :5;/* this reserves a hole of 5 bits */
short b:4;/* b is 4 bits */

} bits;/* bits is 16 bits */

in memory is:

15 12 11 87 32 0

hole (4) b: 4 hole (5) a:3

#pragma bitfields=reversed

struct

{
short a:3;/* a is 3 bits */
short :5;/* this reserves a hole of 5 bits */
short b:4;/* b is 4 bits */

} bits;/* bits is 16 bits */

has the following layout:

15 1312 87 43 0

a:3 hole (5) b: 4 hole (4)

#pragma codeseg (seg name)

where seg name specifies the segment name, which must not conflict with data
segments.

Description

Places subsequent code in the named segment and is equivalent to using the C
compiler -R option; see -R, page 101. The #pragma directive can only be executed
once by the compiler.

Part 2. Compiler reference

123

Descriptions of #pragma directives

function=default

function=interrupt

function=monitor

8051 IAR C Compiler
124 Reference Guide

#pragma function=default

Description

Restores function definitions to the default type.

Example

The example below shows how to insert a non-banked function and return to banked
mode (it assumes that banked memory is available).

#pragma function=non banked

extern void f1();/* Identical to extern far void
£1(0) */

#pragma function=default

extern int £3();/* Default function type */

#pragma function=interrupt

Description
Makes subsequent function definitions interrupt.

This directive makes subsequent function definitions of interrupt type. It is an
alternative to the function attribute interrupt. For more information, see interrupt,
page 112.

Notice that #pragma function=interrupt does not offer a vector option.

Example

#pragma function=interrupt
void process_int () /* an interrupt function */

{
}

#pragma function=default

#pragma function=monitor

Description
Makes function definitions atomic (non-interruptable).

Makes subsequent function definitions of monitor type. It is an alternative to the
function attribute monitor.

#pragma directives __o

Example

The function £2 in the following example will execute with interrupts temporarily
disabled.

#pragma function=monitor
void f2()/* Will make f2 a monitor function */

{
}

#pragma function=default

function=non banked #pragma function=non-banked

Description

This directive makes subsequent function definitions of non_banked type. It is an
alternative to the function attribute non_banked. For more information, see
non_banked, page 115.

Example

The example below shows a non-banked function £2.

#pragma function=non banked
void f2(void)

{
}

#pragma function=default

function=plm #pragma function=plm

Description

The plm #pragma directive enables functions to call PL/M-51 functions or to be
callable from PL/M-51 functions (or functions that use the PL/M-51 interface). For
more information, see the Using C with PL/M chapter.

Examples

#pragma function=plm
int plm_sum (int myi, int my3j)

{
}

return (myi+myj) ;

Part 2. Compiler reference 125

Descriptions of #pragma directives

function=reentrant #pragrma function=reentrant

Description

Make subsequent function definitions of small reentrant type. This means that a
simulated XDATA stack will be used, and locals and parameters will be placed in
XDATA memory.

Example

#pragma function=reentrant
void f2(void)

{
}

#pragma function=default

function=reentrant idata #pragma function=reentrant idata

Description

Makes subsequent function definitions of small reentrant type. This means that the
hardware stack will be used, and locals and parameters will be placed in IDATA
memory.

Example

#pragma function=reentrant idata
void f2(void)

{
}

#pragma function=default

language=default #pragma language=default

Description

Returns extended keyword availability to the default set by the compiler -e option.
See language=extended.

Example

See the example language=extended below.

8051 IAR C Compiler
126 Reference Guide

language=extended

maxargs

#pragma directives __o

#pragma language=extended

Description

Makes the extended keywords available regardless of the state of the compiler option
-e; see page 88 for additional information.

Example

In the example below, the shortad extended language modifier is enabled for the
definition of the function func. mycount is defined in the standard way.

#pragma language=extended
interrupt [0x0B] void func (void);
#pragma language=default

int mycount;

#pragma maxargs number of bytes

Parameters

number of bytes The maximum number of bytes of function arguments
that will be passed.

Description

The #pragma maxargs informs the compiler that indirect functions may have
variable arguments sizes. This is necessary when the indirectly called function is in
one module and the calling function is in another.

The #pragma directive is only effective for the single function immediately following
it.

Example

The example below shows a function which can accept one to four characters. Four
bytes have been reserved for its parameters.

#pragma maxargs 4
void myfunc(char, . . .)

{

/* code to access one to four characters here */

}

The module which calls the function will have the following lines:

void (* fp) (char first, . . .);
void main (void)

Part 2. Compiler reference |27

Descriptions of #pragma directives

memory=memory segment

memory=constseg

8051 IAR C Compiler
128 Reference Guide

fp=myfunc;
fp(ra’);
fp(larl lbr),.

#pragma memory=memory segment

Parameters

memory segment One of the standard memory segments:
CODE, code (ROM) memory
DATA, directly addressable internal RAM
IDATA, indirectly addressable internal RAM

PDATA, paged indirectly addressable external
memory

XDATA, external data memory

XDATACONST, external data memory as constant

Description

Directs variables to the memory area by default. The default may be overridden by the
memory attributes.

Use xdataconst if you run out of CODE (PROM) space but still have some place in
XDATA area where you can place a PROM to store constants. xdataconst places
such constants in segment X_CONST to be located in the XDATA PROM area at link
time.

See the Extended keywords chapter for examples.

#pragma memory=constseg(seg name)

Description

Directs constants to the named segment by default. It is an alternative to the memory
attribute keywords. The default may be overridden by the memory attributes.

Note: The seg name must not be one of the compiler’s reserved segment names.

#pragma directives __o

Example
The example below places the constant array arr into the ROM segment TABLE.

#pragma memory=constseg (TABLE)
char arr([] = {6, 9, 2, -5, 0};
#pragma memory = default

If another module accesses the array it must use an equivalent declaration:

#pragma memory=constseg (TABLE)
extern char arr(];

memory=dataseg #pragma memory=dataseg(seg name)

Description

Directs variables to the named XDATA segment by default and can only be used as
global, not local, inside a function. The default may be overridden by the memory
attributes.

Note: The seg _name must not be one of the compiler’s reserved segment names.
No initial value may be supplied in the variable definitions. Up to 10 different
alternative data segments can be defined in any given module. You can switch to any
previously defined XDATA data segment name at any point in the program.
Example

The example below places three variables into the read/write area called USART.

#pragma memory = dataseg (USART)

char USART data; /* offset 0 */
char USART control; /* offset 1 */
int USART rate; /* offset 2, 3 */

#pragma memory = default

If another module needs to access these symbols, the equivalent extern declaration
should be used:

#pragma memory = dataseg (USART)
extern char USART data;

Part 2. Compiler reference 129

Descriptions of #pragma directives

memory=default

memory=no_init

overlay=default

8051 IAR C Compiler
130 Reference Guide

#pragma memory=default

Description

Restores memory allocation of objects to the default area, as specified by the memory
model in use.

See memory=no_init, below, for an example.

#pragma memory=no_init

Description

Directs variables to the NO_INIT segment so that they will not be initialized and will
reside in non-volatile RAM. It is an alternative to the memory attribute no_init. The
default may be overriden by the memory attributes.

The NO_INIT segment must be linked to coincide with the physical address of
non-volatile RAM; see the Configuration chapter for details.
Example

The example below places the variable buf fer into non-initialized memory.
Variables i and j are placed into the DATA area.

#pragma memory=no_ init

char buffer [1000]; /* in uninitialized memory */
#pragma memory=default
int 1i,73; /* default memory type */

Notice that a non-default #pragma memory directive will generate error messages if
function declarators are encountered. Local variables and parameters cannot reside in
any other segment than their default segment, the stack.

#pragma overlay=default

Description

Leaves the decision on whether to overlay function parameters and local variables to
the IAR XLINK Linker.

#pragma directives __o

overlay=off #pragma overlay=off

Description

Turns off the overlaying of function parameters and local variables.

stringalloc=default #pragma stringalloc=default

Description

Allocates constant string declarations to the default memory area for the memory
model currently in effect.

stringalloc=xdata #pragma stringalloc=default

Description

Allocates constant string declarations to XDATA in ROM memory.

warnings=default #pragma warnings=default

Description

Restores the compiler warning output to the default set with the -w compiler option.
See warnings=on, and warnings=off.

warnings=off #pragma warnings=off

Description

Disables output of compiler warning messages regardless of the state of the -w
compiler option; see page 104 for additional information.

warnings=on #pragma warnings=on

Description

Enables output of compiler warning messages regardless of the state of the -w
compiler option; see page 104 for additional information.

Part 2. Compiler reference 131

Descriptions of #pragma directives

8051 IAR C Compiler
132 Reference Guide

Predefined symbols

With the predefined preprocessor symbols, you can inspect your
compile-time environment, for example, the time and date of compilation.
This chapter describes the syntax and gives a description of the predefined
preprocessor symbols that are supported in the 8051 IAR C Compiler.

Descriptions of predefined symbols

__DATE

__FILE _

__IAR SYSTEMS ICC_

__LINE _

__STDC___

_TID

The following section describes the available predefined symbols.

_ _DATE

Expands to the date of compilation in the form Mmm dd yyyy.

__FILE _

Expands to the name of the file currently being compiled.

__IAR SYSTEMS ICC

Expands to a number that identifies the IAR Compiler platform. The current identifier
is 1. Notice that the number could be higher in a future version of the product.

This symbol can be tested with #ifdef to detect that the code was compiled by an
TAR Compiler.

__LINE _

Expands to the current line number of the file currently being compiled.

__STDC_

Expands to the number 1. This symbol can be tested with #ifdef to detect that the
compiler used adheres to ANSI C.

TID

Target identifier.

The target identifier contains a number unique for each IAR Systems compiler (that
is, it is a number unique for each target), the intrinsic flag, the value of the -v option,
and the value corresponding to the -m option.

Part 2. Compiler reference 133

Descriptions of predefined symbols

__TIME _

8051 IAR C Compiler
134 Reference Guide

__VER

For the 8051 microcontroller, the target identifier is 14.

Assuming that these four values are named £, t, v, and m, the _TID _ value for the
8051 IAR C Compiler is constructed as:.

(0x8000 | (t << 8) | (v << 4) | m)

You can extract the values as follows:

f = (__TID) & 0x8000;

t = (__TID _ >> 8) & OX7F;
v = (__TID__ >> 4) & O0xOF;
m = TID & OxOF;

Notice that there are two underscores at each end of the macro name.

To find the value of the target identifier for the current compiler, execute:
printf ("$1d", (__TID _>>8)&0x7F)

For an example of the use of _TID | see the file stdarg.h.

The highest bit 0x8000, is set in the 8051 IAR C Compiler to indicate that the
compiler recognizes intrinsic functions. This may affect how you write header files.

__TIME_ _

Expands to the time of compilation in the form hh:mm: ss.

VER

Expands to the version number of the compiler as an integer.

Example

The example below prints a message for version 3.34.

#if VER == 334
#message "Compiler version 3.34"
#endif

Intrinsic functions

Intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic
functions compile into in-line code, either as a single instruction or as a short
sequence of instructions.

This chapter gives reference information about the intrinsic functions that can
be used in the 8051 IAR C Compiler.

Note: Make sure that you include the header file special.h if you use intrinsic
functions in your application.

Descriptions of intrinsic functions

The following section describes the available intrinsic functions.

_args$ _argss$
Returns an array of the parameters to a function.

_argss is a reserved word that returns a char array (char *) containing a list of
descriptions of the formal parameters of the current function:

Offset Contents

0 Parameter | type in _argts$ format.
1 Parameter | size in bytes.

2 Parameter 2 type in _argts$ format.
3 Parameter 2 size in bytes.

2n-2 Parameter n type in _argts$ format.
2n-1 Parameter n size in bytes.

2n \0

Table 29: _args$ (intrinsic function)
Sizes greater than 127 are reported as 127.

_args$ may be used only inside function definitions. For an example where _args$
is used, see the file stdarg.h.

If a variable length (varargs) parameter list was specified, then the parameter list
will terminate at the final explicit parameter; you cannot easily determine the types or
sizes of the optional parameters.

Part 2. Compiler reference 135

Descriptions of intrinsic functions

_argt$ _argts$(variable name)
Returns the type of the parameter.

The returned values and their corresponding meanings are shown in the following
table:

Value Type

| unsigned char
char

unsigned short
short
unsigned int
int

unsigned long

long

O 00 N o0 U1 A W N

float

S

double

11 long double

12 pointer/address
13 union

14 struct

Table 30: _argt$ (intrinsic function)

Example
The following example uses _argts$ and tests for int or 1ong parameter types:

switch (_argt$(i))
{
case 6:
printf ("int %d\n", 1);

break;
case 8:
printf ("long %$1d\n", 1i);
break;
default:
printf ("int or long expected\n") ;
break;

8051 IAR C Compiler
136 Reference Guide

Intrinsic functions __¢

_opc _opc(c)
Inserts an opcode.

The opc () macro takes a single constant character c as a parameter; this is emitted
by the compiler in the form of a DB assembler command. The intention of the macro
is to create assembler opcodes for instructions difficult to describe in C.

To use this macro, include the line:

#include <special.h>

and select the -e option either from the command line or with the corresponding
#pragma language=extended. For more information, see the #pragma directives
chapter.

Example

The example below clears A and jumps to address 0x2000.

void stop_and return to OS()

{

_opc (0xE4) ; /* CLR A */
_opc (0x02) ; /* LJIMP 2000H */
_opc (0x20) ;

_opc (0x00) ;

}

_tbac _tbac(b)
Test Bit And Clear (atomic read, modify, write).

The tbac () macro takes a single bit variable b and uses the JBC assembler
instruction to carry out an atomic read, modify, write instruction. The macro returns
the original value of b (0 or 1) and resets b to zero. This may be used to create
semaphores or similar mutual-exclusion functions.

To use this macro, you must include the line:
#include <special.h>

and select the -e option either from the command line or with the corresponding
#pragma language=extended.

Part 2. Compiler reference 137

Descriptions of intrinsic functions

8051 IAR C Compiler
138 Reference Guide

K&R and ANSI C language
definitions

This chapter describes the differences between the K&R description of the
C language and the ANSI standard. It also summarizes the differences between
the standards, and is particularly useful to programmers who are familiar with
K&R C but would like to use the new ANSI facilities.

