8051 IAR Assembler

Reference Guide

for the
8051 Family of Microcontrollers

8051 IAR Assembler
Reference Guide

COPYRIGHT NOTICE
© Copyright 1997-2001 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, AR Systems assumes no responsibility for any
errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or
kind.

TRADEMARKS

IAR and C-SPY are registered trademarks of IAR Systems. IAR Embedded
Workbench, IAR XLINK Linker, and IAR XLIB Librarian are trademarks of AR
Systems. Microsoft is a registered trademark, and Windows is a trademark of
Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

This edition replaces previous editions of this guide.
Sixth edition: January 2001
Part number: A8051-6

Contents

Tables vii
Preface .t ix
Who should read this guide ix

How to use this guide ix
What this guide contains ix
Document conventions X
Introduction to the 8051 IAR Assembler ... !
Source format I
Assembler expressions I

TRUE and FALSE 2

Using symbols in relocatable expressions 2

SYMDOLS couiierirenriiieeseesetseisentiesetsseasesasessessesse e sessessssstsseassssssssssssessessenes 3

Labels 3

Integer constants 3

ASCII character constants 4

Predefined symbols 4

Register symbols 5
Programming hints 5
Special function registers 6

Using C-style preprocessor directives 6

List file FOrmat ...t ssssesssesesenes 6
Header 7

BOQY ettt ea s ts et sttt es 8

CRC 9

List fields 9

Symbol and cross-reference table 10

8051 IAR Assembler
iv Reference Guide

Output formats
Assembler options

Setting assembler options

Extended command line file

Assembler environment variables

Summary of assembler options
Descriptions of assembler options

Assembler operators

Precedence of operators

Summary of assembler operators
Unary operators — 1

Multiplicative arithmetic and shift operators —2

Additive arithmetic operators — 3

Shift operators — 4

AND operators — 5

OR operators — 6

Comparison operators — 7

Descriptions of assembler operators

Assembler directives

Summary of directives

Syntax conventions
Labels and comments

Parameters

Module control directives

Syntax

Parameters

Description

Symbol control directives

Syntax

Parameters

Description

Examples

I
I
12
13
14

25

25
25
25
26
26
26
26
26
27
27

39

39
43
43
44
44
44
45
45
46
46

.. 46

46
47

Contents __o

Segment control directives 47
Syntax 48
Parameters 48
Description 49
Examples 50

Value assignment directives 52
Syntax 52
Parameters 53
Description 53
Examples 54

Conditional assembly directives 56
Syntax 57
Parameters 57
Description 57
Examples 57

Macro processing directives 58
Syntax 58
Parameters 59
Description 59
Examples 62

Structured assembly directives 65
Syntax 66
Parameters 66
Description 67
Examples 68

Listing control directives 73
Syntax 74
Parameters 74
Description 74
Examples 75

C-style preprocessor directives 78
Syntax 78
Parameters 79
Description 79

vi

8051 IAR Assembler
Reference Guide

Assembler control directives

Assembler diagnostics

Severity levels

Error messages

Warning messages

Examples

Data definition or allocation directives

Syntax

Parameters

Description

Examples

Syntax

Parameters

Description

Examples

Assembly warning messages

Command line error messages

Assembly error messages

Assembly fatal error messages

Assembler internal error messages

General error messages

8051-specific error messages

General

8051-specific warning messages

82
82
83
83
83
84
84
84
84
85

87

87
87
87
87
87
87
88
88
94
96
96
97

Tables

1: Typographical conventions used in this gUidec...ccceceevierininiiniinenineneenee X
2: Integer constant fOrMALScecerviiiieninitiniene ettt 3
3: ASCII character constant formats4
4: Predefined SYmMDOIScccooiiriiriiiiniiiinicnenc s 4
5: Symbol and cross-reference tableccccecvereirieiiiininienienieeeeeee 10
6: Assembler error return COAScoiviiiriiriiiiri e e 12
7: Asssembler environment variablesc..ccccocviiiniinininien e 12
8: Assembler OPtioNS SUMIMATY ...cc.ceveeruieriereinienieenteeeereenteesteseeeeseeseessesmresseenseenne 13
9: Conditional list (-¢)

10: Generating debug information (-I)c..ccceevererinenerinencne e 20
11: Controlling case sensitivity in user Symbols (=8)ccccecuerveerierieniiniieiieneniene 21
12: Disabling assembler Warnings (W) ...c.cecueeeereeerienieneesienneenieseneeeeeseessesseenne 22
13: Including cross-references in assembler list file (-X)ccccoveevervenericnecnecnnne. 23
14: Assembler direCtives SUMMATY ...c.cccoceereeerierienieniienienieneeieee st sieebeeee e e 39
15: Assembler directive Parametersc.cceueeeereeerieniieneenieerienreseeieetesseesseesieens 44
16: Module control dir€CtiVESscoevierierieriinenieriinrenereeteeee et 44
17: Symbol control dir€CtiVesccoceevierieriienieriieieiienieeieeeeei et 46
18: Segment CONIOl dir€CHIVEScceevueriiriieriiiriiniieiiettereeteeetete et
19: Value assignment dif€CtiVEScecerereruierieieniiieienieientesee et
20: Conditional assembly directives ...

21: Macro processing dir€CtiVESccveereriiriiereenieieeterie s eieere st sieebeeseesnenee
22: Structured assembly directives

23: Listing control dif€CTIVEScceeruirieriiriieiieneieiiettete et siee sttt saeene
24: C-style preprocessor directives

25: Data definition or allocation dir€Ctivesc..cocevererenirrineeeeienieieeeneeeneenne 82
26: Assembler control directives

vii

8051 IAR Assembler
viii Reference Guide

Preface

Welcome to the 8051 IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the 8051 IAR Assembler to best suit your application requirements.

Who should read this guide

You should read this guide if you plan to develop embedded applications or modules
for the 8051 microcontroller using assembly language. In addition, you should have
working knowledge of the following:

o General assembly language programming

e The architecture and instruction set of the 8051 microcontroller (refer to the chip
manufacturer’s documentation for information about assembler instructions, 8051
architecture, and instruction set)

e Windows 95/98/2000 or Windows NT, depending on your operating system

How to use this guide

If you are new to using the IAR toolkit, we recommend that you read the initial
chapters of the IJAR Embedded Workbench™ User Guide. It includes comprehensive
information about the installation of all IAR tools and product overviews, as well as
tutorials that can help you get started.

If you are an intermediate or advanced user, take advantage of the reference
information in all of the chapters, which provide details about, for example, options,
environments, and diagnostics.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

o [Introduction to the 8051 IAR Assembler describes the formats of the source code
and assembler listings and provides programming hints for the 8051 IAR
Assembler.

o Assembler options explains how to set assembler options from the command line
and provides the syntax and a description of each of the options.

o Assembler operators describes the precedence and provides a summary and
examples of assembler operators.

Document conventions

o Assembler directives gives an alphabetical summary of the assembler directives,
describes the syntax conventions, and provides detailed reference information
about directives according to usage.

o Assembler diagnostics lists the error and warning messages specific to the 8051

IAR Assembler.

Document conventions

8051 IAR Assembler
x Reference Guide

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within or to another guide.

Identifies instructions specific to the versions of the IAR Systems tools
for the IAR Embedded Workbench interface.

Identifies instructions specific to the command line versions of IAR
Systems development tools.

Table 1: Typographical conventions used in this guide

Introduction to the 8051
IAR Assembler

This chapter describes the source code format for the 8051 IAR Assembler. It
provides programming hints for the assembler and shows the format of
assembler list files.

Refer to 8051 hardware documentation for syntax descriptions of the
instruction mnemonics.

Source format

The format of an assembler source line is as follows:
[label [:]1] [operation] [operands] [; comment]

where the components are as follows:

label A label, which is assigned the value and type of the current
program location counter (PLC). The : (colon) is optional if the
label starts in the first column.

operation An assembler instruction or directive. This must not start in the
first column.
operands An assembler instruction can have zero, one, or two operands

that are separated by commas.

comment Comment, preceded by a ; (semicolon).

The fields can be separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 093, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

Assembler expressions

Expressions can consist of operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers, and range
checking is only performed when a value is used for generating code.

Assembler expressions

8051 IAR Assembler
2 Reference Guide

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators. For more information, see Precedence of operators, page 25.

The following operands are valid in an expression:

e User-defined symbols and labels.
e Constants, excluding floating-point constants.
o The program location counter (PLC) symbol, $.

These are described in greater detail in the following sections.

The valid operators are described in the chapter Assembler operators, page 25.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the JAR XLINK
Linker™. There are no restrictions on the expression; any operator can be used on
symbols from any segment, or any combination of segments. For example, a program
could define the segments DATA and CODE as follows:

NAME progl
EXTERN third
RSEG DATA
first DB 5
second DB 3
ENDMOD
MODULE prog2
EXTERN first
EXTERN second
EXTERN third
RSEG CODE

MOV R7,first

MOV R7,first+1

MOV R7,1l+first

MOV R7, (first/second) *third

Note: At assembly time, there will be no range check. The range check will occur at
link time and, if the values are too large, there will be a linker error.

Introduction to the 8051 IAR Assembler __4

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant.

Symbols must begin with a letter, a—z or A-Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

For built-in symbols like instructions, registers, operators, and directives case is
insignificant. For user-defined symbols case is by default significant but can be turned
on and off using the Case sensitive user symbols (- s) assembler option. See page 21
for additional information.

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)
The program location counter is called $. For example:

SJIMP S ; Loop forever

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front
to indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b, b’1010’

Octal 1234q, gq'1234’

Decimal 1234, -1, d’l234’
Hexadecimal OFFFFh, OXFFFF, h’'FFFF’

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

Assembler expressions

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single
or double quotes. Only printable characters and spaces may be used in ASCII strings.
If the quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

’ABCD’ ABCD (four characters).

"ABCD" ABCD\0’ (five characters the last ASCII null).
AP A'B

PAT A

!17 1 (4 quotes) ¢

/' (2 quotes) Empty string (no value).
" Empty string (an ASCII null character).
\’ ’

\\ \

Table 3: ASCII character constant formats

PREDEFINED SYMBOLS

The 8051 IAR Assembler defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test
them in preprocessor directives or include them in the assembled code.

Symbol Value

__DATE__ Current date in dd/Mmm/yyyy format (string).

__FILE__ Current source filename (string).

__|IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes with the following
contents::
Bit 0-7 Always 0.
Bit 8-14 Target Id, which is 14 (0OEH) for 8051
Bit 15 Intrinsic support

__TIME__ Current time in hh: mm: ss format (string).

__VER_ Version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 4: Predefined symbols

8051 IAR Assembler
4 Reference Guide

Introduction to the 8051 IAR Assembler __4

Notice that TID _ isrelated to the predefined symbol TID inthe 8051 IAR
Compiler. It is described in the chapter Predefined symbols reference in the 8051 IAR
C Compiler Reference Guide.

Including symbol values in code

To include a symbol value in the code, you use the symbol in one of the data definition
directives.

For example, to include the time of assembly as a string for the program to display:

RSEG DATA

td DB __TIME_ ,",",_DATE_ ,0 ; time and date
RSEG CODE
EXTERN printstring

main
MOV R4, td ; load address of string
LCALL printstring ; routine to print string
RET

Testing symbols for conditional assembly
To test a symbol at assembly time, you use one of the conditional assembly directives.

For example, you may want to assemble appropriate code for a specific processor such
as the 8051 microprocessor. You could do this using the __TID_ _ symbol as
follows:

#define TARGET ((__TID & O0xOF00)>>8)

#if (TARGET==0x0E)
#else

#endif

Register symbols

Definitions of the symbols for registers—including standard SFRs—for the different
processor variants, are supplied in the sfrnnn. inc files in the \ inc directory.

Programming hints

This section gives hints on how to write efficient code for the 8051 IAR Assembler.

List file format

SPECIAL FUNCTION REGISTERS

Specific header files for a number of 8051 derivatives are included in the IAR product
package. The header files are named sfrnnn. inc, for example sfr515a. inc, and
define the processor-specific special function registers (SFRs).

Since the 8051 IAR Assembler has predefined SFR declarations, you should not
declare those SFRs for the application program. For information about which SFRs
are predefined, see the A8051 . htm file.

The header files are also suitable to use as templates when creating new header files
for other 8051 derivatives.

Example

The SFR timer 2 controll register T2 CON is located at address 0xC8. The definition for
this is:
sfr T2CON = 0xC8

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef _ IAR SYSTEMS_ASM _
(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments.

List file format

8051 IAR Assembler
6 Reference Guide

This section shows how the assembly code is represented in the assembler list file. The
following code example is used:

NAME dio

; define the ports
ASEG DATA

; define the macros
strobe MACRO

MOV A, P1

ORL 1,#128

MOV P1,A

Introduction to the 8051 IAR Assembler __4

ANL 1,#127
MOV P1,A
ENDM

outdat MACRO wval
MOV P3,val
ENDM

; vector table
ASEG CODE
ORG 0
SJMP main ; Reset vector

; main code
ORG 0x001C
main
outdat #23
strobe
outdat #40
strobe
done
JMP done
END

The following section shows the format of the 8051 IAR Assembler list file.

HEADER
The header section shows the selected command line options:

T
IAR Systems 8051 Assembler VN.nnx/XXX nn/Mmm/yyyy hh:mm:ss
Copyright 1999 IAR Systems. All rights reserved.

Source file = c:\iar\ew23\8051\tutor\dio.s03

List file = c:\iar\ew23\8051\projects\debug\list\dio.lst
Object file = c:\iar\ew23\8051\projects\debug\obj\dio.r03
Command line = -s+ -M<> -w+

-LC:\IAR\EW23\8051\Projects\Debug\List\ -t8
-IC:\IAR\EW23\8051\inc\
-0C:\IAR\EW23\8051\Projects\Debug\Obj\ -r
C:\IAR\EW23\8051\tutor\dio.s03

F

List file format

8051 IAR Assembler
8 Reference Guide

BODY

The body of the list file shows the assembler-generated code:

[N G S N N N

14
18
19
20
21
22
23
24
25
26
27

27.
27.

28

28.
28.
28.
28.
28.
28.

29

29.
29.

30

30.
30.
30.
30.
30.
30.

31
32
33

o Uk W N

N

o Ul W N

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000002
000002
00001C
00001C
00001C
00001C
00001F
00001F
00001F
000021
000024
000026
000029
00002B
00002B
00002B
00002E
00002E
00002E
000030
000033
000035
000038
00003A
00003A
00003A
00003C

801A

75B017

E590
430180
F590
53017F
F590

75B028

E590
430180
F590
53017F
F590

80FE

NAME dio

; define the ports

ASEG DATA

; define the macros

; vector table

ASEG CODE
ORG 0
SJMP main

; main code

main

done

ORG 0x001C

outdat #23
MOV P3,#23
ENDM
strobe
MOV A, P1
ORL 1,#128
MOV P1,A
ANL 1,#127
MOV P1,A
ENDM
outdat #40
MOV P3,#40
ENDM

strobe
MOV A, P1
ORL 1,#128
MOV P1,A
ANL 1,#127
MOV P1,A
ENDM

JMP done
END

Lines generated by macros will, if listed, have a

field:

27.
27.

1
2

00001C
00001F

75B017

MOV P3,#23
ENDM

i

Reset vector

. (period) in the source line number

Introduction to the 8051 IAR Assembler __4

For information about assembler macros, see Macro processing directives, page 58.

CRC

The CRC section contains the assembler report where the CRC checksum value can
be used for verifying the integrity of the assembled code:

FHHEHHEHHEHHEHHEHHRH

CRC:125B
Errors: 0
Warnings: 0
Bytes: 34

HHHEHHEHHE R

LIST FIELDS
The assembly list contains the following fields of information:

o The line number in the source file. Lines generated by macros will, if listed, have
a . (period) in the source line number field.

e The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unsolved values are represented by (periods) in the list file,
where two periods signify one byte. These unsolved values will be solved during
the linking process.

e The assembler source line.

28 00001F strobe
28.1 00001F E590 MOV A, P1
28.2 000021 430180 ORL 1,#128
28.3 000024 F590 MOV P1,A
Source line Data field Source line
number
Address field

Figure 1: Assembler list fields

Output formats

Segments

Symbols

SYMBOL AND CROSS-REFERENCE TABLE

If the LSTXRF+ directive has been included, or the option -x has been specified, the
following symbol and cross-reference table is produced:

Segment Type Mode

ASEG CODE ABS 0Org:0

Label Mode Type Segment Value/Offset
AC ABS CONST UNTYP. ASEG D6

ACC ABS CONST UNTYP. ASEG EO

B ABS CONST UNTYP. ASEG FO

DPH ABS CONST UNTYP. ASEG 83

Figure 2: Symbol and cross-reference table in assembler list file

The following information is provided for each symbol in the table:

Information Description

Label The label’s user-defined name.

Mode ABS (Absolute), or REL (Relative).

Type The label’s type.

Segment The name of the segment to which this label is defined relative.
Value/Offset The value (address) of the label within the current module, relative to the

beginning of the current segment part.

Table 5: Symbol and cross-reference table

Output formats

8051 IAR Assembler
|0 Reference Guide

The relocatable and absolute output is in the same format for all IAR assemblers,
because object code is always intended for processing with the IAR XLINK Linker.

In absolute formats, the output from XLINK is, however, normally compatible with
the chip vendor’s debugger programs (monitors), as well as with PROM programmers
and stand-alone emulators from independent sources.

Assembler options

This chapter explains how to set assembler options from the command line
and provides the syntax and a description of each of the options.

Refer to the IAR Embedded Workbench™ User Guide for information about the
assembler options available in the IAR Embedded Workbench and how to set
them.

Setting assembler options

To set assembler options from the command line, you include them on the command
line, after the a8051 command:

a8051 [options] [sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2.s03, use the following
command to generate a list file to the default filename (power2.1st):

a8051 power2 -L

Some options accept a filename, included after the option letter with a separating
space. For example, to generate a list file with the name 1ist.1lst:

a8051 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the
option letter, but without a space. For example, to generate a list file to the default
filename but in the subdirectory named list:

a8051 power2 -Llist)\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option.

Setting assembler options

8051 IAR Assembler
|2 Reference Guide

For example, to read the command line options from extend.xc1l, enter:

a8051 -f extend.xcl

Error return codes

When using the 8051 IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take
next. For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 6: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASM8051 environment variable. The
assembler appends the value of this variable to every command line, so it provides a
convenient method of specifying options that are required for every assembly.

The following environment variables can be used with the 8051 IAR Assembler:

Environment variable Description

ASM8051 Specifies command line options; for example:
set ASM8051=-L -ws

A8051 INC Specifies directories to search for include files; for
example:

set A8051 INC=c:\myinc\

Table 7: Asssembler environment variables

For example, setting the following environment variable will always generate a list
file with the name temp. 1st:

ASM8051=-1 temp.lst

Assembler options __

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B
-b

-c{DsEaoMC}

-Dsymb[=value]

-d

-f extend.xcl

-G
-Iprefix
-1

-L[prefix]

-1 filename

-Mab
-N

-Oprefix

-o filename

-plines
-r[en]
-S
-s{+|-}
-T

-tn
-Usymb

-u

-v[o|1]2|3]|4]|5]6]

-w[string] [s]

-x{DI12}

Macro execution information
Make a library module
Conditional list

Define symbol

Disable #ifdef/#endif matching
Extend the command line
Open standard input as source
Include paths

#included text

List to prefixed source name
List to named file

Macro quote characters

No header

Set object filename prefix
Set object filename
Lines/page

Generate debug information
Set silent operation

Case sensitive user symbols
Active lines only

Tab spacing

Undefine symbol

Use A8051 V2.xx operators
Processor configuration
Disable warnings

Include cross-reference

Table 8: Assembler options summary

Descriptions of assembler options

Descriptions of assembler options

8051 IAR Assembler
|4 Reference Guide

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the
standard output stream on every call of a macro. The information consists of:

The name of the macro.

The definition of the macro.

The arguments to the macro.

The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 17.

This option is identical to the Macro execution info option on the List page of the
A8051 category in the IAR Embedded Workbench.

-b
This option causes the object file to be a library module rather than a program module.
By default, the assembler produces a program module ready to be linked with the IAR

XLINK Linker. Use the -b option if you instead want the assembler to make a library
module for use with XLIB.

If the NAME directive is used in the source (to specify the name of the program
module), the -b option is ignored, i.e. the assembler produces a program module
regardless of the -b option.

This option is identical to the Make a LIBRARY module option on the Code
generation page in the A8051 category in the AR Embedded Workbench.

-c{DSEAOMC}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 17 for additional
information.

Assembler options __

The following table shows the available parameters:

Command line option Description

-cA Assembled lines only

-cC Include total cycle count
-cD Disable list file

-cE No macro expansions

-cM Macro definitions

-cO Multiline code

-cS No structured assembler list

Table 9: Conditional list (-c)

This option is related to the List options in the A8051 category in the IAR Embedded
Workbench.

Dsymb [=valuel

Use this option to define a preprocessor symbol with the name symb and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.

Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol testver was defined. To
do this, use include sections such as:

#ifdef testver

.. ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

production version: a8051 prog
test version: a8051 prog -Dtestver

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

a8051 prog -Dframerate=3

This option is identical to the #define option in the A8051 category in the
IAR Embedded Workbench.

Descriptions of assembler options

8051 IAR Assembler
|6 Reference Guide

-d

-d

Allows unmatched #ifdef .. #endif statements to be used without causing an
error.

The checks for #ifdef .. #endif matching are performed for each module, and a
#endif outside modules will therefore normally generate an error message. Use this
option to turn checking off.

Example
This allows you to write constructs such as:

#ifdef Versionl
MODULE M1
NOP
ENDMOD
#endif
MODULE M2

etc
This option is identical to the Disable #ifdef/#endif matching option on the Code
generation page in the A8051 category in the AR Embedded Workbench.

-f extend.xcl

This option extends the command line with text read from the file named
extend.xcl. Notice that there must be a space between the option itself and the
filename.

The - £ option is particularly useful where there is a large number of options which
are more conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xc1, use:

a8051 prog -f extend.xcl

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-1

Assembler options __

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the
#include file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the A8051 INC environment variable. The - I
option allows you to give the assembler the names of directories where it will also
search if it fails to find the file in the current working directory.

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\globall\, and finally in the directory c: \thisproj\headers\
provided that the A8051_INC environment variable is set.

This option is related to the #include option in the A8051 category in the
IAR Embedded Workbench.

-i
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these often come
from standard files and would waste space in the list file. The - i option allows you to
list these file lines.

This option is related to the #include option in the A8051 category in the
TIAR Embedded Workbench.

-L[prefix]

By default the assembler does not generate a list file. Use this option to make the
assembler generate one and sent it to file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to
the file with the same name as the source, but extension 1st.

The -L option lets you specify a prefix, for example to direct the list file to a
subdirectory. Notice that you must not include a space before the prefix.

Descriptions of assembler options

8051 IAR Assembler
|8 Reference Guide

-L may not be used at the same time as -1.

Example
To send the list file to 1ist\prog. 1st rather than the default prog.1lst:
a8051 prog -Llist)\

This option is related to the List options in the A8051 category in the IAR Embedded
Workbench.

-1 filename

Use this option to make the assembler generate a listing and send it to the file
filename. If no extension is specified, 1st is used. Notice that you must include a
space before the filename.

By default, the assembler does not generate a list file. The -1 option generates a
listing, and directs it to a specific file. To generate a list file with the default filename,
use the -L option instead.

This option is related to the List options in the A8051 category in the IAR Embedded
Workbench.

-Mab

This option sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Example

For example, using the option:

-MI1

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

This option is identical to the Macro quote chars option on the Code generation
page for the A8051 category in the IAR Embedded Workbench.

Assembler options __

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 17 for
additional information.

This option is related to the List options in the A8051 category in the IAR Embedded
Workbench.

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that
you must not include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj\prog.r03 rather than to the default file
prog.r03:

a8051 prog -Oobj\

This option is related to the Output directories option in the General category in the
TIAR Embedded Workbench.

-o filename

This option sets the filename to be used for the object file. Notice that you must
include a space before the filename. If no extension is specified, r03 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r03 instead
of the default prog.r03:

a8051 prog -o obj

Notice that you must include a space between the option itself and the filename.

Descriptions of assembler options

8051 IAR Assembler
20 Reference Guide

This option is related to the filename and directory that you specify when creating a
new source file or project in the JAR Embedded Workbench.

-plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 17 for
additional information.

This option is identical to the Lines/page option on the List page in the A8051
category in the IAR Embedded Workbench.

-r[en]

The -r option makes the assembler generate debug information that allows a
symbolic debugger such as C-SPY to be used on the program.

By default, the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

The following table shows the available parameters:

Command line option Description

-re Includes the full source file into the object file

-rn Generates an object file without source
information; symbol information will be
available.

Table 10: Generating debug information (-r)

This option is identical to the Debug option in the A8051 category in the
TIAR Embedded Workbench.

-S

The -s option causes the assembler to operate without sending any messages to the
standard output stream.

By default, the assembler sends various insignificant messages via the standard output
stream. Use the - S option to prevent this.

The assembler sends error and warning messages to the error output stream, so they
are displayed regardless of this setting.

Assembler options __

-s{+]-}
Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 11: Controlling case sensitivity in user symbols (-s)

By default, case sensitivity is on. This means that, for example, LABEL and label
refer to different symbols. Use -s- to turn case sensitivity off, in which case LABEL
and label will refer to the same symbol.

This option is identical to the Case sensitive user symbols option on the Code
generation page in the A8051 category in the IAR Embedded Workbench.

-T

Includes only active lines, for example not those in false #1i £ blocks. By default, all
lines are listed.

This option is useful for reducing the size of listings by eliminating lines that do not
generate or affect code.

This option is identical to the Active lines only option on the List page in the A8051
category in the IAR Embedded Workbench.

-tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 17 for
additional information.

This option is identical to the Tab spacing option in the List page for the A8051
category in the IAR Embedded Workbench.

-Usymb

Use the -U option to undefine the predefined symbol symb.

21

Descriptions of assembler options

8051 IAR Assembler
22 Reference Guide

By default, the assembler provides certain predefined symbols; see Predefined
symbols, page 4. The -U option allows you to undefine such a predefined symbol to
make its name available for your own use through a subsequent -D option or source
definition.

Example

To use the name of the predefined symbol TIME _ for your own purposes, you
could undefine it with:

ag8051 prog -U _ TIME

This option is identical to the #undef option in the A8051 category in the
IAR Embedded Workbench.

-u

Causes the assembler to use the A8051 V2.xx operators.

-w[string] [s]

By default, the assembler displays a warning message when it detects an element of
the source which is legal in a syntactical sense, but may contain a programming error;
see Assembler diagnostics, page 87, for details.

Use this option to disable warnings. The -w option without a range disables all
warnings. The -w option with a range performs the following:

Command line option Description

-w+ Enables all warnings.

-w- Disables all warnings.
-w+n Enables just warning 1.
-w-n Disables just warning n.
-w+m-n Enables warnings m to n.
-w-m-n Disables warnings m to n.

Table 12: Disabling assembler warnings (-w)
Only one -w option may be used on the command line.

By default, the assembler generates exit code O for warnings. Use the -ws option to
generate exit code 1 if a warning message is produced.

Assembler options __

Example

To disable just warning O (unreferenced label), use the following command:
a8051 prog -w-0

To disable warnings O to 8, use the following command:

a8051 prog -w-0-8

This option is identical to the Warnings option on the Code generation page for the
A8051 category in the IAR Embedded Workbench.

-x -x{DI2}

Use this option to make the assembler include a cross-reference table at the end of the
list file; see the chapter Introduction to the 8051 IAR Assembler, for an example.

This option is useful in conjunction with the list options -L or -1; see page 17 for
additional information.

The following parameters are available:

Command line option Description
-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 13: Including cross-references in assembler list file (-x)

This option is identical to the Include cross-reference option on the List page for the
A8051 category in the IAR Embedded Workbench.

23

Descriptions of assembler options

8051 IAR Assembler
24 Reference Guide

Assembler operators

This chapter describes the order of precedence for the assembler operators
and defines them. Furthermore, examples and a detailed description are given
for each assembler operator.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in
which the operator and its operands are evaluated. The precedence numbers range
from 1 (the highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e.
last evaluated).

The following rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are
evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown in brackets after the operator name.