Introduction
There are two major standard C language definitions:
o Kernighan & Ritchie, commonly abbreviated to K&R.
This is the original definition by the authors of the C language, and is described in
their book The C Programming Language.
e ANSIL
The ANSI definition is a development of the original K&R definition. It adds facilities
that enhance portability and parameter checking, and removes a small number of
redundant keywords. The IAR Systems C Compiler follows the ANSI approved
standard X3.159-1989.
Both standards are described in depth in the later editions of The C Programming
Language by Kernighan & Ritchie.
Definitions

This sections describes the C language definitions.

ENTRY KEYWORD

In ANSI C the entry keyword is removed, so allowing entry to be a user-defined
symbol.

CONST KEYWORD

ANSI C adds const, an attribute indicating that a declared object is unmodifiable and
hence may be compiled into a read-only memory segment. For example:

const int 1i; /* constant int */
const int *ip; /* variable pointer to
constant int */

int *const ip; /* constant pointer to
variable int */

Part 2. Compiler reference 139

Definitions

8051 IAR C Compiler
140 Reference Guide

typedef struct /* define the struct
"cmd_entry’ */
{

char *command;
void (*function) (void) ;

}

cmd_entry

const cmd entry table[]l=/* declare a constant object of
type ‘cmd entry’ *x/

{

"help", do_help,
"reset", do_reset,
"quit", do_quit

Vi

VOLATILE KEYWORD

ANSI C adds volatile, an attribute indicating that the object may be modified by
hardware and hence any access should not be removed by optimization.

SIGNED KEYWORD

ANSI C adds signed, an attribute indicating that an integer type is signed. It is the
counterpart of unsigned and can be used before any integer type-specifier.

VOID KEYWORD

ANSI C adds void, a type-specifier that can be used to declare function return values,
function parameters, and generic pointers. For example:

void f(); /* a function without return

value */
type spec f(void);/* a function with no parameters */
void *p; /* a generic pointer which can be

/* cast to any other pointer and
is assignment-compatible with any
pointer type */

ENUM KEYWORD

ANSI C adds enum, a keyword that conveniently defines successive named integer
constants with successive values. For example:

enum {zero,one,two,step=6,seven,eight};

K&R and ANSI C language definitions __¢

DATA TYPES
In ANSI C the complete set of basic data types is:

{unsigned | signed} char
{unsigned | signed} int
|

{unsigned | signed} short
{unsigned | signed} long
float

double

long double

* /* Pointer */

FUNCTION DEFINITION PARAMETERS

In K&R C, function parameters are declared by conventional declaration statements
before the body of the function. In ANSI C, each parameter in the parameter list is
preceded by its type identifiers. For example:

K&R ANSI

long int g(s) long int g (char * s)
char * s;

{ {

Table 31: Function differences between K&R and ANSI

The arguments of ANSI-type functions are always type-checked. The IAR Systems C
compiler checks the arguments of K&R-type functions only if the Global strict type
checking (-g) option is used.

FUNCTION DECLARATIONS

In K&R C, function declarations do not include parameters. In ANSI C they do. For
example:

Type Example

K&R extern int f£();

ANSI (named form) extern int (long int wval);
ANSI (unnamed form) extern int (long int);

Table 32: K&R and ANSI function declarations

In the K&R case, a call to the function via the declaration cannot have its parameter
types checked, and if there is a parameter-type mismatch, the call will fail.

Part 2. Compiler reference 141

Definitions

8051 IAR C Compiler
142 Reference Guide

In the ANSI C case, the types of function arguments are checked against those of the
parameters in the declaration. If necessary, a parameter of a function call is cast to the
type of the parameter in the declaration, in the same way as an argument to an
assignment operator might be. Parameter names are optional in the declaration.

ANSTI also specifies that to denote a variable number of arguments, an ellipsis (three
dots) is included as a final formal parameter.

If external or forward references to ANSI-type functions are used, a function
declaration should appear before the call. It is unsafe to mix ANSI and K&R type
declarations since they are not compatible for promoted parameters (char or float).

Notice that in the TAR Systems Compiler, the Global strict type checking (-g) option
will find all compatibility problems among function calls and declarations, including
between modules.

HEXADECIMAL STRING CONSTANTS

ANSI allows hexadecimal constants denoted by backslash followed by x and any
number of hexadecimal digits. For example:

#define Escape C "\x1lb\x43" /* Escape 'C’ \0 */

\x43 represents ASCII C which, if included directly, would be interpreted as part of
the hexadecimal constant.

STRUCTURE AND UNION ASSIGNMENTS

In K&R C, functions and the assignment operator may have arguments that are
pointers to struct or union objects, but not struct or union objects themselves.

ANSI C allows functions and the assignment operator to have arguments that are
struct or union objects, or pointers to them. Functions may also return structures or
unions:

struct s a,b; /* struct s declared earlier
*/

struct s f(struct s parm);/* declare function accepting
and returning structs */

a = f(b); /* call it */

To increase the usability of structures further, ANSI allows auto structures to be
initialized.

K&R and ANSI C language definitions __¢

SHARED VARIABLE OBJECTS

Various C compilers differ in their handling of variable objects shared among
modules. The IAR Systems C compiler uses the scheme called Strict REF/DEF,
recommended in the ANSI supplementary document Rationale For C. It requires that
all modules except one use the keyword extern before the variable declaration. For
example:

Module #1 Module #2 Module #3
int i; extern int 1i; extern int 1i;
int j=4; extern int j; extern int j;

Table 33: Shared variable objects

#elif
ANSI C’s new #elif directive allows more compact nested else-if structures.

#elif expression

is equivalent to:

#telse
#if expression

#endif
#error

The #error directive is provided for use in conjunction with conditional compilation.
When the #error directive is found, the compiler issues an error message and
terminates.

Part 2. Compiler reference 143

Definitions

8051 IAR C Compiler
144 Reference Guide

Using C with PL/M

This chapter describes how to convert files produced by the Intel PL/M
compiler in OMF format to the UBROF format used by the IAR XLINK Linker.

The conversion is performed by the omfconv object file converter. This will
convert everything in the OMF format with the exception of line numbers,
function-block and block information with their information of function and
block locals. In effect, this limits the level of debug to assembler with public
symbols.

Using the object file converter

The usage is:
omfconv OMF-file UBROF-file [list-file]

The converter lists, either on the screen orin 1ist - £i1e, the modules it converts and
its segments (relocatable as well as absolute ones).

For assembler object files the relocatable segment information will be in the format:
Segment name of type type alignment align

For PL/M-51 object files the relocatable segment information will be in the format:
Segment name of type type alignment align mapped to name2

In each case the parameters are as follows:

name The OMF type of segment name.

type One of: CODE, XDATA, DATA, IDATA, BIT, or unknown which is
treated by XLINK as UNTYPED.

align One of the following:
UNIT Allocate anywhere
BITADDRESS Allocate in bit memory at start of byte unit
INPAGE Allocate in a 256 byte block
INBLOCK Allocate in a 2048 byte block
PAGE Allocate at the start of a 256 byte block
unknown Will be of UNIT alignment to XLINK

Part 2. Compiler reference 145

Linking the converter files

name2 One of the following:
PLM_CODE Code
PLM_CONST Constants
PLM_XDATA Auxiliary memory
PLM_BIT BIT variables
PLM_DATA Variables
PLM_IDATA IDATA variables
PLM_BITDATA Bit-addressable data memory
PLM_DATA OV Locals and parameters
PLM_IDATA OV IDATA locals and parameters
PLM BIT OV BIT locals and parameters

PLM_BITDATA OV Locals in bit-addressable data memory

The converter will map PL/M-51 type segments to a name2 segment.

Linking the converter files

8051 IAR C Compiler
146 Reference Guide

The IAR XLINK Linker will overlay the PL/M-51 overlayable segments, but there is
no way to tell the XLINK Linker that a module calls another module indirectly. To
overcome this, do a dummy call from the calling module to the called module. When
you convert a PL/M-51 or Intel assembler system, remember to convert the libraries
and include them when linking with C. Make sure that there is only one start-up
routine and one reset vector to that routine.

Use the 1nkplm.xcl linker command file when linking.

For assembler type of segments, add the segment name to the segment list with the
segment type in the Inkplm.xc1l file.

For assembler and PL/M-51 type of segments, if the alignment is INPAGE or
INBLOCK, make sure that the segment part is contained in a 256 or 2048 byte block of
memory. Do it with the following command for INPAGE segments:

-Z (type)name,name, ...=0-FF,100-1FF,200-2FF, ...

For INBLOCK segments, use
-Z (type)name,name, ...=0-7FF,800-FFF,1000-17FF,

Using C with PLIM _4

If the alignment is PAGE you must put the segment to start at a 256 byte block. Use the
following command in the LNKPLM. XCL file:

-Z (type)name=256byteblock

Compiling PL/M functions
Note that the PL/M-51 system only uses upper-case characters in symbols, therefore

define or declare all your C symbols that you want to use in or get from PL/M-51 in
uppercase characters.

To be able to call PL/M-51 routines or let PLM call C functions there is a keyword plm
in the 8051 C Compiler. You must either use the compiler -e option, or set:

#pragma language=extended

in your source code.

Example

extern plm int F1l(data char PARM);/* A PLM routine */
plm void F2(data char PARM)/* A PLM callable function */

{
}

An option to define or declare is to use the #pragma function directive:

#pragma function=plm

def /DECL1

def /DECL2

def /DECLN

#pragma function=default

Note that PL/M-51 functions must be prototyped. The following examples are
incorrect:

int plm F();/* ERROR void parameter missing */
int plm F(I);/* ERROR Old-style not allowed */
int I;

{

}

Memory attribute (storage) for PL/M-51 function arguments is data but can be
overridden. Note that the PL/M-51 only stores parameters in data or bit storage.

The usable function return values and function parameters for plm functions are
void, char, short, and int that will be mapped to PL/M-51 none, byte, and word.

Part 2. Compiler reference 147

Compiling PL/M functions

8051 IAR C Compiler
148 Reference Guide

Static and global variables with the following types will be matched:

Type Matched to

char byte

short word

int word

array of the above array of the above
struct with the above struct with the above

Table 34: Matched static and global variables from C to PL/M
These types will not automatically be matched from C to PL/M-51:

pointer
long

float
double

long double

To map C pointers to PL/M-51 pointers and vice-versa use the macros in the include
file PLM. H.

PLM_to_C_p (mem,adr) will convert a PL/M-51 two or one byte pointer to the C
three-byte pointer.

C_to PLM byte p(p) will convert a C three-byte pointer into a PLM one-byte
pointer.

C_to_PLM word_p (p) will convert a C three-byte pointer into a PLM two-byte
pointer.

C_to_PLM memory (p) will get the memory type from a C three-byte pointer.
You can also map the C three-byte pointer to the following PL/M-51 structure:
declare pointer structure (memory type byte, address word);
And to use the pointer do:

declare idata p based pointer.address byte idata;
declare xdata p based pointer.address byte auxiliary;
declare const p based pointer.address byte constant;
do case pointer.memory type;

byte = idata_ p;

byte = xdata p;

byte = constant;

end;

Using C with PLIM _

To try out the omf conv converter, you can use the following files that are provided
with the product:

coo.cC
Co1.
co2.
CO03.
PO1.
P02.

"o NN

Part 2. Compiler reference 149

Compiling PL/M functions

8051 IAR C Compiler
|50 Reference Guide

Tiny-51

TINY-51 is a multi-tasking real-time kernel specially designed for embedded
system applications built around processors from the 805 | -family. When using
TINY-51 in your system, you leave all the job switching and other functions to
the kernel. This allows you to concentrate on your application and helps cut
development time.

This chapter explains the use of TINY-51 together with the 8051 IAR
C Compiler, the IAR XLINK Linker, and other tools from IAR Systems.

Introduction

TINY-51 is basically a library of functions that handle the execution and co-operation
between parallel tasks. As the name implies, the set of functions, or possible system
calls, is limited. However, TINY-51 can easily be extended and modified to meet with
user demands.

GENERAL CHARACTERISTICS

TINY-51 is a small multitasking kernel for 80x51 single chip processors. It is also
possible to use this kernel with a 8031 processor with only 128 Bytes user RAM and
without external RAM (XDATA). But in such a configuration only a few tasks can be
installed and special task functions can be used with restriction only. For an efficient
execution of the system the processor should have 256 Bytes of internal RAM and
XDATA should be used for stack relocation.

The task switch time can be configured by changing a constant in the include files
tiny51.hand tiny51.1 as described in the following chapter. The internal timer 0
is used for task switching but another timer can be used as well. Register bank 3 is used
because a special function in the task structure to avoid memory restrictions.

TERMINOLOGY

This section briefly describes some of the concepts of TINY-51. The terminology
might differ slightly from those of other operating systems or real-time kernels, but
most of the principles are the same for all of them.

Task

A task is a program entity that can be logically executed in parallel with and
independently of other tasks. Different tasks can communicate with each other and
also synchronize their execution. In a single processor system the different tasks have
to share the processor that is allocated to different tasks by a scheduler.

Part 2. Compiler reference 151

Introduction

8051 IAR C Compiler
|52 Reference Guide

Idle-task

The idle-task is a special task that is executed when no other task is waiting for
execution. The processor is said to be in idle state.

Task states

Every task can be in one of five different states:

State Description

Running Task is currently executing.

Ready Task is ready to execute and is waiting in task list.
Waiting Task is waiting for communication with other tasks.
Stopped Task is not executing and is taken off the task list.
New Task has just been added to task list.

Table 35: Task states in TINY-51

Dispatcher

The dispatcher is the part of a multitasking system that interrupts the executing task
and starts the execution of the next waiting task. The task to activate is chosen by the
scheduler.

Scheduler

The scheduler is the part of a multitasking system that decides in which order to run
the tasks. There are many different scheduling algorithms and the performance of the
system is very much depending on the choice of the scheduling algorithm.

Round-robin

Round-robin is a scheduling algorithm where every task in the ready list is executed
in strict order as they are listed. The amount of time for each executing task is limited.
When the time expires for the executing task, it is suspended and inserted at the end
of the list of ready tasks.