UNARY OPERATORS - |

+ Unary plus

- Unary minus
NOT (!) Logical NOT
LOW Low byte
HIGH High byte
BYTE2 Second byte

BYTE3 Third byte

Summary of assembler operators

8051 IAR Assembler
26 Reference Guide

LWRD
HWRD
DATE
SFB
SFE
SIZEOF

BITNOT (~)

Low word

High word
Current date/time
Segment begin
Segment end
Segment size

Bitwise NOT

MULTIPLICATIVE ARITHMETIC AND SHIFT OPERATORS -2

*

/

MOD (%)

Multiplication
Division

Modulo

ADDITIVE ARITHMETIC OPERATORS -3

+

SHIFT OPERATORS -4

SHR (>>)

SHL (<<)

AND OPERATORS -5

AND (&&)

BITAND (&)

OR OPERATORS -6
OR (||

XOR

BITOR ()

BITXOR (%)

Addition

Subtraction

Logical shift right
Logical shift left

Logical AND

Bitwise AND

Logical OR
Logical exclusive OR
Bitwise OR

Bitwise exclusive OR

Assembler operators __o

COMPARISON OPERATORS -7

EQ, (=, ==) Equal

GE, (>=) Greater than or equal
GT, (>) Greater than

LE, (<=) Less than or equal
LT, (<) Less than

NE, (<>, !=) Not equal

UGT Unsigned greater than
ULT Unsigned less than

Descriptions of assembler operators

The following sections give detailed descriptions of each assembler operator. See
Assembler expressions, page 1, for related information.

* Multiplication (2).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Examples

2*2 > 4
-2*2 > -4

+ Unary plus (1).

Unary plus operator.

Examples

+3 ™ 3
3*+2 > 6

+ Addition (3).

The + addition operator produces the sum of the two operands which surround it.

27

Descriptions of assembler operators

8051 IAR Assembler
28 Reference Guide

AND

(&&)

The operands are taken as signed 32-bit integers and the result is also a signed 32-bit
integer.

Examples

92+419 — 111
-242 — 0
-2+-2 > -4

Unary minus (1).
The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is
the two’s complement negation of that integer.

Subtraction (3).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result
is also signed 32-bit integer.

Examples

92-19 — 73
-2-2 7 -4
-2--2 2> 0

Division (2).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit
integer.

Examples

9/2 — a4
-12/3 —> -4
9/2%6 — 24

Logical AND (5).

Use AND to perform logical AND between its two integer operands. If both operands
are non-zero the result is 1; otherwise it is zero.

BITAND (&)

BITNOT

BITOR

BITXOR

(~)

(N

")

Assembler operators __o

Examples

B’1010 AND B’0011 —> 1
B’1010 AND B’0101 — 1
B’1010 AND B’0000 —> O

Bitwise AND (5).

Use BITAND to perform bitwise AND between the integer operands.

Examples

B’1010 BITAND B’0011 — B’0010
B’1010 BITAND B’0101 — B’0000
B’1010 BITAND B’0000 — B’'0000

Bitwise NOT (1).

Use BITNOT to perform bitwise NOT on its operand.

Example

BITNOT B’1010 — B’11111111111111111111111111110101

Bitwise OR (6).

Use BITOR to perform bitwise OR on its operands.

Examples

B’1010 BITOR B’0101 — B’1111
B’1010 BITOR B’0000 — B’1010

Bitwise exclusive OR (6).

Use BITXOR to perform bitwise XOR on its operands.

Examples

B’1010 BITXOR B’0101 — B’1111
B’1010 BITXOR B’0011 — B’1001

29

Descriptions of assembler operators

8051 IAR Assembler
30 Reference Guide

BYTE2

BYTE3

DATE

Second byte (1).

BYTE2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 —> 0x56

Third byte (1).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 —> 0x34

Current date/time (1).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59)

DATE 2 Current minute (0-59)

DATE 3 Current hour (0-23)

DATE 4 Current day (1-31)

DATE 5 Current month (1-12)

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02)
Example

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

Equal (7).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

GE, >=

GT, >

HIGH

HWRD

Assembler operators __o

"ABC’ = 'ABCD’ > 0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value
than the right operand.

Examples

1 >=2 >0
2 >=1 > 1
1 >=1—>1

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Examples

-1 >1 >0
2 >1 > 1
1 >1—>0

Second byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD —> O0xAB

High word (1).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

31

Descriptions of assembler operators

8051 IAR Assembler
32 Reference Guide

LE, <=

LOW

LT, <

LWRD

Example

HWRD 0x12345678 —> 0x1234

Less than or equal (7).

<= evaluates to 1 (true) if the left operand has a lower or equal numeric value to the
right operand.

Examples

1 <=2 > 1
2 <=1 >0
1 <=1 1
Low byte (1).

LOW takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW OxABCD — 0xCD

Less than (7).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Examples

-l <2 > 1
2 <1 ™0
2 <2 >0

Low word (1).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 —> 0x5678

Assembler operators __o

MOD (%) Modulo (2).

MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a
signed 32-bit integer.

X MOD Y isequivalent to X-Y* (X/Y) using integer division.

Examples

2 MOD 2 > 0
12 MOD 7 > 5
3 MOD 2 > 1

NE, <>, != Notequal (7).

<> evaluates to O (false) if its two operands are identical in value or to 1 (true) if its
two operands are not identical in value.

Examples

1 <>2 > 1
2 <> 2 >0
A" <> 'B’ > 1

NOT (!) Logical NOT (1).

Use NOT to negate a logical argument.

Examples

NOT B’0101 —> O
NOT B’0000 — 1

OR (|]) Logical OR (6).

Use OR to perform a logical OR between two integer operands.

Examples

B’1010 OR B’0000 — 1
B’0000 OR B’0000 — O

33

Descriptions of assembler operators

8051 IAR Assembler
34 Reference Guide

SFB Segment begin (1).

SFE

Syntax

SFB(segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined
before SFB is used.

offset An optional offset from the start address. The parentheses

are optional if of fset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a
relocatable segment. The operator evaluates to the absolute address of the first byte of
that segment. This evaluation takes place at linking time.

Examples

NAME demo
RSEG CODE
start: DC1l6 SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to
the address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined
before SFE is used.

offset An optional offset from the start address. The parentheses

are optional if of fset is omitted.

Assembler operators __o

Description

SFE accepts a single operand to its right. The operand must be the name of a
relocatable segment. The operator evaluates to the segment start address plus the
segment size. This evaluation takes place at link time.

Examples

NAME demo
RSEG CODE
end: DClé SFE(CODE)

Even if the above code is linked with many other modules, end will still be set to the
first byte after that segment (CODE).

SHL (<<) Logical shift left (4).

Use SHL to shift the left operand, which is always treated as unsigned, to the left.
The number of bits to shift is specified by the right operand, interpreted as an integer
value between 0 and 32.

Examples

B’00011100 SHL 3 — B’11100000
B’00000111111111111 SHL 5 —> B’11111111111100000
14 SHL 1 — 28

SHR (>>) Logical shift right (4).

Use SHR to shift the left operand, which is always treated as unsigned, to the right.
The number of bits to shift is specified by the right operand, interpreted as an integer
value between 0 and 32.

Examples

B’01110000 SHR 3 — B’00001110
B’1111111111111111 SHR 20 > O
14 SHR 1 —> 7

SIZEOF Segment size (1).

Syntax

SIZEOF segment

35

Descriptions of assembler operators

8051 IAR Assembler
36 Reference Guide

UGT

ULT

XOR

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a
relocatable segment; i.e. it calculates the size in bytes of a segment. This is done when
modules are linked together.

Examples

The following example sets size to the size of segment CODE.

NAME demo
RSEG CODE
size: DC1le6 SIZEOF CODE

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand.
The operation treats its operands as unsigned values.

Examples

2 UGT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.

Examples

1 ULT 2 > 1
-1 ULT 2 > 0

Logical exclusive OR (6).

Use XOR to perform logical XOR on its two operands.

Assembler operators __o

Examples

B’0101 XOR B’1010 —> O
B’0101 XOR B’0000 —> 1

37

Descriptions of assembler operators

8051 IAR Assembler
38 Reference Guide

Assembler directives

This chapter gives an alphabetical summary of the assembler directives,
describes the syntax conventions, and provides complete reference
information about directives for module control, symbol control, segment
control, value assignment, conditional assembly, macro processing, listing
control, C-style preprocessor, data definition or allocation, and assembler

control.

Summary of directives

The following table gives a summary of all the assembler directives.

Directive

Description

Section

$
#define
#elif

#else
#endif
#error

#if

#ifdef
#ifndef
#include
#message
#undef
/*comment */

/7

ALIAS
ALIGN

ASEG
ASSIGN

Includes a file.

Assigns a value to a label.

Assembler control

C-style preprocessor

Introduces a new condition in a #if...#endif C-style preprocessor

block.

Assembles instructions if a condition is false.
Endsa #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.

Assembles instructions if a symbol is defined.

Assembles instructions if a symbol is undefined.

Includes a file.

Generates a message on standard output.
Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the location counter by inserting
zero-filled bytes.

Begins an absolute segment.

Assigns a temporary value.

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control

Value assignment

Table 14: Assembler directives summary

39

Summary of directives

8051 IAR Assembler
40 Reference Guide

Directive Description Section
BREAK Exits prematurely from a loop or switch Structured assembly
construct
CASE Case in SWITCH block. Structured assembly
CASEOFF Disables case sensitivity. Assembler control
CASEON Enables case sensitivity. Assembler control
COL Sets the number of columns per page. Listing control
COMMON Begins a common segment. Segment control
CONTINUE Continues execution of a loop or switch Structured assembly
construct
CYCLEMAX Selects the greater of two possible cyclecount Listing controls
values
CYCLEMEAN Selects the mean value Listing controls
CYCLEMIN Selects the lower of two possible cyclecount Listing controls
values
CYCLES Sets the listed cycle count Listing control
DB Generates 8-bit byte constants, including strings. Data definition or
allocation
DC16 Generates |6-bit word constants, including Data definition or
strings. allocation
DC24 Generates 24-bit word constants. Data definition or
allocation
DC32 Generates 32-bit long word constants. Data definition or
allocation
DC8 Generates 8-bit byte constants, including strings. Data definition or
allocation
DD Generates 32-bit long word constants. Data definition or
allocation
DEFAULT Default case in SWITCH block Structured assembly
DEFINE Defines a file-wide value. Value assignment
DS Allocates space for 8-bit bytes. Data definition or
allocation
DS16 Allocates space for |6-bit words. Data definition or
allocation
DS24 Allocates space for 24-bit words. Data definition or

allocation

Table 14: Assembler directives summary (continued)

Assembler directives __¢

Directive Description Section
DS32 Allocates space for 32-bit words. Data definition or
allocation
DS8 Allocates space for 8-bit bytes. Data definition or
allocation
DT Generates 24-bit word constants Data definition or
allocation
DW Generates |6-bit word constants, including Data definition or
strings. allocation
ELSE Assembles instructions if a condition is false. Conditional assembly
ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.
ELSEIFS Specifies a new condition inan IF. . .ENDIF Structured assembly
block.
ELSES Specifies instructions to be executed if a Structured assembly
condition is false.
END Terminates the assembly of the last module ina Module control
file.
ENDF Ends a FOR loop Structured assembly
ENDIF Ends an IF block. Conditional assembly
ENDIFS Ends an IFS block. Structured assembly
ENDM Ends a macro definition. Macro processing
ENDMOD Terminates the assembly of the current module. Module control
ENDR Ends a REPT, REPTC or REPTI structure Macro processing
ENDS Ends a SWITCH block. Structured assembly
ENDW Ends a WHILE loop. Structured assembly
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. Segment control
EXITM Exits prematurely from a macro. Macro processing
EXPORT Exports symbols to other modules. Symbol control
EXTERN Imports an external symbol. Symbol control
EXTRN Imports an external symbol. Symbol control
FOR Repeats subsequent instructions a specified Structured assembly
number of times.
IF Assembles instructions if a condition is true. Conditional assembly

Table 14: Assembler directives summary (continued)

41

Summary of directives

8051 IAR Assembler
42 Reference Guide

Directive

Description

Section

IFS

IMPORT
LIBRARY
LIMIT
LOCAL
LSTCND
LSTCOD
LSTCYC
LSTEXP
LSTMAC
LSTOUT
LSTPAG

LSTREP

LSTSAS
LSTXRF
MACRO
MODULE
NAME
ODD
ORG
PAGE
PAGSIZ
PROGRAM
PUBLIC
RADIX

REPEAT

REPT

REPTC
REPTI
RSEG
SET

Specifies instructions to be executed if a

condition is true

Imports an external symbol.

Begins a library module.

Checks a value against limits.

Creates symbols local to a macro.

Controls conditional assembly listing.
Controls multi-line code listing.

Controls the listing of cycle counts.

Controls the listing of macro generated lines.
Controls the listing of macro definitions.
Controls assembly-listing output.

Controls the formatting of output into pages.

Controls the listing of lines generated by repeat

directives.

Controls structured assembly listing

Generates a cross-reference table.

Defines a macro.

Begins a library module.

Begins a program module.

Aligns the program counter to an odd address.
Sets the location counter.

Generates a new page.

Sets the number of lines per page.

Begins a program module.

Exports symbols to other modules.

Sets the default base.

Repeats subsequent instructions until a condition

is true.

Assembles instructions a specified number of

times.

Repeats and substitutes characters.
Repeats and substitutes strings
Begins a relocatable segment.

Assigns a temporary value

Structured assembly

Symbol control
Module control
Value assignment
Macro processing
Listing control
Listing control
Listing control
Listing control
Listing control
Listing control
Listing control

Listing control

Listing control
Listing control
Macro processing
Module control
Module control
Segment control
Segment control
Listing control
Listing control
Module control
Symbol control
Assembler control

Structured assembly

Macro processing

Macro processing
Macro processing
Segment control

Value assignment

Table 14: Assembler directives summary (continued)

Assembler directives __¢

Directive Description Section

sfr Creates byte-access SFR labels. Value assignment
SFRTYPE Specifies SFR attributes. Value assignment
STACK Begins a stack segment. Segment control
SWITCH Multiple case switch Structured assembly
UNTIL Ends a REPEAT loop. Structured assembly
WHILE Repeats subsequent instructions until a condition Structured assembly

is true.

Table 14: Assembler directives summary (continued)

Syntax conventions

In the syntax definitions the following conventions are used:

Parameters, representing what you would type, are shown in italics. So, for example,
in:

ORG expr

expr represents an arbitrary expression.