Preemptive multitasking
In preemptive multitasking the dispatcher activates and terminates tasks. The
dispatcher is responsible for distributing processor time to all the tasks.

Non-preemptive multitasking

With non-preemptive multitasking the executing task is responsible for its own
execution and it must give up the processor when it has finished its work.

Tiny-51 __o

Signals

By use of signals tasks can easily synchronize with other tasks.

Semaphores

Semaphores are used to avoid multiple access to critical sections.

PRINCIPLES OF OPERATION

TINY-51 consists of two parts, the kernel functions and the user functions. The kernel
functions are written in assembly language. There are two kernel functions, the
dispatcher and the scheduler.

The user functions are written in C and they are therefore portable. These functions
allow the user to do primitive multitasking functions like inserting a task in a task list
and doing process communication.

user functions

kernel functions

dispatcher
scheduler

creale
signal
wait
timeout
up
dawn

Every task has a structure that describes the task to the kernel and to user functions.
These structures are put in the task list.

The elements of the task structure are described as follows:

struct TASK ({
struct TASK *nextptr
byte pid;
byte wait_ signals;
byte rec_signals;
byte timeout;
byte state;
byte *sp;
void (*pushfunc) () ;
void (*popfunc) () ;

Part 2. Compiler reference 153

Introduction

8051 IAR C Compiler
|54 Reference Guide

nextptr

Points to the next task. If there is no other task in the task list this variable is set to zero.

pid

A unique number for every task. Value 0 is reserved for TimeoutTask and value 255
is used for internal purpose. The user tasks can be numbered from 1 to 254. User
function create checks if pid number is unique.

wait_signals

A bit mask showing which signal the task is waiting for. The task can also wait for
more than one signal but one signal is enough for waking up the task.

rec_signals

A bit mask to show which received signal is responsible for waking up this task.

timeout

The internal timeout counter for this task. This counter is decreased by TimeoutTask
and set from user function timeout. If timeout reaches the value zero
TimeoutTask sends a signal to this task.

state

A variable for internal use. The state is used by the scheduler to choose the next task
from the list.

P

Used to store the actual task stack pointer when the task is dispatched.

pushfunc

A special function for the 8051 kernel. This function is called by the dispatcher before
dispatching task. It can be used for saving a functions-local memory. This is necessary
because local variables in 8051 C-functions are stored statically.

popfunc

A special function for 8051 kernel. This function is called after suspending the old
task. It is used together with the function pushfunc. Great attention has to be paid
to these two functions because the complete multitasking environment could be
inconsistent if they are not used properly.

Tiny-51 __o

RESTRICTIONS ON TINY-51

Timer O is used by the dispatcher. This can be modified in the source file
d iar5l.asm.

Register bank 3 is used by the dispatcher. This register bank is only used to handle the
special task functions pushfunc and popfunc. This can be modified in the source
filesd iar51.asm.

The internal stack is limited to 10 bytes. This stack will be used by pushfunc and
popfunc so only simple functions should be used for them. The stack size can be
modified by changing the value STACKSIZE in the header file tiny51.h.

Installing TINY-51

TINY-51 is delivered in source format and can easily be modified by the user. It
consists of the following files:

tiny51.c

tiny51.h

tiny51.1

d iar5l.asm
maketiny.bat
tiny51.xcl

exmpll.c to exmplé6.c

In tiny51.c you can find the user function of TINY-51. tiny51.h contains all
declarations of global constants used in tiny51.c. All functions in tiny51.c are
described with comments.

Kernel functions for 8051 are described in d_iar51.asm. Comments describe the
dispatcher and the scheduler.

All files should be copied into a work directory. After modifying any source file you
have to start the batch file maketiny.bat to make a new kernel library. This library
can be added to your application with the IAR XLINK Linker.

Note: The expml . c and expm2 . c files are the only examples that run in the C-SPY
simulator. The other examples need the timer function which is not supported in the
C-SPY simulator.

Part 2. Compiler reference 155

Configuring TINY-51

Configuring TINY-51

Many parameters of TINY-51 can be changed for in order to optimize the kernel for
special applications.

TASK TIMER

Timer 0 of 80C31 is used for dispatching tasks. This timer can be changed to any other
timer. The initial part of tiny51 . c and the interrupt vectorind_iar51.asmhave to
be changed for use of a different timer.

REGISTER BANK 3

The dispatcher uses this register bank to avoid conflicts with the special functions
pushfunc and popfunc. Those two functions can call library functions which use of
the default register bank. To attain faster-task switching the dispatcher changes to
register bank 3 instead of doing 8 times PUSH and 8 times POP. There are two
possibilities to avoid using register bank 3:

1 Saving register bank 1 in reserved area in dispatcher.
2 Avoiding the use of special functions and deleting register switching in dispatcher
source.

TASK-SWITCHING TIME

The task-switching time can be controlled by the constant DISPATCH_DELAY in
tiny51.hand tiny51.i. If this value is increased, the dispatcher overhead is
decreased.

TIMEOUT TASK

If the user function timeout is not used in an application this task can be removed by
changing function StartDispatcher in tiny51.c. No time is then wasted for
calling an unused task.

After modifying any source file it is necessary to recompile all the source files.

Building a TINY-51 application

8051 IAR C Compiler
|56 Reference Guide

This section describes a step-by-step introduction to building an application for
TINY-51.

Tiny-51 __o

USING PREEMPTIVE MULTITASKING

In this example you will build a simple task environment with two functions running
in parallel. This first example runs in preemptive mode, with printf controlled by a
semaphore.

This example is supplied in source code on the distribution disk as the file exmp16 . c.
This file can be compiled with ICC8051 and linked with XLINK.

/* preemptive example for TINYS51 */
#include <stdio.h>
#include "tiny51.h"

#define TASK STACKSIZE 30
typedef struct stack

{
byte vect [TASK STACKSIZE] ;

Vi

void taskla (void) ;
void task2a (void) ;

void PushFunctionl (void) ;
void PopFunctionl (void) ;
void PushFunction2 (void) ;
void PopFunction2 (void) ;

#pragma memory=idata
struct stack taskstack;

#pragma memory=xdata
struct stack taskstackl;
struct stack taskstack2;
byte regstackl[8];

byte regstack2[8];

#pragma memory=idata
int counterl, counter2;

static semaphore sl = 1;
#pragma memory=default

/* main function is idle task !!! */
void main (void) ;

Part 2. Compiler reference 157

Building a TINY-51 application

void main ()
{
int ch;
#pragma memory=xdata
struct TASK taskl, task2;
#pragma memory=default

/* initialize task structure */
taskl.pid = 1;

taskl.sp = &taskstack.vect[0];
taskl.pushfunc = PushFunctionl;
taskl.popfunc = PopFunctionl;
create (&taskl, taskla);

task2.pid = 2;

task2.sp = &taskstack.vect[0];
task2.pushfunc = PushFunction2;
task2.popfunc = PopFunction2;
create (&task2, task2a);

counterl
counter2

0;
0;

StartDispatcher (TINY51 PREEMPTIVE) ;

do
down (&s1) ;
printf ("counterl: %d counter2:
$d\n", counterl, counter2) ;

ch = FALSE;
up (&sl) ;

1

while (!ch) ;

StopDispatcher (TINY51 PREEMPTIVE) ;

}

void taskla()
{
for (;;)
{
down (&s1) ;
printf ("Taskl\n") ;
counterl++;
up (&sl) ;

8051 IAR C Compiler
|58 Reference Guide

Tiny-51 °

}

void task2a()

{

for (;;)

{

down (&s1) ;
printf ("Task2\n") ;
counter2++;
up (&sl) ;
1
}

void PushFunctionl ()

{

StoreRegs (regstackl) ;
taskstackl=taskstack;

}

void PopFunctionl ()

{

RestoreRegs (regstackl) ;
taskstack=taskstackl;

}

void PushFunction2 ()

{

StoreRegs (regstack2) ;
taskstack2=taskstack;

}

void PopFunction2 ()

{

RestoreRegs (regstack2) ;
taskstack=taskstack2;

}

This example shows how two tasks can use the function print £ without collision. As
the library function print £ is not reentrant the access to this function is controlled by
a semaphore. The semaphore variable is declared static and is global so all the tasks

in the file can access it.

In the example one global stack declared in internal memory is used for both tasks.
The idle task, the main function, uses the stack defined in the startup file
cstartup.s03. This method saves memory in the small internal RAM. This
common stack has to be swapped to external RAM on every task switch to avoid data
collision on stack.

Part 2. Compiler reference 159

Building a TINY-51 application

8051 IAR C Compiler
160 Reference Guide

The stack switch is activated by a special function pointer in the task structure called
pushfunc and popfunc. In this case these two functions used are PushFunctionl
and PopFunctionl for taskl and PushFunction2 and PopFunction2 for
task2. These functions are similar, except for the swap area. Therefore, only
PushFunctionl and PopFunctionl are explained.

Push function

PushFunctionl stores the internal register bank 1 in regstacka. If storing register
bank 1 is not sufficient more register banks can be stored by modifying function
StoreRegs ind_iar51.asm. After storing the registers the function saves the
internal stack to an external memory area. PushFunctionl is called before
dispatching the task. PushFunctionl has to be declared in the task structure before
starting the multitasking kernel.

Pop function

PopFunctionl does the reverse operation of PushFunctionl. The function
register bank and local stack are restored from memory. This function is called after
dispatching the new task and so gets a new stack environment. It also has to be
declared in the task structure.

In the main function the task structure variables are put in external memory to save
internal RAM space. TINY-51 can handle task structures either in internal or in
external memory and in a mix of the two as well. There are no restrictions in the use
of memory models.

Creating tasks

Before starting the multitasking kernel all tasks have to be created by the user function
create. The function create is called with two parameters. The first parameter is a
predefined task structure variable and the second parameter is the task function itself.
The task structure variable has to be defined with a few parameters. Field pid has to
be assigned an unique byte number. Field sp is loaded with the address of the top of
stack.

As the 8051 uses stack in a different way than many other processors, the stack pointer
does not point to the end of the stack area. For extended use of the multitasking
environment in the 8051 the special functions pushfunc and popfunc have to be
defined with their function address. All other fields are filled by the function create.
The initial stack environment is built by this function, too.

Tiny-51 __o

Start dispatcher

After defining all the tasks, the function StartDispatcher is called. It needs one

parameter only, which defines the mode of execution. TINY-51 can be started either
in NON-PREEMPTIVE or in PREEMPTIVE mode. The differences between these two

modes are explained in Introduction, page 151.

When running the system, four functions are dispatched every task timer tick. These
four functions are the main loop, taskl, task2, and TimeoutTask.

Note: It is very important that the task functions do not make a return because there is
no return address stored on the stack.

Function main runs in an endless loop, printing out the values of two counter
variables. Task1 and task2 also run forever printing their messages and increasing
their counter variables.

USING NON-PREEMPTIVE MULTITASKING

The following example has the same functionality as the first example, but instead of
using preemptive multitasking it uses non-preemptive multitasking. Using this
method every task has to give up CPU by itself.

This example is supplied in source code on the distribution media as the file
exmpll.c. There are several other examples in the files exmpl2.c to exmpl5.c.

/* non-preemptive example for TINY51 */

#include <stdio.h>
#include "tiny51.h"

#define TASK STACKSIZE20
typedef struct stack

byte vect [TASK STACKSIZE];

Vi

void taskla (void) ;
void task2a (void) ;

void PushFunctionl (void) ;
void PopFunctionl (void) ;
void PushFunction2 (void) ;
void PopFunction2 (void) ;

#pragma memory=idata
struct stack taskstack;

Part 2. Compiler reference 161

Building a TINY-51 application

8051 IAR C Compiler
162 Reference Guide

#pragma memory=xdata
struct stack taskstackl;
struct stack taskstack2;
byte regstackl[8];

byte regstack2([8];

#pragma memory=idata
int counterl, counter2;

static semaphore sl = 1;

#pragma memory=default

/* main function is idle task !!! */

void main (void) ;

void main (void)

{
int ch;
#pragma memory=xdata
struct TASK taskl, task2;
#pragma memory=default
/* initialize task structure */
taskl.pid = 1;
taskl.sp = &taskstack.vect[0];
taskl.pushfunc = PushFunctionl;
taskl.popfunc = PopFunctionl;
create (&taskl, taskla);
task2.pid = 2;
task2.sp = &taskstack.vect[0];
task2.pushfunc = PushFunction2;
task2.popfunc = PopFunction2;

create (&task2, task2a);

counterl = 0;
counter2 = 0;

StartDispatcher (TINY51 NONPREEMPTIVE) ;

Tiny-51 __o

do
printf ("$d %d\n",counterl, counter2) ;
ch = FALSE;
wait (SIG_CPU) ;

}

while (!ch) ;

StopDispatcher (TINY51 NONPREEMPTIVE) ;

}

void taskla(void)
{
for (;;)
{
printf ("Taskl\n") ;
counterl++;
wait (SIG_CPU) ;
}
}

void task2a(void)
{
for (;;)
{
printf ("Task2\n") ;
counter2++;
wait (SIG_CPU) ;
1
}

void PushFunctionl (void)

{

StoreRegs (regstackl) ;
taskstackl=taskstack;

}

void PopFunctionl (void)

{

RestoreRegs (regstackl) ;
taskstack=taskstackl;

}

void PushFunction2 (void)

{

StoreRegs (regstack2) ;
taskstack2=taskstack;

Part 2. Compiler reference 163

Descriptions of TINY-51 functions

}

void PopFunction2 (void)

{

RestoreRegs (regstack?2) ;
taskstack=taskstack2;

}

In this example every task, after printing a message, calls the function wait, waiting
for signal SIG_cPU. This means that the next task is scheduled. Normally if a task
calls wait it waits for the signal of another task. It is waiting for the next scheduling.
Using this kind of scheduling a control method with semaphores is not necessary,
because the task is not interrupted by a dispatcher and can therefore complete its
critical section without disturbance. In this case the resource print £ does not have to
be controlled by the semaphore control functions up and down.

The NON-PREEMPTIVE mode is initiated by calling StartDispatcher with the
parameter NONPREEMPTIVE.

Descriptions of TINY-51 functions

The following table summarizes the TINY-51 functions:

Function Summary

create Inserts a task in the task list.

down Semaphore operation to enter critical section.
signal Sends a signal to a task.
StartDispatcher Initializes dispatcher environment.
StopDispatcher Resets dispatcher environment.

timeout Special task, generates timeout signals.

up Semaphore operation to leave critical section.
wait Waits for a signal.

Table 36: TINY-51 functions summary

create tiny51.h

Declaration

int create (struct *task, void (*taskfunc))

8051 IAR C Compiler
164 Reference Guide

Tiny-51 __o

Parameters

task A pointer to a TASK structure with the following format:

struct TASK ({

struct TASK *nextptr;/* pointer to next
task */

byte pid;/* task number */

byte wait signals;/* compare for waiting
signal */

byte rec signals;/* received signals */

byte timeout;/* Timeout counter */

byte state;/* task state */

byte *sp;/* task stack */

void (pushfunc) ();/*store function for
additional memory */

void (popfunc) ();/* restore function for
additional memory */

taskfunc A pointer to the task function.

Description

The create function inserts a task in the ready-list and builds a stack environment
for this task. Before calling the function create, the task structure has to be
initialized.

Return value

Function returns -1 if task cannot be inserted in task list.

Example
The following example creates a single process:

#include <tiny51.h>

struct TASK taskl;

void taskl func(void) ;

byte taskstack[10];

int counter;

main ()

{
taskl.pid = 1;
taskl.sp = (stacktype *)taskstack;
taskl.pushfunc = NULL;
taskl.popfunc = NULL;
if (create(&taskl, taskl func))

printf ("can’'t create task");

Part 2. Compiler reference 165

Descriptions of TINY-51 functions

}

void taskl_ func()

for (;;) {
counter++;
}

}

The following example creates a single process with pushfunc and popfunc:

#include <tiny51.h>

struct TASK taskl;

void taskl func(void) ;

byte taskstack[10];

int counter, counterl;

main ()

{
taskl.pid = 1;
taskl.sp = (stacktype *)taskstack;
taskl.pushfunc = pushregs;
taskl.popfunc = popregs;
if (create(&taskl, taskl func))

printf ("can’'t create task");

}

void taskl func()

{
for (;;) {
counter++;
}

}

void pushregs ()

{

counterl = counter;

}

void pushregs ()

{

counter = counterl;

}

down tiny51.h

Declaration

void down (semaphore s)

8051 IAR C Compiler
166 Reference Guide

Tiny-51 __o

Parameters

s Boolean semaphore variable.

Description

The function down-decrements a semaphore if possible. This function can be used for
sharing resources. If the semaphore is set to 1 a critical section can be entered
otherwise the task will wait for a semaphore.

Note: The function pair up/down can handle only one semaphore variable.

Return value

This function returns no value.

Example
The following example shows how to use a semaphore:

#include <tiny51.h>

semaphore sl;

void task3()

{
down (&s1) ;
printf ("hello, I'm task 3");
up (&sl) ;

}

signal tiny51.h

Declaration

int signal (byte tasknr, word signalnr)

Parameters
tasknr The task number signal to send.
signalnr The signal number; one of the following;

SIG TIMEOUT, timeout signal.
SIG_SEMAPHORE, semaphore signal.

SIG KEYBOARD, keyboard signal.

SIG_CPU, give up CPU.

Part 2. Compiler reference 167

Descriptions of TINY-51 functions

StartDispatcher

8051 IAR C Compiler
168 Reference Guide

Description

The signal function sends a signal to the task with tasknr. If the receiver task is
not waiting for a signal the function returns an error and the signal is lost. The function
can also send combined signals.

Every signal can be user defined. SIG_TIMEOUT and SIG_SEMAPHORE are
predefined and should not be redefined. SIG_CPU can only be sent by the scheduler.
It is not allowed to use SIG_CPU in function signal.

PID_ NEXT is a special task number that directs a signal to the next task that is waiting
for a the specified signal.

Return value

This function returns -1 if the receiver task is not waiting for a signal.

Example
The following example shows how to send a signal to another process:

#include <tiny51.h>
#define SIG NEXTONE 0x10
task2 ()
{
if (signal(1l,SIG_NEXTONE))
printf ("receiver task didn’t accept signal");

}

tiny51.h

Declaration

void StartDispatcher (int mode)

Parameters

mode An integer defining the dispatcher preemptive mode.

Description

The startDispatcher function initializes the environment of the dispatcher. It
initializes interrupts and timer hardware of the processor.

This function should be called after initializing all tasks with function create. The
parameter mode defines the dispatcher operating modes. There are two modes running
the dispatcher.

Tiny-51 __o

Mode TINY51_PREEMPTIVE

In this mode the function prepares the interrupt and timer hardware of the processor
to switch tasks asynchronously. This way every task will get CPU time (Round Robin
Scheduling).

Mode TINY5I_NONPREEMPTIVE

In this mode the function only prepares the software environment for the dispatcher.
One task can only get CPU time when another task gives the CPU up. The task gives
up CPU by waiting for signal SIG_CPU.

Return value

This function returns no value.

Example
The following example shows how to start the dispatcher:

#include <tiny51.h>
main ()

{

StartDispatcher (TINY NONPREEMPTIVE) ;

}

StopDispatcher tiny51.h

Declaration

void StopDispatcher()

Description

The stopDispatcher function resets the environment of the dispatcher and stops
the dispatcher.

Return value

This function returns no value.

Example
The following example shows how to stop the dispatcher:

#include <tiny51.h>
main ()

{

Part 2. Compiler reference 169

Descriptions of TINY-51 functions

StopDispatcher () ;

}

timeout tiny51.h

Declaration

void timeout (int timoutval)

Parameters

timeoutval The timeout value.

Description

The t imeout function generates a special signal. This will be sent when the time-out
counter reaches the timeoutval.

Return value

This function returns no value.

Example
The following example shows how to use the timeout function:

#include <tiny51.h>
void task3()
{
timeout (100) ;
if (wait(SIG_USE‘.R | SIG_TIME‘.OUT) & SIG_TIMEOUT)
/* Timeout occurred */
else
/* SIG USER arrived */

up tiny51.h

Declaration

void up (semaphore s)

Parameters

s Boolean semaphore variable.

8051 IAR C Compiler
170 Reference Guide

Tiny-51 __o

Description

The function up is called when leaving a critical section. This function increments the
semaphore variable and sends a signal to a task waiting for the semaphore variable.

Return value

This function returns no value.

Example
The following example shows how to use a semaphore:

#include <tiny51.h>

semaphore sl;

void task3 ()

{
down (&s1) ;
printf ("hello, I'm task3");
up (&s1) ;

}

void task2 ()

{

down (&s1) ;
printf ("hello, I'm task2");
up (&sl) ;

}

wait tiny51.h

Declaration

int wait (word signalnr)

Parameters

signalnr Signal waiting for.

Description

The wait function transfers the task into the wait state. This task can return to ready
state only when a signal is received from another task. It is also possible to wait for
more than one signal. The first signal arrived turns the task into ready-state. The wait
function returns the arrived signal.

Part 2. Compiler reference 171

Descriptions of TINY-51 functions

8051 IAR C Compiler
172 Reference Guide

SIG_CPU is a special signal for giving up CPU. This signal is important for a
non-preemptive multitasking system but can also be used in a preemptive
environment.

Return value

This function returns the signal that reactivated the task.

Example
The following example shows how to wait for a signal:

#include <tiny51.h>
void taskl()
{
word signals;
timeout (5) ;
signals = wait (SIG_TIMEOUT * SIG NEXTONE) ;
if (signals & SIG_TIMEOUT)
prinf ("Error : Timeout") ;

Diagnostics

When the 8051 IAR C Compiler performs a diagnostic check, it may detect
errors in your application and give a remark, warning, or error message. This
chapter explains the different levels of severity for the diagnostic messages and
gives a brief explanation of the 805 | -specific warning and error messages.

Severity levels

The diagnostic error and warning messages fall into these categories:

COMMAND LINE ERROR MESSAGES

Command line errors occur when the compiler finds a fault in the parameters given on
the command line. In this case, the compiler issues a self-explanatory message.
COMPILATION ERROR MESSAGES

Compilation error messages are produced when the compiler has found a construct
which clearly violates the C language rules, such that code cannot be produced.

The IAR C compiler is more strict on compatibility issues than many other C
compilers. In particular, pointers and integers are considered incompatible when not
explicitly cast.

COMPILATION WARNING MESSAGES

Compilation warning messages are produced when the compiler finds a programming
error or omission which is of concern, but is not so severe as to prevent the completion
of compilation.

COMPILATION FATAL ERROR MESSAGES

Compilation fatal error messages are produced when the compiler has found a
condition that not only prevents code generation, but which makes further processing
of the source not meaningful. After the message has been issued, compilation
terminates. Compilation fatal error messages are described in Compilation error
messages, page 174, and are marked as fatal.

COMPILATION INTERNAL ERROR MESSAGES

An internal error is a diagnostic message that indicates a serious and unexpected
failure due to a fault in the compiler. It is displayed as:

Internal error: message

where message is an explanatory message.

Part 2. Compiler reference 173

Compilation error messages

Internal errors should not occur and should be reported to your software distributor or
IAR Technical Support. Please include detailed information to reproduce the problem.
This would typically include:

o The exact internal error message text
e The source file of the program that generated the internal error
e Alist of the options that were used when the internal error occurred.

COMPILATION MEMORY OVERFLOW MESSAGE

When the compiler runs out of memoryi, it issues the special message:

* * * COMPTITLETR OUT O F MEMORY * * *
Dynamic memory used: nnnnnn bytes

If this error occurs, add system memory or split source files into smaller modules.
Also note that the following options cause the compiler to use more memory:

Option Command line
insert mnemonics -q
Cross-reference -x

Assembly output to prefixed filename -A

Generate PROMable code -P

Generate debug information -r (except -rn)

Table 37: Options that cause the compiler to use more memory

See the Compiler options chapter for more information.

Compilation error messages

The following list describess the compilation error messages:

0 Invalid syntax
The compiler could not decode the statement or declaration.

1 Too deep #include nesting (max is 10)
Fatal. The compiler limit for nesting of #include files was exceeded. One
possible cause is an inadvertently recursive #include file.

2 Failed to open #include file name
Fatal. The compiler could not open an #include file. Possible causes are
that the file does not exist in the specified directories (possibly due to an
incorrect - I option or C_INCLUDE path) or is disabled for reading.

8051 IAR C Compiler
|74 Reference Guide

10

11

12

13

14

15

Invalid #include filename

Diagnostics __o

Fatal. The #include filename was invalid. Notice that the #include

filename must be written <file>or “file”.

Unexpected end of file encountered

Fatal. The end of file was encountered within a declaration, function
definition, or during macro expansion. The probable cause is bad () or {}

nesting.

Too long source line (max is 512 chars);truncated
The source line length exceeds the compiler limit.

Hexadecimal constant without digits

The prefix 0x or 0X of hexadecimal constant was found without following

hexadecimal digits.

Character constant larger than long

A character constant contained too many characters to fit in the space of a

long integer.

Invalid character encountered: "\xhh’;ignored
A character not included in the C character set was found.

Invalid floating point constant

A floating-point constant was found to be too large or have invalid syntax.

See the ANSI standard for legal forms.

Invalid digits in octal constant

The compiler found a non-octal digit in an octal constant. Valid octal digits

are: 0-7.

Missing delimiter in literal or character constant
No closing delimiter ' or " was found in character or literal constant.

String too long (max is 509)

The limit for the length of a single or concatenated string was exceeded.

Argument to #define too long (max is 512)
Lines terminated by \ resulted in a #define line that was too long.

Too many formal parameters for #define (max is 127)
Fatal. Too many formal parameters were found in a macro definition

(#define directive).

', or’)’ expected

The compiler found an invalid syntax of a function definition header or

macro definition.

Part 2. Compiler reference

175

Compilation error messages

8051 IAR C Compiler
176 Reference Guide

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Identifier expected
An identifier was missing from a declarator, goto statement, or
pre-processor line.

Space or tab expected
Pre-processor arguments must be separated from the directive with tab or
space characters.

Macro parameter name redefined
The formal parameter of a symbol in a #def ine statement was repeated.

Unmatched #else, #endif or #elif
Fatal. A #if, #ifdef, or #ifndef was missing.

No such pre-processor command: name
was followed by an unknown identifier.

Unexpected token found in pre-processor line
A preprocessor line was not empty when the argument part was read.

Too many nested parameterized macros (max is 50)
Fatal. The pre-processor limit was exceeded.

Too many active macro parameters (max is 256)
Fatal. The pre-processor limit was exceeded.

Too deep macro nesting (max is 100)
Fatal. The pre-processor limit was exceeded.

Macro name called with too many parameters
Fatal. A parameterized #define macro was called with more arguments
than declared.

Actual macro parameter too long (max is 512)
A single macro argument may not exceed the length of a source line.

Macro name called with too few parameters
A parameterized #define macro was called with fewer arguments than
declared.

Missing #endif
Fatal. The end of file was encountered during skipping of text after a false
condition.

Type specifier expected

A type description was missing. This could happen in struct, union,
prototyped function definitions/declarations, or in K&R function formal
parameter declarations.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Identifier unexpected

Diagnostics __o

There was an invalid identifier. This could be an identifier in a type name
definition like: sizeof (int*ident) ; or two consecutive identifiers.

Identifier name redeclared

There was a redeclaration of a declarator identifier.

Invalid declaration syntax
There was an undecodable declarator.

Unbalanced ’(’ or’)’ in declarator
There was a parenthesis error in a declarator.

C statement or func-def in #include file, add i to the -r switch
To get proper C source line stepping for #include code when the C-SPY
debugger is used, the -ri option must be specified.

Other source code debuggers (that do not use the UBROF output format)

may not work with code in #include files.

Invalid declaration of struct, union or enum type
A struct, union, or enum was followed by an invalid token(s).

Tag identifier name redeclared

A struct, union, or enum tag is already defined in the current scope.

Function name declared within struct or union
A function was declared as a member of struct or union.

Invalid width of field (max is nn)

The declared width of field exceeds the size of an integer (nn is 16 or 32

depending on the target processor).

', or ’;’ expected

There was a missing , or ; at the end of the declarator.