Optional parameters are shown in square brackets. So, for example, in:
END [expr]

the expr parameter is optional. An ellipsis indicates that the previous item can be
repeated an arbitrary number of times. For example:

LOCAL symbol [,symboll]

indicates that LOCAL can be followed by one or more symbols, separated by commas.
Alternatives are enclosed in { and } brackets, separated by a vertical bar, for example:
LSTOUT{+] -}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as in:
label VAR expr

An optional label, which will assume the value and type of the current program
location counter (PLC), can precede all directives. For clarity, this is not included in
each syntax definition.

43

Module control directives

In addition, unless explicitly specified, all directives can be followed by a comment,
preceded by ; (semicolon).

PARAMETERS

The following table shows the correct form of the most commonly used types of
parameter:

Parameter What it consists of

expr An expression; see Assembler expressions, page |.
label A symbolic label.

symbol An assembler symbol.

Table 15: Assembler directive parameters

The following sections give full descriptions of each category of directives.

Module control directives

8051 IAR Assembler
44 Reference Guide

Module control directives are used for marking the beginning and end of source
program modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

RTMODEL Declares run-time model attributes.

Table 16: Module control directives

SYNTAX

END [label]

ENDMOD [labell

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

Assembler directives __o

PARAMETERS

expr Optional expression (0—-255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is output in the
object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when processing object
files.

value A text string specifying the value.

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
TIAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing lots of small modules—Ilike run-time
systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a
public symbol in the module.
Terminating a module

Use ENDMOD to define the end of a module.

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK
load maps, as well as in some of the hexadecimal absolute output formats. Program
entries must not be defined externally.

45

Symbol control directives

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and
the mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the /ast module, and there must not be any source

lines (except for comments and listing control directives) between an ENDMOD and a

MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of
the source file and the attribute program.

Symbol control directives

8051 IAR Assembler
46 Reference Guide

These directives control how symbols are shared between modules.

Directive Description

EXTERN (IMPORT) Imports an external symbol.

PUBLIC (EXPORT) Exports symbols to other modules.

Table 17: Symbol control directives

SYNTAX
EXTERN symbol [,symboll]
PUBLIC symbol [,symboll

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. The symbols
declared as PUBLIC can only be assigned values by using them as labels. Symbols
declared PUBLIC can be relocated or absolute, and can also be used in expressions
(with the same rules as for other symbols).

The PUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the
LOW, HIGH, BYTE2, and BYTE3 operators, any part of such a constant can be loaded
in an 8-bit or 16-bit register or word.

Assembler directives __¢

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Importing symbols

Use EXTERN to import an untyped external symbol.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules. It defines print as an
external routine; the address will be resolved at link time.

Since the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

err CALL print
DB |I*****Error****|l
RET
END err

Segment control directives

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the location counter by inserting zero-filled bytes.
ASEG Begins an absolute segment.

COMMON Begins a common segment.

EVEN Aligns the program counter to an even address.

ODD Aligns the program counter to an odd address.

ORG Sets the location counter.

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

Table 18: Segment control directives

47

Segment control directives

8051 IAR Assembler
48 Reference Guide

SYNTAX

ALIGN align [,valuel

ASEG [start [(align)]]

COMMON segment [:typel [(align)]
EVEN [value]

ODD [valuel

ORG expr

RSEG segment [:typel [flag] [(align)]
RSEG segment [:typel, address
STACK segment [:type] [(align)]

PARAMETERS

address

align

expr

flag

segment

start

type

value

Address where this segment part will be placed.

Exponent of the value to which the address should be aligned, in the range 0
to 30. For example, align 1 results in word alignment 2.

Address to set the location counter to.

NOROOT

This segment part may be discarded by the linker even if no symbols in this
segment part are referred to. Normally all segment parts except startup
code and interrupt vectors should set this flag. The default mode is ROOT
which indicates that the segment part must not be discarded.

REORDER

Allows the linker to reorder segment parts. For a given segment, all segment
parts must specify the same state for this flag. The default mode is
NOREORDER which indicates that the segment parts must remain in order.

SORT

The linker will sort the segment parts in decreasing alignment order. For a
given segment, all segment parts must specify the same state for this flag.
The default mode is NOSORT which indicates that the segment parts will
not be sorted.

The name of the segment.

A start address that has the same effect as using an ORG directive at the
beginning of the absolute segment.

The memory type; one of:

UNTYPED (the default), CODE, or DATA.

In addition, the following types are provided for compatibility with the IAR
C Compilers:

XDATA, IDATA, BIT, REGISTER, and CONST.

Byte value used for padding, default is zero.

Assembler directives __¢

DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning
of a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.
Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to
save the current segment location counter.

Up to 256 unique, relocatable segments may be defined in a single module.

Beginning a stack segment

Use STACK to allocate code or data allocated from high to low addresses (in contrast
with the RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the COMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share
areusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest occurrence
of this segment. The location in memory is determined by the XLINK -2z command;
see the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

49

Segment control directives

8051 IAR Assembler
50 Reference Guide

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

The result of the expression must be of the same type as the current segment, i.e. it is
not valid to use ORG 10 during RSEG, since the expression is absolute; use ORG $+10
instead. The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembly module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give
the desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1) and the EVEN directive
aligns the program counter to an even address.

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry addresses in the appropriate
8051 interrupt vectors using an absolute segment:

EXTERN iesrv,tOsrv
ASEG
ORG 0
JMP main ; Power on
ORG 3
JMP iesrv ; External interrupt
ORG O0BH
JMP t0srv ; Timer interrupt
ORG 30H
main: MOV A, #1
END

Assembler directives __¢

Beginning a relocatable segment

In the following example the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used to create a gap of six bytes
in the table.

The code following the second RSEG directive is placed in a relocatable segment
called code:

EXTERN divrtn,mulrtn
RSEG table
DW divrtn,mulrtn
ORG $+6
DW subrtn
RSEG code
subrtn MOV R6,R7
SUBI R6,20
END

Beginning a stack segment

The following example defines two 100-byte stacks in a relocatable segment called
rpnstack:

STACK rpnstack
parms DS 100
opers DS 100

END

The data is allocated from high to low addresses.

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl
COMMON data
count DD 1
ENDMOD
NAME commonz2
COMMON data
up DB 1
ORG S+2
down DB 1
END

51

Value assignment directives

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

RSEG data ; Start a relocatable data segment

EVEN ; Ensure it’s on an even boundary
target DW 1 ; Put target and best on even boundary
best DW 1

ALIGN 6 ; Now align to a 64 byte boundary
results DS 64 ; And create a 64 byte table

END

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
ASSIGN Assigns a temporary value.

DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
LIMIT Checks a value against limits.

SET (ASSIGN) Assigns a temporary value.

sfr Creates byte-access SFR labels.

SFRTYPE Specifies SFR attributes.

Table 19: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message

8051 IAR Assembler
52 Reference Guide

Assembler directives __¢

label SET expr

label EQU expr

label = expr

label DEFINE expr

LIMIT label,min,max, message

[const] sfr register = value

[const] SFRTYPE register attribute [,attribute] = value

PARAMETERS
attribute One or more of the following:
BYTE The SFR must be accessed as a byte.
READ You can read from this SFR.
WORD The SFR must be accessed as a word.
WRITE You can write to this SFR.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.
message A text message that will be printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.
register The special function register.
value The SFR port address.
DESCRIPTION

Defining a temporary value

Use SET to define a symbol that may be redefined, such as for use with macro
variables. Symbols defined with SET cannot be declared PUBLIC.

Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

53

Value assignment directives

8051 IAR Assembler
54 Reference Guide

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in the source file.

A symbol which has been given a value with DEFINE can be made available to
modules in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Defining special function registers

Use sfr to create special function register labels with attributes READ, WRITE, and
BYTE turned on. Use SFRTYPE to create special function register labels with specified
attributes.

Prefix the directive with const to disable the WRITE attribute assigned to the SFR.
You will then get an error or warning message when trying to write to the SFR.
Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during
linking if the expression contains external references. The min and max expressions
cannot involve references to forward or external labels, i.e. they must be resolved
when encountered.

EXAMPLES

Redefining a symbol

The following example uses SET to redefine the symbol cons in a REPT loop to
generate a table of the first 8 powers of 3:

NAME table
cons SET 1
buildit MACRO times
DW cons
cons SET cons * 3
IF times > 1
buildittimes - 1
ENDIF
ENDM
main buildit4
END

Assembler directives __¢

It generates the following code:

1 000000 NAME table

2 000001 cons SET 1

10 000000 main buildit 4

10 000000 main buildit 4

10.1 000000 OOO1 DW cons

10.2 000003 cons SET cons * 3

10.3 000002 IF 4 > 1

10.4 000002 buildit 4 -1

10.5 000002 0003 DW cons

10.6 000009 cons SET cons * 3

10.7 000004 IF 4 -1 >1

10.8 000004 buildit 4 -1 -1
10.9 000004 0009 DW cons

10.10 00001B cons SET cons * 3

10.11 000006 IF 4 -1 -1>1
10.12 000006 buildit 4 -1 -1-1
10.13 000006 001B DW cons

10.14 000051 cons SET cons * 3

10.15 000008 IF 4 -1 -1-1>1
10.16 000008 buildit 4 -1 -1-1-1
10.17 000008 ENDIF

10.18 000008 ENDM

10.19 000008 ENDIF

10.20 000008 ENDM

10.21 000008 ENDIF

10.22 000008 ENDM

10.23 000008 ENDIF

10.24 000008 ENDM

11 000008 END

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring 1ocn for use anywhere in the file:

NAME addl
locn DEFINE 020H
value EQU 77

CLR R7

MOV R6,1locn

MOV R4 ,A

MOV R5,value

ADD R6,R7

RET

ENDMOD

55

Conditional assembly directives

NAME add2
value EQU 77

CLR R7

MOV R6,1locn

MOV R4 ,A

MOV R5,value

ADD R6,R7

RET

END

The symbol 1ocn defined in module add1 is also available to module add2.

Using special function registers

In this example a number of SFR variables are declared with a variety of access
capabilities:

sfrb portd= 0x12/*byte read/write access*/
const sfrb pind= 0x10/*byte read only access*/

SFRTYPE portb write, byte= 0x18/*byte write only access*/

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it,
at assembly time, to see if it is in the range 10 to 30. This might be useful if speed is
often changed at compile time, but values outside a defined range would cause
undesirable behavior.

speed SET 23
LIMIT speed, 10,30, ...speed out of range...

Conditional assembly directives

8051 IAR Assembler
56 Reference Guide

These directives provide logical control over the selective assembly of source code.

Directive Description

IF Assembles instructions if a condition is true.
ELSE Assembles instructions if a condition is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.
ENDIF Ends an IF block.

Table 20: Conditional assembly directives

Assembler directives __¢

SYNTAX

IF condition

ELSE

ELSEIF condition

ENDIF

PARAMETERS

condition One of the following:

An absolute expression The expression must not contain forward
or external references, and any non-zero
value is considered as true.

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl<>string2 The condition is true if stringl and
string2 have different length or
contents.

DESCRIPTION

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an
ELSE or ENDIF directive is found.

Use ELSEIF tointroduce a new condition after an IF directive. Conditional assembler
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled
by the conditional directives. Each IFxx directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an
IF...ENDIFblock. IF...ENDIFand IF...ELSE. . .ENDIF blocks may be nested
to any level.

EXAMPLES

The following macro subtracts a constant from the register 'r’.

sub MACRO r,c

IF c=2
DEC r
ELSE

XCH A, r

57

Macro processing directives

SUBB A,c
XCH A,r
ENDIF
ENDM

If the argument to the macro is 2, it generates an SUBT instruction to save instruction
cycles; otherwise it generates a DEC instruction.

It could be tested with the following program:

main MOV
sub
MOV
sub
RET

END

R6, #7
R6, 2
R7,#22
R7,1

Macro processing directives

These directives allow user macros to be defined.

8051 IAR Assembler
58 Reference Guide

Directive Description

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

Table 21: Macro processing directives

SYNTAX

ENDM
ENDR
EXITM

LOCAL symbol [, symboll

name MACRO
REPT expr

[argument]

REPTC formal,actual
REPTI formal,actual [,actuall

Assembler directives __¢

PARAMETERS

actual String to be substituted.

argument A symbolic argument name.

expr An expression.

formal Argument into which each character of actual (REPTC) or each actual

(REPTT) is substituted.

name The name of the macro.
symbol Symbol to be local to the macro.
DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

For an example where macro directives are used, see List file format, page 6.

Defining a macro
You define a macro with the statement:
macroname MACRO [arg] [arg]

Here macroname is the name you are going to use for the macro, and argis an
argument for values that you want to pass to the macro when it is expanded.

For example, you could define a macro ERROR as follows:

errmac MACRO text

CALL abort
DB text, 0
ENDM

This macro uses a parameter text to set up an error message for a routine abort.
You would call the macro with a statement such as:

errmac 'Disk not ready'

59

Macro processing directives

8051 IAR Assembler
60 Reference Guide

The assembler will expand this to:

CALL abort
DB 'Disk not ready’,0

If you omit a list of one or more arguments, the arguments you supply when calling
the macro are called \1 to \9 and \A to \ Z.

The previous example could therefore be written as follows:

errmac MACRO

CALL abort
DB \1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used
before the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LOCAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted
as one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
MOV op
ENDM

The macro can be called using:

macld <R6, 1>
END

You can redefine the macro quote characters with the -M command line option; see
-M, page 18.

Assembler directives __¢

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The
following example shows how args can be used:

MODULE MAN

do_op MACRO
IF _args =
ADD \1,\2
ELSE
INC \1
ENDIF
ENDM

= 2

RSEG CODE

do_op A
do op A, #1

END

The following listing is generated:

1 000000 MODULE MAN
2 000000

10 000000

11 000000 RSEG CODE
12 000000

13 000000 do op A
13.1 000000 IF _args == 2
13.2 000000 ADD A,
13.3 000000 ELSE

13.4 000000 04 INC A
13.5 000001 ENDIF

13.6 000001 ENDM

14 000001 do_op A, #1
14.1 000001 IF _args == 2
14.2 000001 2401 ADD A, #1
14.3 000003 ELSE

14.4 000003 INC A
14.5 000003 ENDIF

14.6 000003 ENDM

15 000003

16 000003 END

61

Macro processing directives

8051 IAR Assembler
62 Reference Guide

How macros are processed
There are three distinct phases in the macro process:

e The assembler performs scanning and saving of macro definitions. The text
between MACRO and ENDM is saved but not syntax checked. Include-file references
$file are recorded and will be included during macro expansion.

e A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander
takes its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals
with text substitutions at source level. Before a line from the called macro
definition is handed over to the assembler, the expander scans the line for all
occurrences of symbolic macro arguments, and replaces them with their expansion
arguments.

e The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number
of times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If
the string contains a comma it should be enclosed in quotation marks.