Array dimension outside of unsigned int bounds
Array dimension is negative or too large to be represented in an unsigned

integer.

Member name of struct or union redeclared
A member of struct or union was redeclared.

Empty struct or union

There was a declaration of struct or union containing no members.

Object cannot be initialized

There was an attempted initialization of typedef declarator or struct or

union member.

Part 2. Compiler reference

177

Compilation error messages

8051 IAR C Compiler
178 Reference Guide

44

45

46

47

48

49

50

51

52

53

54

55

56

57

’;” expected
A statement or declaration needs a terminating semicolon.

T’ expected
There was a bad array declaration or array expression.

’” expected
There was a missing colon after default, case label, or in ?-operator.

’(’ expected
The probable cause is a misformed for, 1 £, or while statement.

’)’ expected
The probable cause is a misformed for, if, or while statement or
expression.

’,” expected
There was an invalid declaration.

{’ expected
There was an invalid declaration or initializer.

’} expected
There was an invalid declaration or initializer.

Too many local variables and formal parameters (max is 1024)
Fatal. The compiler limit was exceeded.

Declarator too complex (max is 128 ’(’ and/or ’*)
The declarator contained too many (,), or *.

Invalid storage class
An invalid storage-class for the object was specified.

Too deep block nesting (max is 50)
Fatal. The {} nesting in a function definition was too deep.

Array of functions
An attempt was made to declare an array of functions.

The valid form is array of pointers to functions:

(); /* Invalid */

int array [5]
[51) O /* Valid */

int (*array

Missing array dimension specifier

There was a multi-dimensional array declarator with a missing specified
dimension. Only the first dimension can be excluded (in declarations of
extern arrays and function formal parameters).

58

59

60

61

62

63

64

65

66

67

68

69

70

Diagnostics __o

Identifier name redefined
There was a redefinition of a declarator identifier.

Function returning array
Functions cannot return arrays.

Function definition expected
A K&R function header was found without a following function definition,
for example:

int £(i); /* Invalid */

Missing identifier in declaration
A declarator lacked an identifier.

Simple variable or array of a void type
Only pointers, functions, and formal parameters can be of void type.

Function returning function
A function cannot return a function, as in:

int £() (); /* Invalid */

Unknown size of variable object name

The defined object has unknown size. This could be an external array with
no dimension given or an object of an only partially (forward) declared struct
or union.

Too many errors encountered (>100)
Fatal. The compiler aborts after a certain number of diagnostic messages.

Function name redefined
Multiple definitions of a function were encountered.

Tag name undefined

There was a definition of a variable of enum type with type undefined or a
reference to undefined struct or union type in a function prototype or as
a sizeof argument.

case outside switch
There was a case without any active switch statement.

interrupt function may not be referred or called
An interrupt function call was included in the program. Interrupt
functions can be called by the run-time system only.

Duplicated case label: nn
The same constant value was used more than once as a case label.

Part 2. Compiler reference 179

Compilation error messages

8051 IAR C Compiler
180 Reference Guide

71

72

73

74

75

76

77

78

79

80

81

82

default outside switch
There was a default without any active switch statement.

Multiple default within switch
More than one default in one switch statement.

Missing while in do - while statement
Probable cause is missing { } around multiple statements.

Label name redefined
A label was defined more than once in the same function.

continue outside iteration statement
There was a continue outside any active while, do ... while, or for
statement.

break outside switch or iteration statement
There was a break outside any active switch, while, do ... while, or
for statement.

Undefined label name
There is a goto label with no 1abel : definition within the function body.

Pointer to a field not allowed
There is a pointer to a field member of struct or union:

struct

{

int *f:6;/* Invalid */
1

Argument of binary operator missing
The first or second argument of a binary operator is missing.

Statement expected
Oneof 2 : ,] or} was found where statement was expected.

Declaration after statement
A declaration was found after a statement.

This could be due to an unwanted ; for example:

int i;;
char c;/* Invalid */

Since the second ; is a statement it causes a declaration after a statement.

else without preceding if
The probable cause is bad {} nesting.

83

84

85

86

87

88

89

90

Diagnostics __o

enum constant(s) outside int or unsigned int range
An enumeration constant was created too small or too large.

Function name not allowed in this context
An attempt was made to use a function name as an indirect address.

Empty struct, union or enum
There is a definition of struct or union that contains no members or a
definition of enum that contains no enumeration constants.

Invalid formal parameter
There is a fault with the formal parameter in a function declaration.

Possible causes are:

int £(); /* valid K&R declaration */
int £(1); /* invalid K&R declaration */
int £(int i); /* valid ANSI declaration */
int £(1); /* invalid ANSI declaration */

Redeclared formal parameter: name
A formal parameter in a K&R function definition was declared more than
once.

Contradictory function declaration
void appears in a function parameter type list together with other type of
specifiers.

"..." without previous parameter(s)
... cannot be the only parameter description specified.
For example:

int £(...); /* Invalid */
int £(int, ...); /* Valid */

Formal parameter identifier missing
An identifier of a parameter was missing in the header of a prototyped
function definition.

For example:

int f£(int *p, char, float ff) /* Invalid - second
parameter has
no name */

/* function body */

Part 2. Compiler reference

181

Compilation error messages

91

92

93

94

95

96

97

98

929

100

101

102

8051 IAR C Compiler
182 Reference Guide

Redeclared number of formal parameters
A prototyped function was declared with a different number of parameters
than the first declaration.

For example:

int f (int, char); /* first declaration -valid */
int f(int); /* fewer parameters -invalid */
int f(int,char,float);/* more parameters -invalid */

Prototype appeared after reference
A prototyped declaration of a function appeared after it was defined or
referenced as a K&R function.

Initializer to field of width nn (bits) out of range
A bit-field was initialized with a constant too large to fit in the field space.

Fields of width 0 must not be named
Zero length fields are only used to align fields to the next int boundary and
cannot be accessed via an identifier.

Second operand for division or modulo is zero
An attempt was made to divide by zero.

Unknown size of object pointed to
An incomplete pointer type is used within an expression where size must be
known.

Undefined static function name
A function was declared with static storage class but never defined.

Primary expression expected
An expression was missing.

Extended keyword not allowed in this context
An extended processor-specific keyword occurred in an illegal context; eg
interrupt int i.

Undeclared identifier: name
There was a reference to an identifier that had not been declared.

First argument of ’.’ operator must be of struct or union type
The dot operator . was applied to an argument that was not struct or
union.

First argument of -> was not pointer to struct or union
The arrow operator - > was applied to an argument that was not a pointer to
a struct or union.

Diagnostics __o

103 Invalid argument of sizeof operator
The sizeof operator was applied to a bit-field, function, or extern array of
unknown size.

104 Initializer string exceeds array dimension
An array of char with explicit dimension was initialized with a string
exceeding array size.

For example:
char array [4] = "abcde"; /* invalid */

105 Language feature not implemented: language feature
The compiler does not currently support the language feature used. For a list
of the different target-specific messages that can appear under this error
message number, see 8051-specific error messages, page 187.

106 Too many function parameters (max is 127)
Fatal. There were too many parameters in function declaration/definition.
107 Function parameter name already declared
A formal parameter in a function definition header was declared more than
once.

For example:

/* K&R function */ int myfunc(i, i) /* invalid */
int i;

{

}

/* Prototyped function */

int myfunc(int i, int i) /* invalid */
{

}

108 Function parameter name declared but not found in header
In a K&R function definition, the parameter was declared but not specified
in the function header.

For example:
int myfunc(i)

int i, j /* invalid - j is not specified in the
function header */
{

}

109 ’; unexpected
An unexpected delimiter was encountered.

Part 2. Compiler reference 183

Compilation error messages

8051 IAR C Compiler
184 Reference Guide

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

’)’ unexpected
An unexpected delimiter was encountered.

’{’ unexpected
An unexpected delimiter was encountered.

’,” unexpected
An unexpected delimiter was encountered.

’” unexpected
An unexpected delimiter was encountered.

[’ unexpected
An unexpected delimiter was encountered.

’(’ unexpected
An unexpected delimiter was encountered.

Integral expression required
The evaluated expression yielded a result of the wrong type.

Floating point expression required
The evaluated expression yielded a result of the wrong type.

Scalar expression required
The evaluated expression yielded a result of the wrong type.

Pointer expression required
The evaluated expression yielded a result of the wrong type.

Arithmetic expression required
The evaluated expression yielded a result of the wrong type.

Lvalue required
The expression result was not a memory address.

Modifiable Ivalue required
The expression result was not a variable object or a const.

Prototyped function argument number mismatch
A prototyped function was called with a number of arguments different from
the number declared.

Unknown struct or union member: name
An attempt was made to reference a non-existent member of a struct or
union.

Attempt to take address of field
The & operator may not be used on bitfields.

Diagnostics __o

126 Attempt to take address of register variable
The & operator may not be used on objects with register storage class.

127 Incompatible pointers
There must be full compatibility of objects that pointers point to.

In particular, if pointers point (directly or indirectly) to prototyped functions,
the code performs a compatibility test on return values and also on the
number of parameters and their types. This means that incompatibility can
be hidden quite deeply, for example:

char (*(*pl) [8]) (int) ;

char (*(*p2) [8]) (float) ;

/* pl and p2 are incompatible - the function
parameters have incompatible types */

The compatibility test also includes the checking of array dimensions if they
appear in the description of the objects being pointed to, for example:

int (*pl) [8];
int (*p2) [9];

/* pl and p2 are incompatible - array dimensions
differ */
128 Function argument incompatible with its declaration

A function argument is incompatible to the argument in the declaration.

129 Incompatible operands of binary operator
The type of one or more operands to a binary operator was incompatible with
the operator.

130 Incompatible operands of ’=" operator
The type of one or more operands to = was incompatible with =.
131 Incompatible return expression
The result of the expression is incompatible with the return value declaration.
132 Incompatible initializer
The result of the initializer expression is incompatible with the object to be
initialized.
133 Constant value required

The expression in a case label, #if, #elif, bitfield declarator, array
declarator, or static initializer was not constant.

134 Unmatching struct or union arguments to ’?’ operator
The second and third argument of the 2 operator are different.

135 pointer + pointer operation
Pointers may not be added.

Part 2. Compiler reference 185

Compilation error messages

8051 IAR C Compiler
186 Reference Guide

136

137

138

139

140

141

142

143

144

145

146

Redeclaration error
The current declaration is inconsistent with earlier declarations of the same
object.

Reference to member of undefined struct or union
The only allowed reference to undefined struct or union declarators is a
pointer.

- pointer expression

The - operator may be used on pointers only if both operators are pointers,
that is, pointer - pointer. This error means that an expression of the
form non-pointer - pointer was found.

Too many extern symbols declared (max is 32767)
Fatal. The compiler limit was exceeded.

void pointer not allowed in this context
A pointer expression such as an indexing expression involved a void
pointer (element size unknown).

#error any message

Fatal. The preprocessor directive #error was found, notifying that
something must be defined on the command line in order to compile this
module.

interrupt function can only be void and have no arguments
An interrupt function declaration had a non-void result and/or arguments,
neither of which are allowed.

Too large, negative or overlapping interrupt [value] in name
Check the vector [value] of the declared interrupt functions.

Bad context for storage modifier (storage-class or function)

The no_init keyword can only be used to declare variables with static
storage-class. That is, no_init cannot be used in typedef statements or
applied to auto variables of functions. An active #pragma
memory=no_init can cause such errors when function declarations are
found.

Bad context for function call modifier
The keywords interrupt or monitor can be applied only to function
declarations.

Unknown #pragma identifier
An unknown #pragma identifier was found. This error will terminate object
code generation only if the -g option is in use.

Diagnostics __o

147 Extension keyword name
Upon executing:

#pragma language=extended

the compiler found that the named identifier has the same name as an
extension keyword. This error is only issued when compiler is executing in
ANSI mode.

148 ’=’ expected
An sfr-declared identifier must be followed by =value.

149 Attempt to take address of sfr or bit variable
The & operator may not be applied to variables declared as bit or as sfr.

150 lllegal range for sfr or bit address
The address expression is not a valid bit or sfr address.

151 Too many functions defined in a single module.
There may not be more than 256 functions in use in a module. Note that there
are no limits to the number of declared functions.

152 ’.” expected
The . was missing from a bit declaration.

153 lllegal context for extended specifier

8051-SPECIFIC ERROR MESSAGES

The following list shows the 8051-specific compilation error messages.

105 Language feature not implemented:

105 Returning bit is not allowed in reentrant function.
Use another return value (eg char).

105 Only xdata allowed as local memory attribute in reentrant
function

Do not override the default storage class in reentrant function.

105 Only idata allowed as local memory attribute in reentrant_idata
function

105 Do not override the default storage class in reentrant function.

105 Reentrant_idata function called with structure with over 255
bytes

105 Returning bit is not allowed in reentrant function

105 Only xdata allowed as local memory attribute in reentrant
function

Part 2. Compiler reference |87

Compilation error messages

8051 IAR C Compiler
188 Reference Guide

105 Only idata allowed as local memory attribute in reentrant_idata
function
105 Interrupt function with "using" attribute calls other funtions
105 Internal stack has been overflowed by function
105 80751 not available for Baseline
105 Floats are not available for 8051 Baseline
105 Reentrant code not available for Baseline
105 Banked/large memory model not available for Baseline
105 Floats are not available for Baseline
105 "Intrinsic" missing operand
Intrinsic can be any intrinsic function.
105 "Intrinsic" missing first operand
Intrinsic can be any intrinsic function.
105 "Intrinsic" missing second operand
Intrinsic can be any intrinsic function.
105 "Intrinsic" missing third operand
Intrinsic can be any intrinsic function.
105 "Intrinsic" too many operands
Intrinsic can be any intrinsic function.
105 "_tbac" operand not bit variable
105 "_opc"” operand not char constant
153 llegal context for [bit, sfr, xdata, idata, code, no_init] specifier
This error is displayed because of the illegal use of a keyword:
lllegally used keyword Suggestion
xdata int my f£(); The only extension allowed is bit.
bit my array[10]; bit and sfr cannot be array.
void my f (code int my var) Function parameters cannot be in code memory.
void my f (sfr my port) sfr cannot define a variable.
void(*my fptr) (bit my var) Function pointer arguments cannot contain

extended keywords.

Table 38: Suggestions for illegally used keywords

Diagnostics __o

lllegally used keyword Suggestion

void my f (int my var) Incorrect style for function argument.
xdata int my var

void my f (int my var) no_init not allowed with auto variables.

{

no_init int my var;

Table 38: Suggestions for illegally used keywords
154 Writing to CODE memory

80751-SPECIFIC ERROR MESSAGES

The following errors can be generated when using the -v1 switch to produce 80751
code:

18 Range error in module 'module’ (’file’), segment ’segment’ at
address ’address’. Value ’value’, in tag t_ref fn51, is out of bounds
ACALL not in page.

If a function call is made that is to an address outside of the 2 Kbytes allowed
area, the linker will produce the error. The only way to delete this error is to
reduce the amount of code.

73 Label ?ARG_MOVE not found (recursive functions need it)
No recursive functions are allowed. The linker will generate the error if there
is recursion in the system.

46 Undefined external setjmp/longjmp referred in module (file)
No calls to longjmp/set jmp are allowed. The linker will generate the error
if longjmp/setjmp is used.

105 Reentrant code not available for 80751.
No reentrant functions are allowed. The compiler will generate the error if it
is used. This is also generated if the compiler switch -E is used.

105 Floats are not available for 80751.
No floats are allowed. The compiler will generate the error if they are used.

105 80751 does not support xdata.
No XDATA memory or XDATA pointer attributes are allowed. The compiler
will generate the error if it is used. This error is also issued if the compiler
switch -y is used.

105 Only memory model tiny and small available for 80751.
If any other memory model than tiny or small is used for the 80751, the
compiler will generate the error.

Part 2. Compiler reference 189

Compilation warning messages

Compilation warning messages

The following table lists the compilation warning messages:

8051 IAR C Compiler
190 Reference Guide

0

10

11

Macro ’'name’ redefined
A symbol defined with #def ine was redeclared with a different argument
or formal list.

Macro formal parameter ’name’ is never referenced
A #define formal parameter never appeared in the argument string.

Macro ’name’ is already #undef
#undef was applied to a symbol that was not a macro.

Macro ’name’ called with empty parameter(s)
A parameterized macro defined in a #define statement was called with a
zero-length argument.

Macro ’name’ is called recursively; not expanded
A recursive macro call makes the pre-processor stop further expansion of
that macro.

Undefined symbol ’name’ in #if or #elif; assumed zero

It is considered as bad programming practice to assume that non-macro
symbols should be treated as zeros in #if and #elif expressions. Use
either: #ifdef symbol or #1if defined (symbol).

Unknown escape sequence ('\c'); assumed 'c'
A backslash (\) found in a character constant or string literal was followed
by an unknown escape character.

Nested comment found without using the -C option
The character sequence /* was found within a comment, and ignored.

Invalid type-specifier for field; assumed int
In this implementation, bit-fields may be specified only as int or unsigned
int.

Undeclared function parameter ’name’; assumed int
An undeclared identifier in the header of a K&R function definition is by
default given the type int.

Dimension of array ignored; array assumed pointer
An array with an explicit dimension was specified as a formal parameter, and
the compiler treated it as a pointer to object.

Storage class static ignored; name declared extern
An object or function was first declared as extern (explicitly or by default)
and later declared as static. The static declaration is ignored.

12

13

14

15

16

17

18

19

20

21

Diagnostics __o

Incompletely bracketed initializer
To avoid ambiguity, initializers should either use only one level of {}
brackets or be completely surrounded by {} brackets.

Unreferenced label ’name’
Label was defined but never referenced.

Type specifier missing; assumed int
No type specifier given in declaration — assumed to be int.

Wrong usage of string operator (’#’ or ’##’); ignored
This implementation restricts usage of # and ## operators to the token-field
of parameterized macros.

In addition the # operator must precede a formal parameter:

#define mac (pl) #pl /* Becomes "pl" */
#define mac(pl,p2)pl+p2##add this
/* Merged p2 */

Non-void function: return with ’expression’; expected
A non-void function definition should exit with a defined return value in all
places.

Invalid storage class for function; assumed to be extern
Invalid storage class for function— ignored. Valid classes are extern,
static, or typedef.

Redeclared parameter’s storage class
Storage class of a function formal parameter was changed from register
to auto or vice versa in a subsequent declaration/definition.

Storage class extern ignored; 'name’ was first declared as static
An identifier declared as static was later explicitly or implicitly declared
as extern. The extern declaration is ignored.

Unreachable statement(s)
One or more statements were preceded by an unconditional jump or return
such that the statement or statements would never be executed.

For example:

break;
i = 2; /* Never executed */

Unreachable statement(s) at unreferenced label ’name’

One or more labeled statements were preceded by an unconditional jump or
return but the label was never referenced, so the statement or statements
would never be executed.

Part 2. Compiler reference 191

Compilation warning messages

8051 IAR C Compiler
192 Reference Guide

22

23

24

25

26

27

28

29

30

For example:

break;
here:
i = 2;/* Never executed */

Non-void function: explicit return ’expression’; expected

A non-void function generated an implicit return. This could be the result of
an unexpected exit from a loop or switch. Note that a switch without default
is always considered by the compiler to be ‘exitable’ regardless of any case
constructs.

Undeclared function ’name’; assumed extern int

A reference to an undeclared function causes a default declaration to be used.
The function is assumed to be of K&R type, have extern storage class, and
return int.

Static memory option converts local auto or register to static
A command line option for static memory allocation caused auto and
register declarations to be treated as static.

Inconsistent use of K&R function - varying number of parameters
A K&R function was called with a varying number of parameters.

Inconsistent use of K&R function - changing type of parameter
A K&R function was called with changing types of parameters.

For example:

myfunc (34); /* int argument */
myfunc(34.6); /* float argument */

Size of extern object 'name’ is unknown
extern arrays should be declared with size.

Constant [index] outside array bounds
There was a constant index outside the declared array bounds.

Hexadecimal escape sequence larger than char
The escape sequence is truncated to fit into char.

Attribute ignored

Since const or volatile are attributes of objects they are ignored when
given with a structure, union, or enumeration tag definition that has no
objects declared at the same time. Also, functions are considered as being
unable to return const or volatile.

For example:

const struct s

31

32

33

34

Diagnostics __o

{

}; /* no object declared, const ignored - warning */
const int myfunc (void) ;
/* function returning const int - warning */

const int (*fp) (void) ;
/* pointer to function returning const int -
warning */
int (*const fp) (void) ;
/* const pointer to function returning int - OK,
no warning */

Incompatible parameters of K&R functions
Pointers (possibly indirect) to functions or K&R function declarators have
incompatible parameter types.

The pointer was used in one of following contexts:

pointer - pointer,

expression ? ptr : ptr,

pointer relational op pointer
pointer equality op pointer

pointer = pointer

formal parameter vs actual parameter

Incompatible numbers of parameters of K&R functions
Pointers (possibly indirect) to functions or K&R function declarators have a
different number of parameters.

The pointer is directly used in one of following contexts:

pointer - pointer

expression ? ptr : ptr

pointer relational op

pointerpointer equality op pointer
pointer = pointer

formal parameter vs actual parameter

Local or formal ’name’ was never referenced
A formal parameter or local variable object is unused in the function
definition.

Non-printable character \xhh found in literal or character
constant

It is considered as bad programming practice to use non-printable characters
in string literals or character constants. Use \ 0xhhh to get the same result.

Part 2. Compiler reference 193

Compilation warning messages

8051 IAR C Compiler
194 Reference Guide

35

36

37

38
39

40

41

42

Old-style (K&R) type of function declarator
An old style K&R function declarator was found. This warning is issued only
if the -ga option is in use.

Floating point constant out of range
A floating-point value is too large or too small to be represented by the
floating-point system of the target.

lllegal float operation: division by zero not allowed
During constant arithmetic a zero divide was found.

Tag identifier 'name’ was never defined

Dummy statement. Optimized away!

Redundant code found. This usually indicates a typing mistake in the user
code or it might also be generated when using macros which are a little bit
too generic (which is not a fault).

For example:
a+b;

Possible bug! If statement terminated
This usually indicates a typing mistake in the user code.

For example:

if (a==b);

{
}

Possible bug! Uninitialized variable
A variable is used before initialization (the variable has a random value).

<if body>

For example:

void func (pl)

{
short a;
pl+=a;

}

This message does not exist.

Possible bug! Integer promotion may cause problems. Use cast to
avoid it

The rule of integer promotion says that all integer operations must generate
aresult as if they were of int type if they have a small precision than int and
this can sometimes lead to unexpected results.

43

44

45

46

47

Diagnostics __o

For example:

short tst (unsigned char a)

{
if (-a)
return (1) ;
else
return (-1);

}

This example will always return the value 1 even with the value Oxff. The
reason is that the integer promotion casts the variable a to Ox00ff first and
then preforms a bit not.

Integer promotion is ignored by many other C compilers, so this warning
may be generated when recompiling an existing program with the AR
Systems compiler.

Possible bug! Single ’=’ instead of ’==" used in if statement
This usually indicates a typing mistake in the user code.

For example:
if (a=1)

{
}

Redundant expression. Example: Multiply with |, add with 0
This might indicate a typing mistake in the user code, but it can also be a
result of stupid code generated by a case tool.

<if body>

Possible bug! Strange or faulty expression. Example: Division by
zero
This usually indicates a bug in the user code.

Unreachable code deleted by the global optimizer
Redundant code block in the user code. It might be a result of a bug but is
usually only a sign of incomplete code.

Unreachable returns. The function will never return
The function will never be able to return to the calling function.

This might be a result of a bug, but is usually generated when you have never
ending loops in a RTOS system.

Part 2. Compiler reference 195

Compilation warning messages

48

49

Unsigned compare always true/false
This indicates a bug in the user code! A common reason is a missing -c
compiler switch.

For example:

for (uc=10; uc>=0; uc--)

{

<loop bodys>

}

This is a never ending loop because an unsigned value is always larger than
or equal to zero.

This message does not exist.

Signed compare always true/false
This indicates a bug in the user code!

8051-SPECIFIC WARNING MESSAGES

There are no 8051-specific warning messages.

8051 IAR C Compiler
196 Reference Guide

!I!I!I!I!IW[!I

Part 3. Library functions

This part of the 8051 IAR C Compiler Reference Guide contains the
following chapter:

e General C library definitions

197

198

General C library
definitions

This chapter introduces C library functions provided in the 8051 IAR C
Compiler. It also lists and explains the usage of header files that are used for
accessing library definitions.

For reference information about all the C library functions, see the iarclib.pdf
file, which is provided with the product.

Introduction

The 8051 IAR C Compiler package provides most of the important C library
definitions that apply to PROM-based embedded systems. These are of three types:

e Standard C library definitions available for user programs. These are documented
in this chapter.

e CSTARTUP, the single program module containing the start-up code. This is
described in the Configuration chapter, page 32.

o Intrinsic functions, allowing low-level use of 8051 features. See the chapter
Intrinsic functions for more information.

LIBRARY OBJECT FILES

The IAR XLINK Linker includes only those routines that are required (directly or
indirectly) by the user’s program.

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. There are some I/O-oriented
routines (such as putchar and getchar) that you may need to customize for your
target application.

The library object files are supplied having been compiled with the Flag old-style
functions -g2 option.

HEADER FILES

The user program gains access to library definitions through header files, which it
incorporates using the #include directive. To avoid wasting time at compilation, the
definitions are divided into a number of different header files. Each of these files
covers a particular functional area, letting you include only those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do this can cause the call to fail during execution or generate
error or warning messages at compile time or link time.

Part 3. Library functions

199

Library definitions summary

Library definitions summary

This section lists the header files and summarizes the functions included in each.
Header files may additionally contain target-specific definitions.

CHARACTER HANDLING - ctype.h

isalnum int isalnum(int c) Letter or digit equality.
isalpha int isalpha (int c) Letter equality.

iscntrl int iscntrl (int c) Control code equality.
isdigit int isdigit (int c¢) Digit equality.

isgraph int isgraph (int c) Printable non-space character equality.
islower int islower (int c) Lower case equality.
isprint int isprint (int c) Printable character equality.
ispunct int ispunct (int c¢) Punctuation character equality.
isspace int isspace (int c) White-space character equality.
isupper int isupper (int c) Upper case equality.
isxdigit int isxdigit(int ¢) Hex digit equality.

tolower int tolower (int c¢) Converts to lower case.
toupper int toupper (int c) Converts to upper case.

LOW-LEVEL ROUTINES - icclbutl.h

_formatted read int formatted read (const Reads formatted data.
char #**line, const char **format,
va_list ap)

_formatted write int formatted write (const char* Formatsand writes data.
format, void outputf (char, void
*), void #*sp, va_list ap)

_medium_read int formatted read (const Reads formatted data excluding floating-point
char #**Iline, const char **format, numbers.
va_list ap)

_medium write int formatted write (const Writes formatted data excluding floating-point
char* format, void outputf (char, numbers.
void *), void #*sp, va_list ap)

8051 IAR C Compiler
200 Reference Guide

_small _write

acos
asin
atan

atan2

ceil
cos
cosh
exp
fabs
floor

fmod

frexp

ldexp

log
loglo

modf

pow

sin
sinh
sgrt

tan

int _formatted write (const

char* format, void outputf (char,

void *), void #*sp, va_list ap)

MATHEMATICS - math.h

double acos (double arg)
double asin(double arg)
double atan(double arg)

double atan2 (double argl,
double arg2)

double ceil (double arg)
double cos (double arg)
double cosh(double arg)
double exp (double arg)
double fabs (double arg)
double floor (double arg)

double fmod (double argl,
double arg2)

double frexp (double argl,
int *arg2)

double ldexp (double argl,
int arg2)

double log(double arg)
double logl0 (double arg)

double modf (double value,
double #*iptr)

double pow(double argl,
double arg2)

double sin(double arg)
double sinh(double arg)
double sgrt (double arg)

double tan(double x)

General C library definitions __¢

Small formatted data write routine.

Arc cosine.
Arc sine.
Arc tangent.

Arc tangent with quadrant.

Smallest integer greater than or equal to arg.
Cosine.