Use REPTI to assemble a block of instructions once for each string in a series of
strings. Strings containing commas should be enclosed in quotation marks.
EXAMPLES

This section gives examples of the different ways in which macros can make
assembler programming easier.

Coding in-line for efficiency

In time-critical code it is often desirable to code routines in-line to avoid the overhead
of a subroutine call and return. Macros provide a convenient way of doing this.

The following example outputs bytes from a buffer to a port:

NAME play

RSEG XDATA
buffer DS 256

RSEG CODE

play MOV
MOV

loop MOVX
MOV
INC
DJINZ
RET
END

Assembler directives __¢

DPTR, #LWRD (buffer)
R5,255

A,@DPTR

P1l,A

DPTR

R5, loop

The main program calls this routine as follows:

doplay CALL

play

For efficiency we can recode this as the following macro:

NAME
PUBLIC

RSEG
buffer DS

play MACRO
LOCAL
MOV
MOV

loop MOVX
MOV
INC
DJINZ
RET
ENDM

RSEG
main: play
END

play
main

XDATA
256

loop
DPTR, #LWRD (buffer)
R5, #255

A, @DPTR

P1,A

DPTR

R5, loop

CODE

Notice the use of the LOCAL directive to make the label 1oop local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will

already exist.

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each

character in a string:

NAME

reptc

EXTERN plotc

63

Macro processing directives

banner REPTC chr, "Welcome"

MOV R6,'chr’
CALL plotc
ENDR

END

This produces the following code:

1 000000 NAME reptc
2 000000

3 000000 EXTERN plotc
4 000000 banner REPTC chr, "Welcome"
5 000000 MOV R6, 'chr’
6 000000 CALL plotc
7 000000 ENDR

7.1 000000 AE57 MOV R6,'W’
7.2 000002 12.... CALL plotc
7.3 000005 AE65 MOV R6,'e’
7.4 000007 12.... CALL plotc
7.5 O00000A AE6C MOV R6,"1’
7.6 00000C 12.... CALL plotc
7.7 00000F AE63 MOV R6,'c’
7.8 000011 12.... CALL plotc
7.9 000014 AE6F MOV R6,'0’
7.10 000016 12.... CALL plotc
7.11 000019 AE6D MOV R6,'m’
7.12 00001B 12.... CALL plotc
7.13 00001E AE65 MOV R6, e’
7.14 000020 12.... CALL plotc
8 000023

9 000023 END

The following example uses REPTI to clear a number of memory locations:

NAME repti
EXTERN base, count, init, func

banner REPTI adds, base, count, init

MOV RO, LOW (adds)
MOV R1,HIGH (adds)
CALL func

ENDR

END

8051 IAR Assembler
64 Reference Guide

Assembler directives __¢

This produces the following code:

1 000000 NAME repti

2 000000

3 000000 EXTERN base, count, init, func
4 000000

5 000000 banner REPTI adds, base, count, init
6 000000 MOV RO, LOW (adds)

7 000000 MOV R1,HIGH (adds)

8 000000 CALL func

9 000000 ENDR

9.1 000000 A8.. MOV RO, LOW (base)

9.2 000002 A9S.. MOV R1,HIGH (base)

9.3 000004 12.... CALL func

9.4 000007 AS8.. MOV RO, LOW (count)

9.5 000009 A9S.. MOV R1,HIGH (count)

9.6 00000B 12.... CALL func

9.7 O0O0OOOE AS8.. MOV RO, LOW (init)

9.8 000010 AS.. MOV R1,HIGH (init)

9.9 000012 12.... CALL func
10 000015
11 000015 END

Structured assembly directives

The structured assembly directives allow loops and control structures to be
implemented at assembly level.

Directive Description

BREAK Exits prematurely from a loop or switch construct.

CASE Case in S_SWITCH block.

CONTINUE Continues execution of a loop or switch construct.
DEFAULT Default case in S_SWITCH block.

ELSES Specifies instructions to be executed if a condition is false.
ELSEIFS Specifies a new conditioninan S_IF...S_ENDIF block.
ENDF Ends an S_FOR loop.

ENDIFS Ends an S_IF block.

ENDS Ends an S_SWITCH block.

ENDW Ends an S_WHILE loop.

FOR Repeats subsequent instructions a specified number of times.

Table 22: Structured assembly directives

65

Structured assembly directives

Directive Description

IFS Specifies instructions to be executed if a condition is true.
REPEAT Repeats subsequent instructions until a condition is true.
SWITCH Multiple case switch.

UNTIL Ends an S_REPEAT loop.

WHILE Repeats subsequent instructions until a condition is true.

Table 22: Structured assembly directives (continued)

SYNTAX

S IF{condition | expression}

S ELSE

S _ELSEIF{condition | expression}
S_ENDIF

S_WHILE{condition | expression}
S_ENDW

S_REPEAT

S UNTIL{condition | expression}
S _FOR reg = start {TO | DOWNTO} end {BY | STEP} step
S_ENDF

S SWITCH

S_CASE op

S_CASE opl..op2

S_DEFAULT

S_ENDS

S BREAK levels

S CONTINUE

PARAMETERS

condition One of the following conditions:
<CC> Carry clear
<CS> Carry set
<EQ> Equal
<NE> Not equal
<VC> Overflow clear

<Vs> Overflow set.

8051 IAR Assembler
66 Reference Guide

Assembler directives __¢

expression An expression of the form:
reg rel op
reg One of the following registers:

RO..R31, ZERO, HP, SP, GP, TP, EP, LP

rel One of the following relations:
>=,<=, l=,<>,==,=,>0I<
op, opl, op2 An intermediate or memory operand.
start, end, step An intermediate or memory operand. If step is omitted it

defaults to #1 or #-1 if DOWNTO is specified. The increment
or decrement in this structure is implemented with ADD/SUB.

levels Number of levels to break, from 1 to 3.

DESCRIPTION

The 8051 IAR Assembler includes a versatile range of directives for structured
assembly, to make it easier to implement loops and control structures at assembly
level.

The advantage of using the structured assembly directives is that the resulting
programs are clearer, and their logic is easier to understand.

The directives are designed to generate simple, predictable code so that the resulting
program is as efficient as if it were programmed by hand.
Conditional constructs

Use s_IF...S_ENDIF to generate assembler source code for comparison and jump
instructions. The generated code is assembled like ordinary code, and is similar to
macros. This should not be confused with conditional assembly.

S_IF blocks can be nested to any level.

Use S_ELSE after an S_IF directive to introduce instructions to be executed if the
S_IF condition is false.

Use S_ELSEIF to introduce a new condition after an S_IF directive.

Loop directives

Use S_WHILE...S ENDW to create a loop which is executed as long as the
expression is TRUE. If the expression is false at the beginning of the loop the body will
not be executed.

67

Structured assembly directives

8051 IAR Assembler
68 Reference Guide

Use the S REPEAT. . .S _UNTIL construct to create a loop with a body that is
executed at least once, and as long as the expression is FALSE.

You can use S_BREAK to exit prematurely from an S_WHILE...S ENDW or
S _REPEAT...S UNTIL loop, or S_CONTINUE to continue with the next iteration of
the loop.

The directives generate the same statements as the S_IF directive.

Iteration construct

Use S_FOR...S_ENDF to assemble instructions to repeat a block of instructions for
a specified sequence of values.

S_BREAK can be used to exit prematurely from an S_FOR loop, and continue
execution following the S_ENDF.

S_CONTINUE can be used to continue with the next iteration of the loop.

Switch construct

Use the S SWITCH...S_ ENDS block to execute one of a number of sets of
statements, depending on the value of test.

S_CASE defines each of the tests, and S_DEFAULT introduces an S_CASE which is
always true.

Note that S_CASE falls through by default similar to switch statements in the C
language.

S_BREAK can be used to exit froma s_SWITCH...S_ ENDS block.
EXAMPLES

Using conditional constructs

The following program tests the A register and plots 'N’, *z’, or * P’, depending on
whether it is less than zero, zero, or greater than zero:

NAME else
EXTERN plot

main IFS
MOV
ELSEIFS
MOV
ELSES
MOV A, 'p’
ENDIFS

A
A,
A
A,

CALL
RET
END

plot

This generates the following code:

©

10

10.

11
12
13

W W W ~J O O O O O O O O OV OV O Ul & & b b b b W N

u s W N

F WO 0o o0 0w N R

000000
000000
000000
000000
000000
000002
000003
000005
000007
000009
00000B
00000B
00000D
00000D
00000F
000011
000012
000014
000016
000018

0 000012

00001D
00001F
00001F
000021
000021
000023
000023
000023
000026
000027

COEO
C3

9500
DOEO
5004
E54E

8016

COEO
D2D1
C3
9500
6002
C2D1
DOEO
30D104
E55A

8002

E570

12....
22

Using loop constructs

The following example uses an REPEAT

main

2?0

?2

?1

NAME
EXTERN

IFs
PUSH
CLR
SUBB
POP

JNC
MOV
ELSEIFS
JMP

PUSH
SETB
CLR
SUBB
Jz
CLR
POP
JNB
MOV
ELSES
JMP

MOV
ENDIFS

CALL
RET
END

else
plot

A <O
ACC

ACC

PSw.1

CY

A,0

S+4

PSw.1

ACC
PSW.1, 2?2
A, 'z’

?1

plot

Assembler directives __¢

UNTIL loop to reverse the order of bits

in register B and put the result in register A:

NAME

reverse REPEAT

XCH
RRC
XCH

repeat

A, OxFO

A

A, 0xFO

69

Structured assembly directives

RLC A
UNTIL A<> #0
RET

END

This generates the following code:

1 000000 NAME repeat
2 000000 reverse REPEAT

2.1 000000 _?0

3 000000 C5FO0 XCH A, OxFO
4 000002 13 RRC A

5 000003 C5F0 XCH A, 0xFO
6 000005 33 RLC A

7 000006 UNTIL A<> #0
7.1 000006 COEO PUSH ACC
7.2 000008 D2D1 SETB PSw.1
7.3 00000A C3 CLR CYy
7.4 00000B 9400 SUBB A, #0
7.5 00000D 6002 Jz S+4
7.6 00000F C2D1 CLR PSw.1
7.7 000011 DOEO POP ACC
7.8 000013 20D1EA JB PSW.1,_ 20
7.9 000016 2?1

8 000016 22 RET

9 000017

10 000017 END

Using iteration constructs

The following example uses an FOR ... ENDF block to send a 501 even number to
a part named port1:

NAME for_ loop
EXTERN portl
play FOR A = #0 TO #100 BY #2
MOV portl,A
ENDF
RET
END

This generates the following code:

1 000000 NAME for_loop

2 000000 EXTERN portl

3 000000 play FOR A = #0 TO #100 BY #2
3.1 000000 7400 MOV A, #0

8051 IAR Assembler
70 Reference Guide

Assembler directives __¢

3.2 000002 8004 JMP 21
3.3 000004 _?0

4 000004 F5.. MOV portl,A
5 000006 ENDF

5.1 000006 2402 _?2 ADD A, #2
5.2 000008 COEO 21 PUSH ACC
5.3 00000A C3 CLR Ccy

5.4 00000B 9464 SUBB A,#100
5.5 00000D DOEO POP ACC
5.6 00000F 40F3 Jc _?0
5.7 000011 _?3

6 000011 22 RET

7 000012

8 000012 END

Using switch constructs

The following example uses an SWITCH. . . ENDS block to print Zero, Positive, or
Negative depending on the value of the A register. It uses an external print routine
to print an immediate string:

pos DB "Positive"

neg DB "Negative"

zer DB "Zero"
NAME switch

EXTERN print

test SWITCH A
CASE #0
MOV R3, #LOW (zer)
MOV R4, #HIGH (zer)
CALL print
BREAK
CASE #0x80 .. #OXFF
MOV R3, #LOW (neg)
MOV R4, #HIGH (neg)
CALL print
BREAK
DEFAULT
MOV R3, #LOW (pos)
MOV R4, #HIGH (pos)
CALL print
BREAK
ENDS

71

Structured assembly directives

END

This generates the following code:

1 000000 506F7369*pos DB "Positive"
2 000009 4E656761*neg DB "Negative"
3 000012 5A65726F*zer DB "Zero"

4 000017

5 000017 NAME switch

6 000000 EXTERN print

7 000017

8 000017 test SWITCH A

9 000017

10 000017 CASE #0

10.1 000017 COEO PUSH ACC

10.2 000019 D2D1 SETB PSW.1

10.3 00001B C3 CLR CY

10.4 00001C 9400 SUBB A, #0

10.5 O00001E 6002 JZ S+4

10.6 000020 C2D1 CLR PSW.1

10.7 000022 DOEO POP ACC

10.8 000024 30D109S JNB PSW.1, 21
11 000027 7B12 MOV R3, #LOW (zer)
12 000029 7C00 MOV R4, #HIGH (zer)
13 00002B 12.... CALL print

14 00002E BREAK

14.1 O00O002E 802D JMP _?0

15 000030

16 000030 CASE #0x80 .. #OxFF
16.1 000030 COEO 21 PUSH ACC

16.2 000032 C3 CLR Cy

16.3 000033 9480 SUBB A, #0x80
16.4 000035 DOEO POP ACC

16.5 000037 401B Jc 22

16.6 000039 COEO PUSH ACC

16.7 00003B D2D1 SETB PSW.1

16.8 00003D C3 CLR Cy

16.9 00003E 94FF SUBB A, #0xFF
16.10 000040 6002 Jz S+4

16.11 000042 C2D1 CLR PSW.1

16.12 000044 DOEO POP ACC

16.13 000046 4003 Jc $+5

16.14 000048 30D109 JNB PSW.1, 2?2
17 00004B 7B09 MOV R3, #LOW (neg)
18 00004D 7CO00 MOV R4, #HIGH (neg)
19 00004F 12.... CALL print

20 000052 BREAK

8051 IAR Assembler
72 Reference Guide

Assembler directives __¢

20.1 000052 8009 JMP _?0

21 000054

22 000054 DEFAULT

22.1 000054 _?2

23 000054 7B00O MOV R3, #LOW (pos)
24 000056 7C00 MOV R4, #HIGH (pos)
25 000058 12.... CALL print

26 00005B BREAK

26.1 00005B 8000 JMP _?0

27 00005D ENDS

27.1 00005D _?0

28 00005D

29 00005D END

Listing control directives

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.