Hyperbolic cosine.

Exponential.

Double-precision floating-point absolute.
Largest integer less than or equal.

Floating-point remainder.

Splits a floating-point number into two parts.

Multiply by power of two.

Natural logarithm.
Base-10 logarithm.

Fractional and integer parts.

Raises to the power.

Sine.
Hyperbolic sine.
Square root.

Tangent.

Part 3. Library functions

201

Library definitions summary

tanh double tanh(double arg) Hyperbolic tangent.

NON-LOCAL JUMPS - setjmp.h

longjmp void longjmp (jmp buf env, Long jump.
int val)
setjmp int setjmp(jmp buf env) Sets up a jump return point.

VARIABLE ARGUMENTS - stdarg.h

va_arg type va_arg(va_list ap, mode) Next argument in function call.
va_end void va_end(va_list ap) Ends reading function call arguments.
va_list char *va list[1] Argument list type.

va_start void va start(va list ap, parmN) Starts reading function call arguments

INPUT/OUTPUT - stdio.h

getchar int getchar (void) Gets character.

gets char *gets(char *s) Gets string.

printf int printf (const char Writes formatted data.
*format, ...)

putchar int putchar (int value) Puts character.

puts int puts(const char *s) Puts string.

scanf int scanf (const char Reads formatted data.
*format, ...)

sprintf int sprintf (char #*s, const Writes formatted data to a string.

char *format, ...)

sscanf int sscanf (const char *s, Reads formatted data from a string.
const char *format, ...)

GENERAL UTILITIES - stdlib.h

abort void abort (void) Terminates the program abnormally.
abs int abs(int 7) Absolute value.
atof double atof (const char *nptr) Converts ASCIl to double.

8051 IAR C Compiler
202 Reference Guide

atoi
atol

bsearch

calloc

div

exit
free
labs

ldiv

malloc

gsort

rand

realloc

srand

strtod

strtol

strtoul

int atoi(const char *nptr)

long atol (const char *nptr)

void *bsearch (const void *key,

const void *base, size t nmemb,
size_t size, int (*compare)
(const void * key, const void
* base)) ;

void *calloc(size t nelem, size t

elsize)

div_t div(int numer, int denom)
void exit (int status)

void free(void *ptr)

long int labs(long int j)

ldiv_t 1ldiv(long int numer,
long int denom)

void *malloc(size t size)

void gsort (const void *base,
size t nmemb, size t size,

int (*compare) (const void * key,

const void * base)) ;
int rand(void)

void *realloc(void *ptr,
size t size)

void srand(unsigned int seed)

double strtod(const char
*nptr, char **endptr)

long int strtol (const char *nptr,

char **endptr, int base)

unsigned long int strtoul

(const char *nptr, char **endptr,

base int)

General C library definitions __¢

Converts ASCIl to int.
Converts ASCll to long int.

Makes a generic search in an array.

Allocates memory for an array of objects.

Divide.

Terminates the program.
Frees memory.

Long absolute.

Long division.

Allocates memory.

Makes a generic sort of an array.

Random number.

Reallocates memory.

Sets random number sequence.

Converts a string to double.

Converts a string to a long integer.

Converts a string to an unsigned long integer.

Part 3. Library functions

203

Library definitions summary

memchr

memcmp

memcpy

memmove

memset

strcat

strchr

strcmp

strcoll

strcpy

strcspn

strerror
strlen

strncat

strncmp

strncpy

strpbrk

strrchr

8051 IAR C Compiler
204 Reference Guide

STRING HANDLING - string.h

void *memchr (const void *s, int ¢, Searches for a character in memory.
size t n)

int memcmp (const void #*s1I, Compares memory.
const void *s2, size t n)

void *memcpy (void *s1, const void Copies memory.
*s2, size t n)

void *memmove (void *s1, const void Moves memory.
*s2, size t n)

void *memset (void *s, int c, Sets memory.
size t n)

char *strcat(char #*sl, const char Concatenates strings.
*52)

char *strchr (const char *s, int c)Searches for a character in a string.

int strcmp(const char *siI, Compares two strings.
const char *s2)

int strcoll (const char #*sl1, const Compares strings.
char *s2)

char *strcpy(char #*sl1, const char Copies string.
*s2)

size t strcspn(const char Spans excluded characters in string.
*g], const char *s2)

char *strerror(int errnum) Gives an error message string.

size t strlen(const char *s) String length.

char *strncat (char *s1I, Concatenates a specified number of characters
const char *s2, size t n) with a string.

int strncmp (const char #*s1, const Compares a specified number of characters

char *s2, size t n) with a string.

char *strncpy(char *s1I, Copies a specified number of characters from a
const char *s2, size t n) string.

char *strpbrk(const char #*s1I, Finds any one of specified characters in a string

const char *s2)

char *strrchr (const char *s, Finds character from right of string.
int ¢)

General C library definitions __¢

strspn size t strspn(const char *s1, Spans characters in a string.
const char *s2)

strstr char *strstr (const char *sl, const Searches for a substring.
char *s2)
strtok char *strtok(char #*sl, const char Breaks a stringinto tokens.
*352)
strxfrm size t strxfrm(char *s1I, Transforms a string and returns the length.

const char *s2, size t n)

ASSERTIONS - assert.h

assert void assert (int expression) Checks an expression.

MISCELLANEOUS HEADER FILES

The following table shows header files that do not contain any functions, but specify
various definitions and data types:

Header file Description

stddef.h Common definitions including size t, NULL, ptrdiff t,and
offsetof.

limits.h Limits and sizes of integral types.

float.h Limits and sizes of floating-point types.

errno.h Error return values.

Table 39: Miscellaneous header files

Part 3. Library functions 205

Library definitions summary

8051 IAR C Compiler
206 Reference Guide

Index __o

A BITVAR (segment)c..ciiineineenann... 71
B_CDATA (segment)coouiineninnnannen.. 71
active lines only, listing 103 B_IDATA (segment).couuinenennnannen.. 71
address creation for functions 49 B_UDATA (segment).couuineninnnnenen.. 72
addressing control oL 4
ANSIAefinitionoooeeeeee i 139 C
data types. . . v v e 141
function declarations. 141 C compiler options
function definition parameter 141 disabling warnings L 104
hexadecimal string constant 142 enabling function return stack expansion 103
ANSI Prototypesveeneein e 3 explaining C declarations 104
ANSI standard X3.159-1989 oo 139 form feed after function 89
assembler interface. 43 global strict type checking 90
creating skeletoncode. 48 lines perpage. ...l 100
assembler mnemonics, in listing 100 listing active linesonly, 103
assembler support directives 49 making a library module 29
SBYTE3 ..\ 51 runningin PROM ... 100
SDEFENt 49 selecting processor options 104
SIFREFottt 50 SEMNG . ..o 83
SLOCBB . ..o oee e 50 SUMIMALY ...ttt 84
SLOCBD . ..o\ 50 tabspacing. ... 103
SLOCBL. . ..ot 50 Al 49, 85
SLOCBX . o v v 50 e P 86
SPRMBB.ot 51 b 29, 86
SPRMBD. . . o oo 51 CC 87
SPRMBI ...\ttt 51 G 60, 87
SPRMBX . . o oo 51 D 87
SREFFEN . o o oo 50 B 88
asserth (header file). 205 T 4,89, 126
P 89
B S 89
SGe 90
banked code pointer. 61 P 90
bdata (extended keyword) 4,109 SHeoo 95
bit variables L 60 e 96
bit (datatype).........coviniiiiiii i 4,59 s P 97
bit (extended keyword). oL 109 Ko 97
bitfields. 60 e P 49,97
bitfields=default (#pragma directive)................ 122 e P 98
bitfields=reversed (#pragma directive). 122 e 11 P 98

207

S 1 P 99
SO 99
L P 95, 100
P 100
D e e 100
P 49, 100
R 101
S S 101
S 102
S e e e e 102
P 103
PP 103
U 103
PP 103
TV 104
W e e 104, 131
X 104
K e e e e 105
Y 73,76, 105
/P 106
Cdatatypes « . oottt 59
C declarations, explaining in listing. 104
C library, customizingoueuienenon.. 37
calling convention i, 43
calling mechanisms 4
CCSTR (segment)cooveninenenninnenenen.. 73
CDATA (SEZMENt) . ..o vv ettt i 74
char (datatype)., 59-60
character-based I/O 29
cl8051%*.r03 (library module). 29
€O POINLELS . o vttt ettt 61
code SegMeNntottt 101
code (extended keyword) L 4,110
code (pointer) (extended keyword) 110
CODE (Segment)vvve ittt 74
codeseg (#pragma directive) 123
coding, efficient i 3
comments, nested. 87

8051 IAR C Compiler

208 Reference Guide

compiler versionnumber 134
const (keyword) 139
CONST (SEZMENL) .« .o v ovee ettt e eee e 74
cross-reference. 105
CSTACK (Segment)vvuvneie e 75
CSTARTUP e 32

estartup.sO3 34

modifying i 32-33
CSTR (segment).oviin it i 75
ctype.h (headerfile) 200
C_ARGB (segment)., 72
C_ARGD (segment).ovvuininn i 72
C_ARGI (segment)c.couiiniinienenenennn.. 73
C_ARGX (S€ZMeNt). . .« v vv et e eeaens 73
C_ICALL (segment)uuvinmunenenenennnn. 73
C_INCLUDE (environment variable) 84
C_RECFEN (segment)uuuininenenenennn.. 74
data pointers.c..o.vir it 61
data types . . .ot 59, 141

it 4

ST, o 4

unsigned 3
data (extended keyword) 4,111
data_reentrant (extended keyword) 4
debug information, generating. 101
diagnosticsot 173

CITOT MESSAZES . « . e v v v v vt e ettt eee e 174

internal €Iror i 173

Warning mMeSSAZES . « .« v v v vev v eneeeeeen 196
double (data type).vovi i 59
D_CDATA (segment).c.oouveneeneenennn... 75
D_IDATA (segment)c.oveuieneenennnn.. 75
D_UDATA (segment).c.ueuninneneenennn... 76
ECSTR (segment)c.coiniininininnen.. 76

efficientcoding. i 3
entry (keyword) 139
1S5 110 o 59
enum (keyword) L 140
environment variables 84
C_INCLUDE. ... 84
QCCBOS5I. .\ vt 83
errno.h (headerfile) 205
CITOT TNESSAZES « v v e e vvee e eeee e 173-174, 196
extended keywords. oL 4,107
bdata 4,109
DIt . 109
COdE . .t 4,110
code (POINLET) ..o v vv ettt e 110
data 4,111
data_reentrant 4
idata. 4,111
idata (pOinter)t 112
INTEITUPL. « . v e e e e 4,112
J0070) 01170 Gl 4,114
non_banked................ 4,115
NO_INIt. ..ttt 20, 115
pdata 4
Plm. .. 4,117
TEENIIANT. . . . ottt et e 4,117
reentrant_idata., 118
] 118
USINE « ettt et e e e 119
Xdata 4,119
xdata (POINter).vvv i 120
extensions, language 89
file types
P 99
XCl. o 27
float (datatype)c.ooiiininininnen... 59
floating-point format 60
float.h (headerfile). 205

Index __o

form feed after function (C compiler option). 89
functioncalls i 44
function modifiers L L L. 4
function=default (#pragma directive). 124
function=interrupt (#pragma directive) 124
function=monitor (#pragma directive)............... 124
function=version_2 (#pragma directive) 126
getchar (library function). 29
getcharc. 29
global strict type checking (C compiler option). 90
headerfiles........ 199
asserth. L 205
ctypeh. o 200
errno.h. ... 205
floath 205
icclbutlh ..o 200
limits.h. ... 205
math.ho 201
segmp.h. ..o 202
stdarg.ho 202
stddefh ..o o 205
stdioh ..o 202
stdlibh. 202
string.h. ... 204
hexadecimal string constants 142
icclbutlh (headerfile) 200
idata (extended keyword). 4,111
idata (pointer) (extended keyword) 112
INPUL. .. 29
internal error. L. L 173

interrupt functions

209

calling functions with -Eoption 88

fortheassembler. 54
interrupt vectors, defining 55
interrupt (extended keyword)., 4,112
intrinsic functions. L Lo e 5

args 135

At 136

0] o PP 137

thac ... 137
INTVEC (segment)c.coouininiinenenen.. 77
I/Oaccess. . ..o 4
I/Oinitialization. 32
I/O, characterbased 29
I_CDATA (segment).ovuiuininnnnnenenen.. 76
I_IDATA (segment)cuinininnennenenen.. 77
I_UDATA (segment)c.oueuunmununenenen.. 77
Kernighan & Richie definitions.................... 139
keywords

COMSE .« ottt et e e e e e e e e 139

53115 P 139

5311133 P 140

signed 140

SEIUCE vttt ettt et e e e 142

11831101 1 P 142

VOId o o 140

volatile. 140
language extensionsottt e 3

enabling. 89
language=default (#pragma directive) 126
language=extended (#pragma directive) 127
library functions

getchar. 29

printf 30

putchar. 29

8051 IAR C Compiler

210 Reference Guide

scanf ... 31
sprintf 30
sscanf. 31
SUMIMALY © ¢\ v vovt et et et e e e e e ee e e 200
_formatted_read 31
_formatted_write. 30
_medium_read. 31
_medium_WITteottt 30
_small_write ... 31
librarymodule 86
making. 29
limits.h (headerfile). 205
lines per page (C compiler option). 100
linker command file............, 27
listings, formatting. 89, 100
Load as PROGRAM module (XLINK option) 30
local variables. i 44-45
long double (datatype) 59
long (datatype)c.uiuiiniiiiiiann .. 59
[owinit.c ... oot 32
low-level control. i 5
math.h (headerfile) 201
memorymodels 9
specifying 98
memory=constseg (#pragma directive) 128
memory=dataseg (#pragma directive) 129-130
memory=default (#pragma directive). 130
memory=no_init (#pragma directive) 130
mnemonics, assembler. L oL 100
monitor (extended keyword) 4,114
nested COMMENTESovu vttt 87
non-volatile RAM 4,20
non_banked (extended keyword) 4,115
asacode pointercovini 61

no_init (extended keyword) 4,20, 115
NO_INIT (segment).ovuinininnennnenn. 20, 78
NULL. ..o e e 205
objectfileconverter 145
objectfilename. 100
offsetof 205
OMECONY . ..ottt e 145
OptimizZation 37,102, 106
OPLIONS SUMMALY . . o v v vttt et e ee e e 84
OULPUL .« o ettt et e e e e e e e e e e 29
PArametersottt e 44
organization inmemory 45
TEENIANt. . .. oottt e 46
pdata (extended keyword) L 4
plm (extended keyword). 4,117
PL/M . 145
compiling functions. L oL 147
linking o 146
mapping C pointers.cocueninennnan .. 148
using object file converter (omfconv) 145
pointer (datatype)t 59
predefined symbols L 5
_DATE .. 133
_FILE oo 133
_JAR SYSTEMS_ICC......... 133
LINE ... 133
STDC ..o 133
TID 133
TIME .. 134
printf (library function) 30
programming hints. 3
PROM (C compileroption) 100
ptediff t ... 205
putchar (library function). 29