CYCLES Sets the listed cycle count.

CYCLEMAX Selects the greater of two possible cycle count values.
CYCLEMIN Selects the lower of two possible cycle count values.

CYCLEMEAN Selects the mean value.

LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTCYC Controls the listing of cycle counts.
LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.
LSTREP Controls the listing of lines generated by repeat directives.
LSTSAS Controls structured assembly listing.
LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 23: Listing control directives

73

Listing control directives

8051 IAR Assembler
74 Reference Guide

SYNTAX

COL columns
LSTCND{+ |
LSTCOD{+ |
LsTCYC{+ |
LSTEXP{+ |
LSTMAC{+ |
|
|
|
|

LSTOUT{ +
LSTPAG{+
LSTREP{+
LSTSAS{+
LSTXRF{+ | -
COL columns
CYCLES expr
CYCLEMAX
CYCLEMIN
CYCLEMEAN
PAGE

PAGSIZ lines

e e e e S e e e e

PARAMETERS

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

DESCRIPTION

Turning the listing on or off

Use LSTOUT - to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LSTOUT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LSTCND+ to force the assembler to list source code only for the parts of the
assembly that are not disabled by previous conditional IF statements, ELSE, or END.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a
source line.

Assembler directives __o

The default setting is LSTCOD+, which lists more than one line of code for a source
line, if needed; i.e. long ASCII strings will produce several lines of output. Code
generation is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembly list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembly list. The default
number of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembly list. The
default number of lines per page is 44.

Use LSTPAG+ to format the assembly output list into pages. The default is LSTPAG-,
which gives a continuous listing.

Use PAGE to generate a new page in the assembly list file if paging is active.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT -
; Debugged section
LSTOUT+
; Not yet debugged

75

Listing control directives

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is
disabled by an IF directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug SET 0
begin IF debug

CALL print

ENDIF

LSTCND+
begin2 IF debug

CALL print

ENDIF

END

This will generate the following listing:

1 00000000 NAME lstcndtst
2 00000000 EXTERN print
3 00000000

4 00000000 RSEG prom
5 00000000

6 00000000 debug SET 0

7 00000000 begin IF debug
8 00000000 CALL print
9 00000000 ENDIF
10 00000000
11 00000000 LSTCND+
12 00000000 begin2 IF debug
14 00000000 ENDIF
15 00000000
16 00000000 END

The following example shows the effect of LSTCOD+ on the generated code:

1 000000 NAME lstcodtst

2 000000 0001000A DW 1,10,100,100,10000

3 00000A

4 00000A LSTCOD+

5 00000A 0001000A DW 1,10,100,1000,10000
006403E8
2710

6 000014 END

8051 IAR Assembler
76 Reference Guide

Controlling the listing of macros

Assembler directives __¢

The following example shows the effect of LSTMAC and LSTEXP:

dec2

inc2

begin:

This will produce the following output:

5
6
11
12
12

12.
12.
12.

13
14
15

15.
15.
15.

16
17
18

MACRO arg
DEC arg
DEC arg
ENDM

LSTMAC-
MACRO arg
INC arg
INC arg
ENDM

dec2 R6
LSTEXP+

inc2 R7
RET

END begin

000000
000000
000000
000000
000000

1 000000 A51E
2 000002 AS1E

000004
000004
000004
000004

1 000004 A50F
2 000006 A50F

000008
000008 22
000009
000009

begin
begin

Formatting listed output

LSTMAC-

dec2

dec2
DEC
DEC
ENDM

LSTEXP+
inc2
INC

INC
ENDM
RET

END

R6
R6
R6
R6

R7
R7
R7

begin

The following example formats the output into pages of 66 lines each with 132
columns. The LSTPAG directive organizes the listing into pages, starting each module
on a new page. The PAGE directive inserts additional page breaks.

77

C-style preprocessor directives

PAGSIZ 66 ; Page size
COL 132
LSTPAG+
ENDMOD
MODULE

PAGE

C-style preprocessor directives

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a label.

#elif Introduces a new conditionina #if. . .#endif block.
#else Assembles instructions if a condition is false.
#endif Endsa #1if, #ifdef, or #ifndef block.
#error Generates an error.

#if Assembles instructions if a condition is true.
#ifdef Assembles instructions if a symbol is defined.
#ifndef Assembles instructions if a symbol is undefined.
#include Includes a file.

#message Generates a message on standard output.
#undef Undefines a label.

Table 24: C-style preprocessor directives

SYNTAX

#define label text
#elif condition
#else

#endif

#error "message"
#1f condition
#ifdef label
#ifndef label
#include {"filename" | <filename>}
#message "message"
#undef label

8051 IAR Assembler
78 Reference Guide

Assembler directives __¢

PARAMETERS
condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

stringl=string The condition is true if
stringland string2 have
the same length and contents.

stringl<>string2 The condition is true if

stringland string2 have
different length or contents.

filename Name of file to be included.

label Symbol to be defined, undefined, or tested.

message Text to be displayed.

text Value to be assigned.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.
#define label value

is similar to:

label VAR value

Use #undef to undefine a label; the effect is as if it had not been defined.

Conditional directives

Usethe #if...#else...##endif directives to control the assembly process at assembly
time. If the condition following the #1i£ directive is not true, the subsequent
instructions will not generate any code (i.e. it will not be assembled or syntax checked)
until a #endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #if directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #1if...#endif block.

#if..#endif and #if... #else..#fendif blocks may be nested to any level.

79

C-style preprocessor directives

8051 IAR Assembler
80 Reference Guide

Use #ifdef to assemble instructions up to the next #else or #endif directive only
if a symbol is defined.

Use #1ifndef to assemble instructions up to the next #else or #endif directive only
if a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include filename searches the following directories in the specified order:

1 The source file directory.

2 The directories specified by the - I option, or options.

3 The current directory.

#include <filename> searches the following directories in the specified order:

1 The directories specified by the - I option, or options.
2 The current directory.
Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior since an assembler directive is not necessarily
accepted as a part of the C language.

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment

STS five+addr,R17 ;jsyntax error!
; Expands to "STS 5 ; comment+addr,R17"

LDS R16,five + addr; incorrect code!
; Expanded to "LDS R16,5 ; comment + addr"

Assembler directives __¢

EXAMPLES

Using conditional directives

The following example defines the labels tweek and adjust. If adjust is defined then
register 16 is decremented by an amount that depends on adjust, in this case 30.

#definetweek 1
#defineadjust 3

#ifdef tweek
#if adjust=1

SUB R6,4
#elif adjust=2

SUB R6,20
#elif adjust=3

SUB R6,30
#endif

#endif /* ifdef tweek*/

Including a source file

The following example uses #include to include a file defining macros into the
source file. For example, the following macros could be defined in macros.s03:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can then be included, using #include, as in the following
example:

NAME include

;Standard macro definitions
#include "macros.sO03"

; Program

main xch R6,R7
RET
END main

8l

Data definition or allocation directives

Data definition or allocation directives

These directives define temporary values or reserve memory.

Directive Description

DB Generates 8-bit byte constants, including strings.
DC1l6 Generates | 6-bit word constants, including strings.
DC24 Generates 24-bit word constants.

DC32 Generates 32-bit double word constants.

DC8 Generates 8-bit byte constants, including strings.
DD Generates 32-bit double word constants.

DS Allocates space for 8-bit bytes.

DS16 Allocates space for |6-bit words.

DS24 Allocates space for 24-bit words.

DS32 Allocates space for 32-bit words.

DS8 Allocates space for 8-bit bytes.

DT Generates 24-bit word constants.

DW Generates |6-bit word constants, including strings.

Table 25: Data definition or allocation directives

SYNTAX

DB exprl, expr]
DCl6 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DC8 expr [,expr]
DD exprl, expr]

DS exprl, expr]
DS16 expr [,expr]
DS24 expr [,expr]
DS32 expr [,expr]
DS8 expr [,expr]
DT expr [, expr]

DW exprl(, expr]

8051 IAR Assembler
82 Reference Guide

Assembler directives __¢

PARAMETERS

expr A valid absolute, relocatable, or external expression, or an ASCII string. ASCII
strings will be zero filled to a multiple of the size. Double-quoted strings will be
zero-terminated.

DESCRIPTION

Use DS, DC8, DC16, DC24, DC32, DD, DP, or DW to reserve and initialize memory
space.

Use DS, DW, DT, DP DS8, DS16, DS24, or DS32 to reserve uninitialized memory space.
EXAMPLES

Generating lookup table
The following example generates a lookup table of addresses to routines:

NAME table

table DW addsubr, subsubr, clrsubr
addsubr ADD R6,R7
RET
subsubr SUB R6,R7
RET
clrsubr CLR R6
RET
END

Defining strings

To define a string:

mymsg DC8 ’'Please enter your name’

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errmsg DC8 ’‘Don’’t understand!’

83

Assembler control directives

Reserving space

To reserve space for 0xA bytes:

table DS8

0xA

Assembler control directives

These directives provide control over the operation of the assembler.

8051 IAR Assembler
84 Reference Guide

Directive Description

$ Includes a file.

/*comment */ C-style comment delimiter.
// C+tstyle comment delimiter.
CASEOFF Disables case sensitivity.
CASEON Enables case sensitivity.
RADIX Sets the default base.

Table 26: Assembler control directives

SYNTAX

$filename
/*comment*/
/ / comment
CASEOFF
CASEON
RADIX expr

PARAMETERS

comment
expr

filename

DESCRIPTION

Comment ignored by the assembler.
Default base; default 10 (decimal).

Name of file to be included. The $ character must be the first
character on the line.

Use $ to insert the contents of a file into the source file at a specified point.

Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

Assembler directives __¢

Use RADIX to set the default base for use in conversion of constants from ASCII
source to the internal binary format.

To reset the base from 16 to 10, expr must be written in hexadecimal format, for
example:

RADIX O0xO0A

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols.
By default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used
by XLINK should be written in upper case in the XLINK definition file.
EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file.
For example, the following macros could be defined in mymacros.s03:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can be included with a $ directive, as in:

NAME include
;Standard macro definitions
Smacros.s03

; Program

main xch R6,R7
RET
END main

Defining comments

The following example shows how /=*. . .*/ can be used for a multi-line comment:

/*

Program to read serial input.
Version 3: 19.9.00

Author: mjp

*/

85

Assembler control directives

8051 IAR Assembler
86 Reference Guide

Changing the base
To set the default base to 16:

RADIX D'16
MOV A,12

The immediate argument will then be interpreted as H' 12.

Controlling case sensitivity
By default CASEON is active, so the following example will generate an error:

label NOP ; Stored as "label"
JMP LABEL

However, the CASEOFF directive will remove the error in the example above:

CASEOQOFF
label NOP ; Stored as "LABEL"
JMP LABEL

Assembler diagnostics

When the 8051 IAR Assembler performs a diagnostic check, it may detect
errors in your application and give a diagnostic message. This chapter lists the
different error and warning messages that can appear.

Severity levels

The diagnostic messages produced by the 8051 IAR Assembler reflect problems or
errors that are found in the source code or occur at assembly time.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has found a construct
which is probably the result of a programming error or omission. These messages are
listed in the section Warning messages, page 96.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a construct
which violates the language rules. These messages are listed in the section Error
messages, page 88.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has found a user error
so severe that further processing is not considered meaningful. After the diagnostic
message has been issued the assembly is immediately terminated. These error
messages are identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

During assembly a number of internal consistency checks are performed and if any of
these checks fail, the assembler will terminate after giving a short description of the
problem. Such errors should normally not occur. However, if you should encounter an
error of this type, please report it to your software distributor or to IAR Technical
Support. Please include information enough to reproduce the problem. This would
typically include:

o The exact internal error message text.
e The source file of the program that generated the internal error.

87

Error messages

o A list of the options that were used when the internal error occurred.
e The version number of the assembler. To display it at sign-on, run the assembler,
a8051, without parameters.

Error messages

8051 IAR Assembler
88 Reference Guide

Error messages are displayed on the screen, as well as printed in the optional list file.

All errors are issued as complete, self-explanatory messages. The error message
consists of the incorrect source line, with a pointer to where the problem was detected,
followed by the source line number and the diagnostic message. If include files are
used, error messages will be preceded by the source line number and the name of the
current file:

"subfile.h",4 Error[40]: bad instruction

GENERAL ERROR MESSAGES
The following section lists the general error messages.

0 Invalid syntax
The assembler could not decode the expression.

1 Too deep #include nesting (max. is 10)
The assembler limit for nesting of #include files was exceeded. A
recursive #include could be the reason.

2 Failed to open #include file name
Could not open a #include file. The file does not exist in the specified
directories. Check the - I prefixes.

3 Invalid #include file name
A #include file name must be written <file>or "file".

4 Unexpected end of file encounted
End of file encountered within a conditional assembly, the repeat directive,
or during macro expansion. The probable cause is a missing end of
conditional assembly etc.

5 Too long source line (max. is 2048 characters) truncated
The source line length exceeds the assembler limit.

6 Bad constant
A character that is not a legal digit was encountered.

10
11

12

13

14

15
16

17
18

19

20
21
22

23
24

25

Assembler diagnostics __

Hexadecimal constant without digits
The prefix 0x or 0X of a hexadecimal constant found without any
hexadecimal digits following.

Invalid floating point constant
A too large floating-point constant or invalid syntax of floating-point
constant was encountered.

Too many errors encountered (>100).
Space or tab expected

Too deep block nesting (max is 50)
The preprocessor directives are nested too deep.

String too long (max is 2045)
The assembler string length limit was exceeded.

Missing delimiter in literal or character constant
No closing delimiter © or " was found in character or literal constant.

Missing #endif
A #if, #ifdef, or #ifndef was found but had no matching #endif.
Invalid character encountered: char; ignored

Identifier expected
A name of a label or symbol was expected.

’)’ expected

No such pre-processor command: command
was followed by an unknown identifier.

Unexpected token found in pre-processor line
The preprocessor line was not empty after the argument part was read.

Argument to #define too long (max is 2048)
Too many formal parameters for #define (max is 37)

Macro parameter parameter redefined

A #define symbol’s formal parameter was repeated.
', or’)’ expected

Unmatched #else, #endif or #elif

Fatal. Missing #1if, #ifdef, or #ifndef.

#error error
Printout via the #error directive.

89

Error messages

8051 IAR Assembler
90 Reference Guide

26
27

28

29

30

31

32

33

34

35

36

37

38

39

40

’(’ expected

Too many active macro parameters (max is 256)
Fatal. Preprocessor limit exceeded.

Too many nested parameterized macros (max is 50)
Fatal. Preprocessor limit exceeded.

Too deep macro nesting (max is 100)
Fatal. Preprocessor limit exceeded.

Actual macro parameter too long (max is 512)
A single macro (in #def ine) argument may not exceed the length of a
source line.

Macro macro called with too many parameters
The number of parameters used was greater than the number in the macro
declaration.

Macro macro called with too few parameters
The number of parameters used was less than the number in the macro
declaration (#define).

Too many MACRO arguments
The number of assembler macros exceeds 32.

May not be redefined
Assembler macros may not be redefined.

No name on macro
An assembler macro definition without a label was encountered.

lllegal formal parameter in macro
A parameter that was not an identifier was found.

ENDM or EXITM not in macro
An ENDM directive or EXITM directive encountered outside a macro.

>’ expected but found end-of-line
A < was found but no matching >.

END before start of module
The end-of-module directive has no matching MODULE directive.

Bad instruction
The mnemonic/directive does not exist.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Assembler diagnostics __

Bad label

Labels must begin withA. . .Z,a. ..z, ,or ?. The succeeding characters
mustbeA...Z,a...z,0...9, ,or ?.Labels cannot have the same name
as a predefined symbol.

Duplicate label
The label has already appeared in the label field or has been declared as
EXTERN.

lllegal effective address
The addressing mode (operands) is not allowed for this mnemonic.

’,” expected
A comma was expected but not found.

Name duplicated
The name of RSEG, STACK, or COMMON segments is already used but for
something else.

Segment type expected
In RSEG, STACK, or COMMON directive : was found but the segment type that
should follow was not valid.

Segment name expected
The RSEG, STACK, and COMMON directives need a name.

Value out of range range
The value exceeds its limits.

Alignment already set
RSEG, STACK, and COMMON segments do not allow alignment to be set more
than once. Use ALIGN, EVEN, or ODD instead.

Undefined symbol: symbol
The symbol did not appear in label field or in an EXTERN or sfr declaration.

Can’t be both PUBLIC and EXTERN
Symbols can be declared as either PUBLIC or EXTERN.

EXTERN not allowed
Reference to EXTERN symbols is not allowed in this context.

Expression must be absolute
The expression cannot involve relocatable or external symbols.

Expression can not be forward
The assembler must be able to solve the expression the first time this
expression is encountered.

91

Error messages

8051 IAR Assembler
92 Reference Guide

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

lllegal size
The maximum size for expressions is 32 bits.

Too many digits
The value exceeds the size of the destination.

Unbalanced conditional assembly directives
Missing conditional assembly IF or ENDIF.

ELSE without IF
Missing conditional assembly IF.

ENDIF without IF
Missing conditional assembly IF.

Unbalanced structured assembly directives
Missing structured assembly IF or ENDIF.

'+’ or ’-’ expected
A plus or minus sign is missing.

lllegal operation on extern or public symbol
An illegal operation has been used on a public or external symbol, e.g. VAR.

lllegal operation on non-constant label
It is illegal to make a non-constant symbol PUBLIC or EXTERN.

Extern or unsolved expression
The expression must be solved at assembly time, i.e. not include external
references.

=’ expected
Equals sign was missing.

Segment too long (max is max)
The length of ASEG, RSEG, STACK, or COMMON segments is larger than the
addressable length.

Public did not appear in label field
A symbol was declared PUBLIC but no label with the same name was found
in the source file.

End of block-repeat without start
The repeat directive REPT was not found although the ENDR directive was.

Segment must be relocatable
The operation is not allowed on ASEG.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Assembler diagnostics __

Limit exceeded: error text, value is: value(decimal)
The value exceeded the limits set with the LIMIT directive. The error text is
set by the user in the LIMIT directive.

Symbol symbol has already been declared EXTERN
An attempt to redeclare an EXTERN as EXTERN was made.

Symbol symbol has already been declared PUBLIC
An attempt to redeclare a PUBLIC as PUBLIC was made.

End-of-module missing
A PROGRAM or MODULE directive was encountered before ENDMOD was
found.

Expression must yield non-negative result
The expression was evaluated to a negative number, whereas a positive
number was required.

Repeat directive unbalanced
This error is caused by a REPT directive without a matching ENDR, or a an
ENDR directive without a matching REPT.

End of repeat directive is missing
A REPT directive without a closing ENDR was encountered.

LOCALs not allowed in this context, (symbol)
Local symbols must be declared within macro definitions.

End of macro expected
An assembler macro is being defined but there was no end-of-macro.

End of repeat expected
One of the repeat directives is active, but there was no end-of-repeat found.

End of conditional assembly expected
Conditional assembly is active but there was no end of if.

End of structured assembly expected
One of the directives for structured assembly is active but has no matching
END.

Misplaced end of structured assembly
A directive that terminates one of the structured assembly directives was
found but no matching START directive is active.

Error in SFR attribute definition
The SFRTYPE directive was used with unknown attributes.

lllegal symbol type in symbol
The symbol cannot be used in this context since it has the wrong type.

93

Error messages

8051 IAR Assembler
94 Reference Guide

85

86

87

88

89
90
91
92
93
94
95
96
97
98
929
100

Wrong number of arguments
Expected a different number of arguments.

Number expected
Characters other than digits were encountered.

Label must be public or extern
The label must be declared with PUBLIC or EXTERN.

Label not defined with DEFFN
The label has to be defined via DEFFN before used in this context.

Sorry DEMO version, bytecount exceeded (max bytes)
Different parts of ASEG have overlapping code
Internal error

Empty macro stack overflow

Macro stack overflow

Attempt to access out-of-stack value

Invalid macro operator

No such macro argument

Sorry Lite version, bytecount exceeded (max bytes)
Option -re cannot handle code in include files, use -r or -rn instead
#include within macro not supported

Duplicate segment definitions
Segment redefinition with different attributes; for example, an RSEG segment
cannot be used as a COMMON segment.

8051-SPECIFIC ERROR MESSAGES

In addition to the general error messages, the 8051 IAR Assembler may generate the
following error messages:

401
402
403
404
405
406
407

Too many operands

:8 or :16 expected

The register name is not allowed here
lllegal suffix

lllegal value value

lllegal size specifier specifier

C-comment has no end

Assembler diagnostics __

408 Could not solve step
409 Nothing to BREAK out of

410 CASE after DEFAULT
DEFAULT is a catch-all case and is not allowed to have a CASE after it.

411 CASE outside SWITCH
412 COMMA expected

413 Nothing to CONTINUE to
CONTINUE needs something to continue.

414 Cannot solve break
The break count must be solvable.count value

415 DEFAULT outside SWITCH

416 ELSE used more than once
It is not allowed to have multiple ELSE directives for an IF.

417 ELSE without matching IF

418 ELSEIF cannot be used after ELSE
419 ELSEIF with no matching IF

420 ENDF without matching FOR

421 ENDIF without matching IF

422 ENDS without matching SWITCH
423 ENDW without matching WHILE

424 THEN without matching IF

425 Negative step value

426 Zero step value

427 UNTIL without matching REPEAT
428 Break argument must be 1,2, or 3

429 Multiple DEFAULT
It is not allowed to have more than one DEFAULT inside a SWITCH.

430 Can’t assign register to register

95

Warning messages

Warning messages

8051 IAR Assembler
96 Reference Guide

GENERAL

The following section lists the general warning messages.

0

10
11
12
13

14

15

Unreferenced label
The label was not used as an operand, nor was it declared public.

Nested comment
A C-type comment, /* ... */, was nested.

Unknown escape sequence
A backslash (\) found in a character constant or string literal was followed
by an unknown escape character.

Non-printable character
A non-printable character was found in a literal or character constant.

Macro or define expected

Floating point value out-of-range
Floating point value is too large to be represented by the floating-point
system of the target.

Floating point division by zero

Wrong usage of string operator ("#’ or '##’); ignored.

The current implementation restricts usage of the # and ## operators to the
token field of parameterized macros. In addition, the # operator must precede
a formal parameter.

Macro parameter(s) not used
Macro redefined

Unknown macro

Empty macro argument
Recursive macro

Redefinition of Special Function Register
The special function register (SFR) has already been defined.

Division by zero
Division by 0 in constant expression.

Constant truncated
The constant was longer than the size of the destination.

Assembler diagnostics __

16 Suspicious sfr expression
A special function register (SFR) is used in an expression, and the assembler
cannot check access rights.

17 Empty module module, module skipped
An empty module was created by using END directly after ENDMOD or
MODULE, followed by ENDMOD without any statements in between.

18 End of program while in include file
The program ended while a file was being included.

19 Symbol symbol duplicated
20 Bit symbol cannot be used as operand

A symbol was declared using the bit directive, but since the bit address is not
calculated the symbol should not be used.

21 Label did not appear in label field

22 Set segment alignment the same value or larger
When the alignment set by ALIGN is larger than the segment alignment it
may be lost at link time.

8051-SPECIFIC WARNING MESSAGES

In addition to the general warning messages, the 8051 Assembler may generate the
following warning messages:

400 Number out of range
The value does not fit the instruction/directive and is truncated.

401 SFR neither defined as READ nor WRITE
The SFRTYPE directive was used in such a way that the Special Function
Register is inaccessible.

402 More than one SFR size attribute defined using default (byte)
The SFRTYPE directive was used with multiple size definitions. The
assembler will use default byte size.

403 No SFR size attribute defined using default (byte)
The SFRTYPE directive was used with no size definition. The assembler will
use default byte size.

404 Displacement out of bounds
The offset in a JMP or CALL instruction does not fit, the destination label is
to far off.

405 Accessing SFR incorrectly, check read/write flaggs
An attempt such as to write to a read-only SFR has been made.

97

Warning messages

406 Accessing SFR using incorrect size
An attempt such as to write to a read-only SFR has been made.

407 Address may not be reachable

8051 IAR Assembler
98 Reference Guide

Index __o

A DEFINE. 52
DS 82

absolute segments.ot 49 DSI16 .. 82
address field, in assembler listfile.................... 9 DS24 . . 82
ALIAS (assembler directive) 52 DS32 . 82
ALIGN (assembler directive). 47 DS . 82
alignment, of segments. 50 DW 82
AND (assembler operator).coo... 28 ELSE. 56
ASCII character constantsvuunuuen... 4 ELSEIF 56
ASEG (assembler directive). 47 ELSEIFS 65
ASMS8051 (environment variable) 12 ELSES. 65
assembler control directives. 84 END. ... 44
assembler diagnostics. i 87 ENDF ... 65
assembler directives ENDIF. 56
ALIAS. .. 52 ENDIFS. 65
ALIGN ... 47 ENDM. 58
ASEG ... e 47 ENDMOD. 44
assemblercontrol, 84 ENDR 58
ASSIGN ... e 52 ENDS ... 65
BREAKo 65 ENDW. ... 65
CASE. .. 65 EQU. .. 52
CASEOFF. i 84 EVEN ... 47
CASEON. e 84 EXITM ... i 58
COL. ..o 73 EXPORT 46
COMMENES, USING « + v o v oe e et e ie e eeee e 43 EXTERN. i 46
COMMON ... e 47 FOR.o e e 65
conditional. 79) 56
See also C-style preprocessor directives IES . 66
conditional assembly. 56 IMPORT e 46
CONTINUE i 65 labels, using.c.oiiii i 43
C-style preprocessoroovevnn .. 78 LIBRARY ... 44
data definition or allocation. 82 LIMIT ... e 52
DB .. 82 listfilecontrol, 73
DCI6. ..o 82 LOCAL e 58
DC24 . . 82 LSTCND. e 73
DC32 . 82 LSTCOD. ... i 73
DO . 82 LSTEXP e e 73
DD . 82 LSTMAC. ... e 73
DEFAULT e 65 LSTOUT i 73

99

LSTPAG 73

LSTREPo e 73
LSTXRF ..o 73
MACRO ... 58
MACTO PIOCESSING. . ¢ v v e e e et eee 58
MODULE 44
module control oL 44
NAME. ..o 44
ODD ..o 47
ORG ..o 47
PAGE. 73
PAGSIZ 73
PATAMELETS . . o vt v et et e 44
PROGRAM. 44
PUBLIC. ... e 46
RADIX ..ot 84
REPEAT 66
REPT. .. o 58
REPTC ... e 58
REPTI i 58
RSEG. . ..o 47
RTMODEL 44
segment control. i 47
SET(ASSIGN) . ..ot 52
Y & 52
SFRTYPE 52
STACK . .ot 47
structured assembly. o oL 65
SUMMATY « . v oe ettt e e e e e e e e e e 39
SWITCH e 66
symbolcontrol. i 46
SYMEAX « vttt e e e e e 43
UNTIL. . .o 66
value assignment., 52
WHILE 66
#define.......... 78
#elif ... 78
Helse. 78
#endif. 78

8051 IAR Assembler
100 Reference Guide

HEITOT. . . ottt e e 78
HE 78
#ifdef. 78
#ifndef.. 78
#include. L 78
HNESSAZE .« v v vt e 78
#undef L 78
S 84
T PP 84
I 84
S P 52
assembler environment variables.................... 12
assembler eXpressions 1
assemblerlabels......... L 3
assembler directives, using with 43
defining and undefining 79
formatof 1
assembler list files
addressfield L il 9
conditional code and strings 74
conditions, specifying 14
cross-references
GEeNETating. . ..ottt 23
table, generating., 75
datafield L 9
disabling 74
enabling. 74
filename, specifying 18
format 6
Specifying.o 75
generated lines, controlling. 75
GENETALING .« . o vttt ettt e e 17
header section, omitting 19
lines per page, specifying 20
macro execution information, including 14
macro-generated lines, controlling 75
source line i 9
symbol and cross-reference table 10
tab spacing, specifying 21