Index __o

putcharc...... 29
P_CDATA (segment)covuienenennnnnnenen.. 78
P_IDATA (segment).ooueuinenennnannen.. 78
P_UDATA (segment)c.cuiuuininnnnenen.. 78
QCCHS8300 (environment variable). 84
QCC8051 (environment variable) 83-84
RCODE (segment).cocueninennnnnnenen.. 79
recommendations, programming 3
recursive functions 88
reentrant code. 54, 88
reentrant functions 54
reentrant Parameters.ve it i e 46
reentrant (extended keyword). 4,117
reentrant_idata (extended keyword). 118
TEEISTET USAZE .« . v o ettt et et e 44
RF_XDATA (segment).coouenenennnnenenen.. 79
run-time library L L 8
run-time library, customizing. 37
scanf (library function). 31
Y74 1013 4L PP 67
BITVAR ... 71
B_CDATA 71
B_IDATA. ... 71
B_UDATA. i 72
CCSTR ..o e 73
CDATA . .o 74
CODE ... 74
COde . oot 101
CONST ..o e 74
CSTACK . ..o e 75
CSTR. ..o 75

211

212

C_ARGB. 72
C_ARGD. 72
C_ARGI ... 73
C_ARGX. .ot 73
C_ICALL ... 73
C RECFEN.o 74
D _CDATA. ... e 75
D_IDATA ... 75
D_UDATA. . . 76
ECSTR ..o e 76
INTVEC ... e 77
LCDATA. ... e 76
LIDATA .. 77
TLUDATA .. e 77
NO_INIT. ... e 20,78
P_CDATA ... 78
P_IDATA . .. 78
P_UDATA 78
RCODE.o e 79
RE XDATA. ..o e 79
XSTACK . o 81
X CDATA . .. 79
X CONST. e 80
X CSTR .o 80
X IDATA .o 80
X UDATA. . 80
setjmp.h (headerfile) 202
sfrvariables L 61
sfr(datatype)covnunininini i 4,59
sfr (extended keyword). oL, 118
shared variable objects. 143
short, int (datatype)ovuiiiiinnnean. 59
signed char (datatype)............cooiiiineninan.. 59
signed (keyword) il 140
silentoperation. 102
SIZ8 b vttt 205
skeleton code, interfacing to assembler............... 48
special function register variables 61
special.h (header file). 5

8051 IAR C Compiler
Reference Guide

speed optimizationc. ... 102

sprintf (library function). 30
sscanf (library function). 31
StACK SIZ@ .. oottt 28
CXPANSION. « . ettt ettt e e 103
stack, reentrant functions, 54
stdarg.h (headerfile) 202
stddef.h (headerfile) 205
stdio.h (headerfile) 202
stdlib.h (headerfile) 202
storage of variables, modifying 4
string.h (header file). 204
struct (keyword) 142
symbols, predefined L. 5
tab Spacing 103
targetidentifier. o L. 133
Tiny-51. ..o 151
configuration. i 156
dispatcher i 152
functions i 164
idle-tasks 152
installation. i 155
non-preemptive multitasking. 152
preemptive multitasking 152
principles of operation. 153
registerbank 3. Lo i 156
TESIIICHONS . . . oottt 155
round-robin L 152
scheduler...... 152
SEMAPNOIES . . .ottt 153
signals 153
task States 152
task timer.t 156
BASKS. o 151
task-switching time 156
terminology 151
timeouttask......... i 156

tutorial 156
Tiny-51 functions
CIEALEottt ettt et e 164
down 166
signal 167
StartDispatcher i 168
StopDispatcher oL 169
HMEOUL. . ..o 170
1010 J N 170
WAL .« oo 171
typechecking......... 90
union (keyword). L 142
unsigned char (datatype).............. 59
unsigned int (datatype), 59
unsigned long (datatype). 59
unsigned short (datatype) 59
using (extended keyword) 119
variable initialization 32
variables, local 45
versionnumber. Ll 134
void (keyword) 140
volatile (keyword) 140
Warning MeSSAZES. « . « v v v v e e e eeeaen . 173, 190
warnings, disabling o ... 104
warnings=default (#pragma directive) 131
warnings=off (#pragma directive) 131
warnings=on (#pragma directive) 131
write formatter, selecting 31

Index __o

X

xdata (extended keyword) 4,119
xdata (pointer) (extended keyword) 120
XLINK options

Load as PROGRAM module. 30

- 30
XSTACK (segment)vvvene e 81
X_CDATA (segment)vvvenenenenenenennen.. 79
X_CONST (segment).vvueneneeneeenen.. 80
X_CSTR(segment)oovuneneneneneenennen.. 80
X_IDATA (s€gment)oeueuenenennnnenen.. 80
X_UDATA (segment).ovueneneenenennnnen.. 80
X3.159-1989 ANSIstandard 139

Symbols

#pragma directives. i 5,121
bitfields=default 122
bitfields=reversed 122
COUBSEE - . v vttt 123
function=default 124
function=interrupt 124
function=monitor 124
function=version_2........... 126
language=default. 126
language=extended 127
181S) 8107 o2 PP 20
MEMOIY=CONSESEE « « .« v e vve et eeeeeeeeenn 128
memory=dataseg.oiiin.... 129-130
memory=default 130
MeMOry=no_initc..c.oouueneenon.. 130
warnings=default. 131
warnings=off i 131
WAININZS=O0MN . ¢ .ot vv ettt et e e s 131

-A (C compileroption). 49, 85

-a (C compileroption)ccovuuiinienan .. 86

-A(XLINK option) . ..ovvvve e 30

-b (Ccompileroption) 29, 86

-C (Ccompileroption)., 87

213

214

-c (C compileroption)oouieien. 60, 87
-D (C compiler option).oouiiii i 87
-E (Ccompileroption).o, 88
-e (C compileroption) 4, 89, 126
-F (Ccompileroption), 89
-f(Ccompileroption)c.ciiniiiaan. 89
-G (Ccompiler option). oovii i 90
-g (Ccompileroption)o, 90
-H (C compileroption). 95
-I(Ccompileroption)coiiniiaia. 96
-1 (Ccompileroption)coiuinininaeaan. 97
-K (C compileroption). 97
-L (C compileroption) 49, 97
-1 (C compileroption)o, 98
-m (C compileroption) 98
-N (C compiler option).ooiiii i 98
-n (C compileroption), 99
-O (Ccompiler option).o vovin i 99
-0 (C compileroption)c..i... 95, 100
-P (C compileroption) 100
-p (C compileroption) oo, 100
-q (C compileroption) 49, 100
-R (C compileroption). 101
-r (C compileroption)coieninaa... 101
-S (C compileroption), 102
-s (C compileroption), 102
-T (C compileroption) oo, 103
-t (Ccompileroption)c.covuininan... 103
-U (C compileroption).o .. 103
-u (C compileroption), 103
-v (C compileroption), 104
-w (C compiler option). L., 104, 131
-X (Ccompileroption).voviiinii 104
-X (C compileroption)o, 105
-y (C compileroption) 73,76, 105
-z (Ccompileroption)ccoeiinininan .. 106
d(fileextension) 99
xclfileo o 27
_args$ (intrinsic function) 135

8051 IAR C Compiler
Reference Guide

_argt$ (intrinsic function) 136

_formatted_read (library function). 31
_formatted_write (library function).................. 30
_medium_read (library function).................... 31
_medium_write (library function) 30
_opc (intrinsic function).o . 137
_small_write (library function) 31
_tbac (intrinsic function) 137
__DATE__ (predefined symbol) 133
__FILE__ (predefined symbol) 133
__IAR_SYSTEMS_ICC__ (predefined symbol). 133
__LINE__ (predefined symbol).................... 133
__STDC__ (predefined symbol) 133
__TID__ (predefined symbol) 133
__TIME__ (predefined symbol) 134

Numerics

4-byte floating-point format. 60
8051 processor optionc.oiiiinin.... 104
80751 processor Optionc.veuvenenn.... 104

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Document conventions

	Part 1. Using the compiler
	Efficient coding techniques
	Efficient coding
	Using language extensions
	Extended keywords
	Addressing control
	I/O access
	Bit variables
	Non-volatile RAM
	Calling mechanisms

	#pragma directives
	Predefined symbols
	Intrinsic functions

	Configuration
	Introduction
	Run-time library
	Specifying the run-time library in the IAR Embedded Workbench
	Specifying the run-time library using the command line

	Memory models
	Specifying the memory model
	Specifying the memory model using the IAR Embedded Workbench
	Specifying the memory model using the command line

	Memory location
	Memory areas
	CODE memory
	IDATA memory
	DATA memory
	BDATA memory
	PDATA memory
	SFR space
	XDATA memory
	Segments and memory

	Non-volatile RAM

	Banking
	Banked memory
	Writing source code for banked mode
	Bank size and code segment size
	Banked versus non-banked function calls
	Calls to interrupt handlers in banked mode

	How to use the banked memory model
	Compiler options for banked mode
	Linker options for banked mode
	Modifying the default bank port assignment

	Linker command file
	Stack size
	Estimating the required stack size
	Heap size

	Input and output
	Putchar and getchar
	Customizing putchar
	Customizing getchar

	Printf and sprintf
	_medium_write
	_small_write
	Selecting the write formatter version
	Reduced printf

	Scanf and sscanf
	_medium_read
	Selecting read formatter version

	Initialization
	Variable and I/O initialization
	Modifying CSTARTUP
	CSTARTUP.S03

	Optimization
	Customizing the run-time library
	Multi-module linking

	Target-specific support
	80751 Support
	Using the 80751 with the IAR Embedded Workbench
	Using the 80751 with the command line
	80751 limitations
	Library routines

	80517 Support
	Using multiple DPTRs with interrupt functions

	80320 Support
	Using multiple DPTRs with interrupt functions

	Assembly language interface
	Calling convention
	Register usage

	Parameters and local variables
	Limitations
	Reentrant parameters

	Creating skeleton code
	Compiling the program using the IAR Embedded Workbench
	Compiling the program using the command line

	Assembler support directives
	$DEFFN
	$REFFN
	$IFREF
	$LOCBD, $LOCBI, $LOCBB, and $LOCBX
	$PRMBD, $PRMBI, $PRMBB, and $PRMBX
	$BYTE3
	Example
	Assembler head
	Body
	Assembler return

	Reentrant functions
	Interrupt functions
	Defining interrupt vectors

	Part 2: Compiler reference
	Data representation
	Data types
	Enum type
	Bitfields
	Char type
	Floating point
	4-byte floating-point format

	Bit variables
	Special Function Register variables

	Pointers
	Code pointers
	Data pointers

	Segments
	Memory maps
	Descriptions of segments
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description
	Type
	Description

	Compiler options
	Setting compiler options
	Specifying options using environment variables

	Summary of compiler options
	Descriptions of compiler options
	Examples

	Extended keywords
	Using extended keywords
	Address control
	I/O access
	Bit variables
	Non-volatile RAM
	Interrupt routines

	Descriptions of extended keywords
	Description
	Description
	Examples
	Description
	Description
	Parameters
	Description
	Description
	Description
	Parameters
	Description
	Description
	Parameters
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Parameters

	#pragma directives
	#pragma directives summary
	Bitfield orientation
	Extension control
	Function attribute
	Memory usage
	Warning message control

	Descriptions of #pragma directives
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Parameters
	Description
	Parameters
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description

	Predefined symbols
	Descriptions of predefined symbols

	Intrinsic functions
	Descriptions of intrinsic functions

	K&R and ANSI C language definitions
	Introduction
	Definitions
	entry keyword
	const keyword
	volatile keyword
	signed keyword
	void keyword
	enum keyword
	Data types
	Function definition parameters
	Function declarations
	Hexadecimal string constants
	Structure and union assignments
	Shared variable objects
	#elif
	#error

	Using C with PL/M
	Using the object file converter
	Linking the converter files
	Compiling PL/M functions

	Tiny-51
	Introduction
	General characteristics
	Terminology
	Task
	Idle-task
	Task states
	Dispatcher
	Scheduler
	Round-robin
	Preemptive multitasking
	Non-preemptive multitasking
	Signals
	Semaphores

	Principles of operation
	Restrictions on TINY-51

	Installing TINY-51
	Configuring TINY-51
	Task timer
	Register bank 3
	Task-switching time
	Timeout task

	Building a TINY-51 application
	Using preemptive multitasking
	Using non-preemptive multitasking

	Descriptions of TINY-51 functions
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value
	Declaration
	Parameters
	Description
	Return value

	Diagnostics
	Severity levels
	Command line error messages
	Compilation error messages
	Compilation warning messages
	Compilation fatal error messages
	Compilation internal error messages
	Compilation memory overflow message

	Compilation error messages
	8051-specific error messages
	80751-specific error messages

	Compilation warning messages
	8051-specific warning messages

	Part 3. Library functions
	General C library definitions
	Introduction
	Library object files
	Header files

	Library definitions summary
	Character handling – ctype.h
	Low-level routines – icclbutl.h
	Mathematics – math.h
	Non-local jumps – setjmp.h
	Variable arguments – stdarg.h
	Input/Output – stdio.h
	General utilities – stdlib.h
	String handling – string.h
	Assertions – assert.h
	Miscellaneous header files
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

	Index