Index __o

using directivesto format 75 SHR. .. 35
#include files, listing. 17 SIZEOF 35
assembler macros UGT. ... 36
arguments, passingto 61 ULT .o 36
defining i 59 XOR 36
generated lines, controlling in list file. 75 D e 33
in-lineroutines 62 L 33
predefined symbol. 61 Do . o 33
PIOCESSING . . v o vttt et e et e 62 P 29
quote characters, specifying 18 Q& 28
special characters, using 60 e e 27
assembler object file, specifying filename............. 19 A 27
assembler Operators 25 PPN 28
AND .o 28 PP 28
BINAND ... 29 e e 32
BINNOT ... e 29 K et e 35
BINOR ... 29 o et 32
BINXOR 29 > 33
BYTE2 ... 30 PP 30
BYTE3 ..o 30 T 30
DATE. . . o 30 > 31
EQ . 30 D 31
GE .. 31 > 35
Gl e 31 A 29
HIGH. e 31 b 29
HWRD. 31 e 33
IN EXPIESSIONS . oo v v ettt ettt e e 1 e 29
LE . 32 assembler options
LOW . 32 command line, setting 11
LT e 32 extended command file, setting. 11
LWRD. ... 32 SUMIMATY © o\ v vttt et et e et e et e e e e 13
MOD ... 33 B 14
NE . o 33 e P 14
NOT. .o 33 e e 14
OR . 33 D 15
precedence. 25 S Y 11,16
SEB .o 34 SG 16
SEE .o 34 P 17
SHL . .o 35 s PP 17

101

o 18
Mo 18
N 19
SO 19

S0 e e e 19

D e 20
A 20

S 20

TS e e e e e 21
O 21
U 21
A 22

K e e e e 23
assembler output format. L L. 10
assembler output, including debug information. 20
assembler source files, including 80, 85
assembler source format. 1
assembler symbols il 3
EXPOTLING . o ettt e e 46
IMPOTtING . . . o vttt e e 47

in relocatable expressions 2
local. 55
predefined 4
undefining. L L i 21
redefining i 54
assembly error messages 87, 88
assembly warning messages., 87, 96
disabling i 22
ASSIGN (assembler directive). 52
AB8051_INC (environment variable) 12
BINAND (assembler operator) 29
BINNOT (assembler operator). 29
BINOR (assembler operator)c........ 29
BINXOR (assembler operator) 29
BREAK (assembler directive) 65
BYTE2 (assembler operator)c...c..... 30

8051 IAR Assembler

102 Reference Guide

BYTE3 (assembler operator) 30
case sensitive user symbols 21
case sensitivity, controlling 85
CASE (assembler directive). 65
CASEOFF (assembler directive) 84
CASEON (assembler directive) 84
character constants, ASCIL. 4
COL (assembler directive)ccuvinen... 73
command line error messages 87
command lineoptions 11
command line, extending. 16
COMIMENES . . o\ttt et ettt e e e e eans 80
assembler directives, using with 43
in assembler soucecode 1
multi-line, using with assembler directives.......... 85
COMMON SEZMENLS . .« v v vv et e e e e eee e eeeenns 49
COMMON (assembler directive). 47
conditional assembly directives 56
See also C-style preprocessor directives
conditional code and strings, listing. 74
conditional listfile 14
CONSLANES, INTEEET « . . ¢ v e ettt et 3
CONTINUE (assembler directive). 65
conventions, typographical. X
CRC, section in assembler listfile.................... 9
cross-references, in listfile 10

See also -x (assembler option) and LSTXRF
(assembler directive)

GENETALING « . o vttt ettt e e e 23
table, generating 75
C-style preprocessor directives 78
data allocation directivesc..... 82
data definition directives 82
data field, in assembler listfile. 9

DATE (assembler operator)cocuo... 30
DB (assembler directive) 82
DC16 (assembler directive)ccoviiu.n.. 82
DC24 (assembler directive), 82
DC32 (assembler directive), 82
DC8 (assembler directive)c...... 82
DD (assembler directive), 82
debug information, including in assembler output. 20
DEFAULT (assembler directive) 65
DEFINE (assembler directive). 52
diagnosticsot 87
directives. See assembler directives
DS (assembler directive) 82
DS16 (assembler directive) 82
DS24 (assembler directive) 82
DS32 (assembler directive) 82
DSS8 (assembler directive), 82
DW (assembler directive). 82
efficient coding techniques. 5
ELSE (assembler directive) 56
ELSEIF (assembler directive) 56
ELSEIFS (assembler directive) 65
ELSES (assembler directive) 65
END (assembler directive).ccou.... 44
ENDF (assembler directive). 65
ENDIF (assembler directive) 56
ENDIFS (assembler directive) 65
ENDM (assembler directive) 58
ENDMOD (assembler directive) 44
ENDR (assembler directive) 58
ENDS (assembler directive). 65
ENDW (assembler directive) 65
environment variables

ASMSBOST ..o 12

ABOST_INC. ... o 12
EQ (assembler operator)c..c.oon.... 30
EQU (assembler directive). 52

Index __o

EITOT TNESSAZES - « « v v e v et et e e e e e e eeene 88

displaying with#error. 80
EVEN (assembler directive). 47
EXITM (assembler directive). 58
EXPORT (assembler directive) 46
expressions. See assembler expressions
extended command line file (extend.xcl)........... 11, 16
EXTERN (assembler directive) 46
false value, in assembler expressions. 2
fatal errors, assembly oL 87
file extensions

XCl 11,16
file types

extended command line. 11,16

#include. 17
filenames, specifying for objectfile.................. 19
FOR (assembler directive) 65
formats

assembler listfile. 6

assembleroutputl 10

assembler sourcecode. 1
GE (assembler operator) 31
global value, defining. 54
GT (assembler operator)c.oouenennn.. 31
header files, SFR 6
header section, omitting from assembler list file........ 19
HIGH (assembler operator) 31
HWRD (assembler operator) 31

103

IF (assembler directive)
IFS(assembler directive)
IMPORT (assembler directive)
include paths, specifying
Integer CONStants.ovvenenenenenen ..
internal errors, assembler.
in-line coding, using macros

L

labels. See assembler labels

LE (assembler operator).
librarymodules

Creatingovvvin e
LIBRARY (assembler directive)
LIMIT (assembler directive)
lines per page, in assembler listfile............
listfileformats.
listing control directives.
local value, defining.
LOCAL (assembler directive)
LOW (assembler operator).
LSTCND (assembler directive)
LSTCOD (assembler directive)
LSTEXP (assembler directives)...............
LSTMAC (assembler directive).
LSTOUT (assembler directive)
LSTPAG (assembler directive).
LSTREP (assembler directive)................
LSTXREF (assembler directive)
LT (assembler operator)
LWRD (assembler operator)

M

macro execution information, including in

assembler listfile................
macro processing directives.

8051 IAR Assembler
104 Reference Guide

macro quote characters. 60
specifying ... 18
MACRO (assembler directive). 58
macros. See assembler macros
MEeMmOry, reserving Space inc...vuvenenen.... 82
messages, excluding from standard output stream. 20
MOD (assembler operator) 33
module control directives. 44
MODULE (assembler directive) 44
modules, terminating 45
NAME (assembler directive) 44
NE (assembler operator)c..coeunn... 33
NOT (assembler operator)c..ccovenn... 33
ODD (assembler directive).cuuin... 47
OPErands . . .« v vttt e 1
operations, formatof oL 1
operation, silent 20
operators. See assembler operators
OPLION SUMMATY .+« « vt v e ee et e e e e e e e e e 13
OR (assembler operator)coeuvnenn.. 33
ORG (assembler directive).cuvenn... 47
outputformat 10
PAGE (assembler directive) 73
PAGSIZ (assembler directive) 73
parameters, in assembler directives 44
precedence, of assembler operators 25
predefined symbols 4
undefining 21
_ _DATE .. 4
_ FILE 4
__IAR_SYSTEMS_ASM_ _.... ..o 4

LINE . 4
_ _TID . o 4,5
TIME _ .. 4
__VER . 4
predefined symbol, in assembler macros. 61
preprocessor symbol, defining, 15
program location counter (PLC) 1,3
SELLIE « oot ettt 50
program modules, beginning 45
PROGRAM (assembler directive) 44
programming hints. L 5
PUBLIC (assembler directive). 46
RADIX (assembler directive).cuvnn.. 84
relocatable expressions, using symbolsin.............. 2
relocatable segments, beginning 49
REPEAT (assembler directive).co.... 66
repeating Statements.ooueuneunennen. .. 62
REPT (assembler directive) 58
REPTC (assembler directive). 58
REPTI (assembler directive) 58
RSEG (assembler directive). 47
RTMODEL (assembler directive) 44
segment control directives, 47
segments
absolute 49
aligning 50
common, beginning.o ... 49
relocatable. i 49
stack, beginning. L i i 49
SET (ASSIGN) (assembler directive) 52
SFB (assembler operator)., 34
SFE (assembler operator).c.covuin... 34
sfr (assembler directive). 52
sfrnnn.inc file (header file). 6

Index __o

SFRTYPE (assembler directive) 52
SFR. See special function registers
sfr515a.inc (headerfile). 6
SHL (assembler operator)c.c..... 35
SHR (assembler operator) 35
silent operation, specifying 20
SIZEOF (assembler operator) 35
source files, including 80, 85
source format, assembler 1
source line, in assembler listfile 9
special function registers 6

defining labels. 54
stack segments, beginning 49
STACK (assembler directive). 47
standard input stream (stdin), reading from............ 16
standard output stream, disabling messagesto 20
statements, TePeatingcuvuenenenenenennn.. 62
structured assembly directives 65
SWITCH (assembler directive) 66
symbol and cross-reference table, in assembler list file. . . 10
symbol control directives. 46
symbol values, checking 54
symbols

See also assembler symbols

predefined, inassembler 4

predefined, in assembler macro. 61

user-defined, case sensitive 21
syntax

See also assembler source format

assembler directives 43
tab spacing, specifying in assembler listfile 21
temporary values, defining. 53,82
time-critical code 62
true value, in assembler expressions 2
typographical conventions X

105

U

UGT (assembler operator)covevenen.. 36
ULT (assembler operator)coeuenen.. 36
UNTIL (assembler directive) 66
user symbols, case sensitive.c. ... 21
value assignment directives 52
values, defining temporary. 82
WAITINZS .+« et v ettt e e e e 87, 96

disabling i 22
WHILE (assembler directive) 66
xcl (fileextension), 11, 16
XOR (assembler operator), 36

Symbols

! (assembler operator)c..iiiiiin... 33
I=(assembler operator), 33
#define (assembler directive) 78
#elif (assembler directive) 78
#else (assembler directive). 78
#endif (assembler directive). 78
#error (assembler directive) 78
#if (assembler directive). 78
#ifdef (assembler directive) 78
#ifndef (assembler directive) 78
#include files

LIStING. . oot e 17

specifying 17
#include (assembler directive) 78
#message (assembler directive) 78

8051 IAR Assembler

106 Reference Guide

#undef (assembler directive) 78
$ (assembler directive) 84
$ (program location counter)ooun... 3
% (assembler operator)c...iiniiaa.. 33
& (assembler Operator).t 29
&& (assembler operator) 28
* (assembler Operator) 27
+ (assembler Operator)t 27
- (assembler operator)iiiia. 28
-B (assembler option). i 14
-b (assembleroption) il 14
-c (assembler option)t 14
-D (assembler option). 15
-f (assembleroption), 11, 16
-G (assembler option). 16
-I (assembleroption)oiiiii. 17
-i(assembleroption) 17
-L (assembler option). 17
-l (assembleroption), 18
-M (assembler option) 18
-N (assembler option). 19
-O (assembler option).t 19
-0 (assembler option)o 19
-p (assembleroption) i 20
-r (assembler option) il 20
-S (assembler option) 20
-s (assembleroption) il 21
-t (assembler option) 21
-U (assembler option).coviiiii i 21
-w (assembler option). 22
-X (assembler option)l 23
/ (assembler operator). o i 28
/*...%[(assembler directive) 84
// (assembler directive). 84
< (assembler Operator)ottt 32
<< (assembler operator)o 35
<= (assembler operator) i 32
<> (assembler operator) 33
= (assembler directive)., 52

= (assembler operator) 30
== (assembler Operator)t 30
> (assembler operator) 31
>= (assembler Operator) 31
>> (assembler Operator) 35
A (assembler operator) 29
_ _DATE_ _ (predefined symbol) 4
_ _FILE_ _ (predefined symbol) 4
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol). 4
_ _LINE_ _ (predefined symbol)..................... 4
_ _TID_ _ (predefined symbol) 4,5
_ _TIME_ _ (predefined symbol) 4
_ _VER_ _ (predefined symbol) 4
_args, predefined macro symbol 61
| (assembler operator).t 29
[l (assembler operator)c.c.iuiiiiien... 33
~ (assembler operator) 29

Index __o

107

8051 IAR Assembler
108 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Document conventions

	Introduction to the 8051 IAR Assembler
	Source format
	Assembler expressions
	TRUE and FALSE
	Using symbols in relocatable expressions
	Symbols
	Labels
	Program location counter (PLC)

	Integer constants
	ASCII character constants
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Register symbols
	Programming hints
	Special function registers
	Example

	Using C-style preprocessor directives

	List file format
	Header
	Body
	CRC
	List fields
	Symbol and cross-reference table

	Output formats

	Assembler options
	Setting assembler options
	Extended command line file
	Error return codes

	Assembler environment variables

	Summary of assembler options
	Descriptions of assembler options

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators – 1
	Multiplicative arithmetic and shift operators –2
	Additive arithmetic operators – 3
	Shift operators – 4
	AND operators – 5
	OR operators – 6
	Comparison operators – 7

	Descriptions of assembler operators
	Syntax
	Parameters
	Description
	Syntax
	Parameters
	Description
	Syntax
	Parameters
	Description

	Assembler directives
	Summary of directives
	Syntax conventions
	Labels and comments
	Parameters

	Module control directives
	Syntax
	Parameters
	Description
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the last module
	Assembling multi-module files

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Importing symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Description
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Defining special function registers
	Checking symbol values

	Examples
	Redefining a symbol
	Using local and global symbols
	Using special function registers
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Examples

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Passing special characters
	Predefined macro symbols
	How macros are processed
	Repeating statements

	Examples
	Coding in-line for efficiency
	Using REPTC and REPTI

	Structured assembly directives
	Syntax
	Parameters
	Description
	Conditional constructs
	Loop directives
	Iteration construct
	Switch construct

	Examples
	Using conditional constructs
	Using loop constructs
	Using iteration constructs
	Using switch constructs

	Listing control directives
	Syntax
	Parameters
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table
	Specifying the list file format

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Formatting listed output

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining labels
	Conditional directives
	Including source files
	Displaying errors
	Defining comments

	Examples
	Using conditional directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Description
	Examples
	Generating lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity

	Examples
	Including a source file
	Defining comments
	Changing the base
	Controlling case sensitivity

	Assembler diagnostics
	Severity levels
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Error messages
	General error messages
	8051-specific error messages

	Warning messages
	General
	8051-specific warning messages
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

	Index

